Algorytmika

czwartek, 14:15 - 16:00, sala 0174

Seminarium o algorytmach i złożoności obliczeniowej, ze szczególnym
uwzględnieniem klasycznych wielomianowych algorytmów i analizy
ograniczeń złożonościowych.

Poprzednie referaty

16.03.2017 14:15
Jakub Cisło, Grzegorz Jurdziński
Tight Hardness Results for LCS and other Sequence Similarity Measures
09.03.2017 14:00
Sylwester Klocek, Wojciech Kruk
The Alternating Stock Size Problem and the Gasoline Puzzle
05.01.2017 14:15
Jan Derbisz, Jakub Łabaj
Sortowanie przez spacer po drzewie

Rozważamy następujący problem: wierzchołki drzewa ponumerowane są kolejnymi liczbami naturalnymi, a dodatkowo w wierzchołku x leży skrzynka o numerze p(x), przy czym funkcja p jest permutacją zbioru {1,2,..,n}. Rozważamy chodzącego po drzewie robota, który może w danym momencie trzymać tylko jedną skrzynkę, może też podnieść napotkaną skrzynkę upuszczając aktualnie trzymaną. Celem robota jest posortować skrzynki (przenosząc każdą do wierzchołka o odpowiednim numerze), przechodząc po drzewie najkrótszą możliwą ścieżką. Praca D. Grafa podaje algorytm znajdujący taką ścieżkę w czasie O(n2) oraz dowód, że jeśli drzewo zastąpimy grafem planarnym, problem staje się NP-zupełny.

15.12.2016 14:15
Michał Glapa, Franciszek Stokowacki
Skojarzenia w grafach metodami algebraicznymi
Na seminarium omówiony zostanie przełomowa praca z 2006, autorstwa Muchy i Sankowskiego, opisująca algorytm obliczania skojarzeń w grafach za pomocą eliminacji Gaussa. Przedstawiony algorytm ma złożoność zależną od mnożenia macierzy, niższą niż O(n2.5), algorytmu Micaliego-Vaziraniego, który bardzo długo był najlepszą znaną metodą.
08.12.2016
Lech Duraj
Krótka opowieść o mnożeniu macierzy

W ostatnich latach pojawiają się kolejne, coraz lepsze algorytmy mnożenia macierzy. Każdy z nich jest jednak tylko nieznacznie szybszy od poprzednich, będąc przy tym nierównie trudniejszy w zrozumieniu i analizie. Fakt ten jeszcze bardziej komplikuje otwarte od wielu lat pytanie o złożoność optymalnego algorytmu mnożenia macierzy.

Celem prezentacji jest krótkie omówienie technik używanych do ataków na ten niezwykle ważny i trudny problem. Prezentacja oparta jest na przeglądowym wykładzie François Le Galla (autora ostatnich wyników w tym temacie) z 2014 roku.

01.12.2016
Aleksandra Mędrek, Krzysztof Maziarz
Navigating Central Path with Electrical Flows: from Flows to Matchings, and Back

Praca Aleksandra Mądrego opisuje nowe podejście do problemu maksymalnego przepływu, z użyciem tzw. przepływów elektrycznych. W tej technice krawędziom przypisywany jest opór, a zadaniem jest zminimalizowanie wydzielonej energii. Dowolną sieć przepływową można zredukować do zadania przepływu elektrycznego, z użyciem pośredniej redukcji poprzez warianty problemu skojarzenia w grafie dwudzielnym. Głównym rezultatem pracy jest algorytm przepływu o złożoności O(m10/7), na seminarium będzie prezentowana prostsza wersja algorytmu, działająca w O(m3/2).

24.11.2016
Dominika Salawa, Jakub Cisło
Greedy algorithms for Steiner forest

Referowana praca rozstrzyga długo otwarty problem: czy budowanie drzewa Steinera zachłannym algorytmem daje wynik gorszy od optymalnego o stałą multiplikatywną? Autorzy (A. Gupta, A. Kumar) dowodzą, że tak, dla stałej równej 96. Jest to pierwsze znane oszacowanie wyniku algorytmu zachłannego, wcześniej podawane algorytmy aproksymacyjne dla tego problemu oparte były o programowanie liniowe.

17.11.2016
Patryk Gołębiowski, Wojciech Kruk
Lower Bounds in the Preprocessing and Query Phases of Routing Algorithms
Tematem referatu jest praca Colina White'a dotycząca algorytmów poszukiwania ścieżki na grafach o szczególnym własnościach, mających w założeniu modelować rzeczywiste sieci dróg. Autor analizuje najpopularniejsze istniejące algorytmy i podaje dolne ograniczenia na ich złożoność.
10.11.2016
Magdalena Gargas, Mateusz Jachna
Max flows in O(nm) time, or better
W pracy opisany jest nowy algorytm przepływu działający w czasie O(nm + m16/15 logn). Istotny jest fakt, że przez połączenie go z poprzednio znanymi algorytmami daje to pozytywną odpowiedź na pytanie, czy da się obliczyć maksymalny przepływ w czasie O(nm). Autorem pracy jest James B. Orlin.
03.11.2016
Krzysztof Francuz, Szymon Łukasz
Fast and simple connectivity in graph timelines

Referowana praca (autorstwa J. Łąckiego i A. Karczmarza) rozważa grafy, w którym krawędzie podlegają zmianom - są dodawane bądź usuwane. Opisany jest efektywny algorytm odpowiadający na pytania o osiągalność (istnienie ścieżki między dwoma wierzchołkami) i dwuspójność (istnienie dwóch rozłącznych ścieżek) na zadanych przedziałach czasowych.

27.10.2016
Dawid Pyczek, Jakub Rówiński
Faster deterministic sorting and priority queues in linear space

Dolne ograniczenie O(n log n) na problem sortowania obowiązuje tylko, jeśli na sortowanych obiektach nie można wykonać żadnych operacji innych niż porównanie. Jeżeli natomiast sortujemy liczby całkowite, możliwe są szybsze algorytmy - referowana praca Mikkela Thorupa z 1997 opisuje algorytm działający w O (n (log log n)2).

20.10.2016
Mateusz Twaróg, Patryk Urbański
Disjoint Set Union with randomized linking

Algorytm Find-Union w najbardziej znanej wersji implementowany jest przez las zbiorów rozłącznych z kompresją ścieżek i łączeniem według rang. Prezentowana praca, autorstwa Goela, Khanny, Larkina i Tarjana, analizuje złożoność w wersji z arbitralnym (losowym) łączeniem drzew.

13.10.2016
Grzegorz Bukowiec, Sylwester Klocek
Algorytm FKT
Rozstrzygnięcie, czy w grafie istnieje skojarzenie, oraz znalezienie takiego skojarzenia są problemami łatwymi obliczeniowo. Liczenie wszystkich skojarzeń jest jednak problemem #P-zupełnym - wielomianowy algorytm na ten problem pociągałby równość P = NP. Istnieje jednak sposób na policzenie skojarzeń dla pewnej klasy grafów - w szczególności, dla wszystkich grafów planarnych. Algorytm taki - zwany od nazwisk twórców algorytmem FKT - wykorzystuje bliski związek między pojęciami (łatwego obliczeniowo) wyznacznika i (trudnego) permanentu macierzy.
16.03.2016 14:15
Jakub Cisło, Grzegorz Jurdziński
Tight Hardness Results for LCS and other Sequence Similarity Measures