# Undirected edge geography 

Adam Pardyl

April 2, 2020

## Generalized Geography

## Rules

- The board is a directed graph,
- 2 players alternately move a token,
- The token can only be moved along an edge from one vertex to another,
- During every move the visited vertex is removed,
- The player who has no legal move loses.



## Variations

## Directed/Undirected

Whether the edges of the graph are directed or not.

## Vertex/Edge

Remove visited vertices or edges after every move.

## Rooted/Unrooted

The first player starts from assigned position or chooses one arbitrarily.

## Variations

## Restricted graph

Planer, bipartite, restricted maximum degree...

## Multiple tokens

Tokens block or annihilate one another, two colors...

## Edge Geography

## Undirected vertex geography

## Theorem

We can determine the winner of a UVG game in polynomial time

## Undirected vertex geography

## Matching

A matching in a graph is a set of independent edges.
Maximum matching
A matching of maximum cardinality.

## Saturation

A matching $M$ saturates a vertex $v$ if $v$ is incident to some edge in $M$.

## Undirected vertex geography

## Lemma

Let $G$ be a graph and $v$ a distinguished vertex of $G$. Then the game UVG starting at position $(G, v)$ is a first player win if and only if every maximum matching of $G$ saturates $v$.

## Undirected vertex geography

=>

Suppose that some maximum matching M does not saturate the starting vertex $v$.

The winning strategy for the second player is to move along edges from M .


## Undirected vertex geography

$<=$
Every maximum matching saturates $v v$.
The winning strategy for the first player is to choose any maximum matching M and move along edges from $\mathrm{M} . \square$


## Undirected vertex geography

## Corollary

In unrooted UVG the second player has a winning strategy if and only if the graph has a perfect matching.

## Undirected vertex geography

Maximum matching can be solved in plynomial time (e.g. blossom algorithm) $=>$ undirected vertex geography can be solved in polynomial time.

## Undirected edge geography

## Theorem

The problem of determining if the second player wins an UEG game starting from given vertex $v$ of $G$ is PSPACE-complete.

## Undirected edge geography

$$
=>
$$

The game can last no more than $|E|$ moves.

## Undirected edge geography

```
<=
A polynomial time transform from Directed Edge Geography (PSPACE-complete)
INPUT: arbitrary rooted directed graph (D,w).
We construct a rooted undirected (G,v) - instance of UEG...
```


## Undirected edge geography

Create $G$ by replacing every directed edge $x \rightarrow y$ in $D$ with a copy of A (pictured on the right). $v=w$


Graph A

## Undirected edge geography

No (optimal) player ever play from $y$ into A - the opponent can force a local victory by going to $z$.


Graph A

## Undirected edge geography

A player can safely pass the other way around in exactly 4 moves - no player can win in A starting from $x$.


Graph A

## Undirected edge geography

DEG is known to be PSPACE-complete $=>$ UEG is PSPACE complete. DEG remain PSPACE even for planar graphs with maximum vertex degree of 3 .

## Special cases

## Even kernel

## Def

An even kernel for $G$ is a nonempty set $S$ of vertices such that
(1) no two elements of $S$ are adjacent,
(2) every vertex not in $S$ is adjacent to an even number (possibly 0 ) of vertices in $S$.

## Even kernel

## Theorem

IF $S$ is an even kernel for $G$ and $v \in S$, then the second player wins a game that starts from $v$.
Strategy for the second player: always move to a vertex in S .

## Even kernel

- the first player always moves to a vertex not in S ,
- each vertex not in $S$ has an even number of neighbours in $S$.


## Even kernel

## Corollary

Nonadjacent vertices $v$ and $w$ in a graph G have the same neighbour $=>$ the second player wins a game that starts form $v$.
$S=\{v, w\}$ is an even kernel for $G$.

## Even kernel

## Corollary

For $n \geq 2$, the first player wins in a $K_{n}$ graph.
The first player moves from $v$ to (any) $w . v$ and $w$ have the same neighbours in $K_{n}-v w$.

## Even kernel

This theorem works only one way - example:


## Bipartite graphs

## Bipartite adjacency matrix

For bipartite graph G with parts X and Y a bipartite adjacency matrix is an $|X|$-by- $|Y|$ matrix whose $i, j$ entry is 1 if $x_{i} y_{j}$ is an edge of $G$ and 0 otherwise.

- line of a matrix - a row or a column,
- lines are perpendicular if one is a row and one is a column, otherwise they are parallel.


## Bipartite graphs

## UEG on a matrix

A legal move consists of choosing a 1 in the distinguished line of $M$, changing it to a 0 , and identifying the perpendicular line through this entry to be the new distinguished line.

## Bipartite graphs

## Theorem

Given a binary matrix M and a distinguished line / the second player wins a game that starts form / if and only if $l$ is in the span over $G F(2)$ of the other lines parallel to it.

## Bipartite graphs

$$
=>
$$

Suppose (without loss of generality), that $I$ is the first row $r_{1}$ and is in the span of the remaining rows, that is

$$
\sum_{i \in Q} r_{i}=0
$$

where $Q$ is some subset of rows with $I \in Q$.

Set $S$ of vertices of $G$ associated with rows $r_{i}, i \in Q$ is an even kernel for $G$. The second player wins.

## Bipartite graphs

$$
<=
$$

Suppose that $r_{1}$ is linearly independent of the remaining rows. We show that there is a 1 in row $r_{1}$, say $m_{1, j}=1$ which when changed to a 0 makes column $c_{j}$ dependent on the other columns.

## Bipartite graphs

Let $M^{*}$ be a matrix obtained from $M$ by adding a column $e_{1}=(1,0,0, \ldots, 0)^{T}$.
$r_{1}$ is independent $=>M^{*}$ has the same rank as $M=>$ has the same column rank as $M$, that is:

$$
e_{1}=\sum_{j} b_{j} c_{j}
$$

Choose an index k so that $b_{k}=1$ and the first entry of $c_{k}$ is 1 ( $k$ must exist since the first entry of $e_{1}$ is one).

$$
0=c_{k}+e_{1}=\sum_{j \neq k} b_{j} c_{j}
$$

The column is dependent on the remaining columns.

## Bipartite graphs

By the first part of this prove the opponent now faces a losing position - this is a win for the first player.

## Bipartite graphs

## Corollary

Let $v$ be a vertex of a bipartite graph G. The second player wins a game that starts from $v$ if and only if $v$ is in an even kernel of G.

## Bipartite graphs

## Corollary

There is a polynomial-time algorithm for UEG in case the rooted graph is bipartite.
A simple Gaussian elimination suffices.

## Bipartite graphs

## Corollary

If G is a bipartite Eulerian graph and $v$ is any vertex, then the second player wins a game that starts from $v$.

All vertices in the two parts of G have even degree, so each part is an even kernel.

## Bipartite graphs

## Corollary

If $G$ is a bipartite graph with parts $X$ and $Y$, $v$ is a vertex in $X$, and every vertex in $Y$ has even degree, then the second player wins a game that starts from $v$.

## Bipartite graphs

## Corollary

Let G be a bipartite graph with bipartite adjacency matrix M . The second player has a winning strategy in unrooted UEG if and only if M is invertible (