Undirected edge geography

Adam Pardyl

April 2, 2020

Adam	Pard	v.
Auann	i aiu	y١

Generalized Geography

Adam Pardyl

▶ < ≣ ▶ ≣ ∽ ९.० April 2, 2020 2 / 55

- The board is a directed graph,
- 2 players alternately move a token,
- The token can only be moved along an edge from one vertex to another,
- During every move the visited vertex is removed,
- The player who has no legal move loses.

Directed/Undirected

Whether the edges of the graph are directed or not.

Vertex/Edge

Remove visited vertices or edges after every move.

Rooted/Unrooted

The first player starts from assigned position or chooses one arbitrarily.

Restricted graph

Planer, bipartite, restricted maximum degree...

Multiple tokens

Tokens block or annihilate one another, two colors...

Edge Geography

Adam Pardyl

э April 2, 2020

イロト イヨト イヨト イヨ

990

Theorem

We can determine the winner of a UVG game in polynomial time

- 4 西

Matching

A matching in a graph is a set of independent edges.

Maximum matching

A matching of maximum cardinality.

Saturation

A matching M saturates a vertex v if v is incident to some edge in M.

Lemma

Let G be a graph and v a distinguished vertex of G. Then the game UVG starting at position (G, v) is a first player win if and only if every maximum matching of G saturates v.

=>

Suppose that some maximum matching M does not saturate the starting vertex v.

The winning strategy for the second player is to move along edges from M.

 $\leq =$

Every maximum matching saturates v v.

The winning strategy for the first player is to choose any maximum matching M and move along edges from M. \Box

In unrooted UVG the second player has a winning strategy if and only if the graph has a perfect matching.

Maximum matching can be solved in plynomial time (e.g. blossom algorithm) => undirected vertex geography can be solved in polynomial time.

Theorem

The problem of determining if the second player wins an UEG game starting from given vertex v of G is PSPACE-complete.

=>

The game can last no more than |E| moves.

Adam Pardyl

$\leq =$

A polynomial time transform from Directed Edge Geography (PSPACE-complete)

INPUT: arbitrary rooted directed graph (D, w). We construct a rooted undirected (G, v) - instance of UEG... Create G by replacing every directed edge $x \rightarrow y$ in D with a copy of A (pictured on the right). v = w

No (optimal) player ever play from y into A - the opponent can force a local victory by going to z.

A player can safely pass the other way around in exactly 4 moves - no player can win in A starting from x.

DEG is known to be PSPACE-complete => UEG is PSPACE complete. DEG remain PSPACE even for planar graphs with maximum vertex degree of 3.

Adam Pardyl

April 2, 2020

・ロト ・ 同ト ・ ヨト ・ ヨト

990

Def

An even kernel for ${\sf G}$ is a nonempty set ${\sf S}$ of vertices such that

- no two elements of S are adjacent,
- 2 every vertex not in S is adjacent to an even number (possibly 0) of vertices in S.

Theorem

IF S is an even kernel for G and $v \in S$, then the second player wins a game that starts from v.

Strategy for the second player: always move to a vertex in S.

- the first player always moves to a vertex not in S,
- each vertex not in S has an even number of neighbours in S.

Nonadjacent vertices v and w in a graph G have the same neighbour => the second player wins a game that starts form v.

 $S = \{v, w\}$ is an even kernel for G.

For $n \ge 2$, the first player wins in a K_n graph.

The first player moves from v to (any) w. v and w have the same neighbours in $K_n - vw$.

This theorem works only one way - example:

Image: A math a math

Bipartite adjacency matrix

For bipartite graph G with parts X and Y a bipartite adjacency matrix is an |X|-by-|Y| matrix whose i, j entry is 1 if $x_i y_j$ is an edge of G and 0 otherwise.

- line of a matrix a row or a column,
- lines are perpendicular if one is a row and one is a column, otherwise they are parallel.

UEG on a matrix

A legal move consists of choosing a 1 in the distinguished line of M, changing it to a 0, and identifying the perpendicular line through this entry to be the new distinguished line.

Theorem

Given a binary matrix M and a distinguished line / the second player wins a game that starts form / if and only if / is in the span over GF(2) of the other lines parallel to it.

=>

Suppose (without loss of generality), that I is the first row r_1 and is in the span of the remaining rows, that is

$$\sum_{i\in Q}r_i=0$$

where Q is some subset of rows with $I \in Q$.

Set S of vertices of G associated with rows r_i , $i \in Q$ is an even kernel for G. The second player wins.

$\leq =$

Suppose that r_1 is linearly independent of the remaining rows. We show that there is a 1 in row r_1 , say $m_{1,j} = 1$ which when changed to a 0 makes column c_j dependent on the other columns.

Let M^* be a matrix obtained from M by adding a column $e_1 = (1, 0, 0, ..., 0)^T$.

 r_1 is independent $= M^*$ has the same rank as M = has the same column rank as M, that is:

$${f e}_1 = \sum_j b_j c_j$$

Choose an index k so that $b_k = 1$ and the first entry of c_k is 1 (k must exist since the first entry of e_1 is one).

$$0=c_k+e_1=\sum_{j\neq k}b_jc_j$$

The column is dependent on the remaining columns.

By the first part of this prove the opponent now faces a losing position - this is a win for the first player. \Box

Let v be a vertex of a bipartite graph G. The second player wins a game that starts from v if and only if v is in an even kernel of G.

- (二)

There is a polynomial-time algorithm for UEG in case the rooted graph is bipartite.

A simple Gaussian elimination suffices.

If G is a bipartite Eulerian graph and v is any vertex, then the second player wins a game that starts from v.

All vertices in the two parts of G have even degree, so each part is an even kernel.

If G is a bipartite graph with parts X and Y, v is a vertex in X, and every vertex in Y has even degree, then the second player wins a game that starts from v.

Let G be a bipartite graph with bipartite adjacency matrix M. The second player has a winning strategy in unrooted UEG if and only if M is invertible (i.e., square and nonsingular) over GF(2).

n-cube graph

The n-cube Qn is the graph whose vertex set is the set of $\{0, I\}$ sequences of length n with an edge between two such sequences if they differ in exactly one position.

Theorem

Let v be any vertex in the n-cube Q_n , then the second player wins a game that starts from v if and only if n is even.

=>

Every Q_n is bipartite. For even n it is also Eulerian.

Adam Pardyl

Image: A image: A

$\leq =$

Suppose n is odd. Without loss of generality, let v = (0, 0, ..., 0). Let w = (1, 0, ..., 1) and let S be a set of $\{0, 1\}$ sequences of length n with exactly single 1.

S is an even kernel for $(Q_n - vw, w) =$ the second player wins in $(Q_n - vw, w)$.

The winning strategy for the first player in Q_n is to always move into S. \Box

$m \times n$ -grid

The $m \times n$ -grid $G_{m \times n}$ is the graph whose vertex set is $\{1, 2, ..., m\} \times \{1, 2, ..., n\}$ with an edge between (i, j) and (k, l) if and only if |i - k| + |j - l| = 1.

Theorem

Take $m, n \ge 2$ and let v = (1, 1). Then the second player wins a game on $G_{m \times n}$ that starts from v if and only if $gcd(m+1, n+1) \ne 1$.

=>

Let d > 1 be a common divisor of m + 1 and n + 1. Let

$$S = \{(i,j) : d \nmid i \land d \nmid j \land (2d \mid (i-j) \lor 2d \mid (i+j))\}$$

S is an even kernel for $G_{m \times n}$ so the second player wins a game on $G_{m \times n}$ that starts from (1, 1)

$\leq =$

Suppose gcd(m+1, n+1) = 1. Either m or n is even, without loss of generality let m be even.

We show that at least one of possible opening moves leads to a second-player-wins situation.

Imagine a billiard ball rolling on an (m + 1)-by-(n + 1) billiard table (with corners coordinatized by (O, O), (m + l, O), (0, n + l), and (m + 1, n + 1)).

The billiard ball begins its journey at corner (m + 1, 0) always maintaining a 45° angle with the sides of the table. As it travels, the ball bounces off the edges of the table. After traveling through lcm(m + 1, n + 1) = (m + 1)(n + 1) steps, it is "absorbed" in another corner.

- The ball's trajectory can take it through any given vertex of the grid graph at most twice,
- The ball can travel through only half of the vertices ((*i*, *j*) : *i* + *j* = 1 (mod 2))

The orbit visits every vertex (i, j): $i + j = 1 \pmod{2}$ exactly twice.

Four portions of the trajectory are labeled by a, b, c and d. Two of these four portions lead to corners of the table.

It is not the case that both the a and d portions lead to a corner (for otherwise we would only visit (1,2) and (2,1) once); likewise at most one of b and c lead to a corner.

Therefore, exactly one of portions b or c lead to a corner; let us say it is portion b.

Let S be the set of all vertices which are traversed an odd number of times on portion b.

- Observe that every vertex not in S (an independent set) is adjacent to an even number of members of S except vertex (1, 1).
- A move from (1,1) to (1,2) results in wining position for the second player => this is a winning move for the first player. \Box

- Even Kernel Computational Complexity,
- Unrooted Undirected Edge Geography,
- Random graphs,
- Grids in general,
- Partizan Versions.

Undirected edge geography

Adam Pardyl

April 2, 2020

Adam Pardyl

 ▶
 ₹
 >
 ₹
 >
 Q
 Q

 April 2, 2020
 54 / 55

Aviezri S Fraenkel, Edward R Scheinerman, and Daniel Ullman. Undirected edge geography. Theoretical Computer Science, 112(2):371–381, 1993.

Thomas J Schaefer.

On the complexity of some two-person perfect-information games. *Journal of Computer and System Sciences*, 16(2):185–225, 1978.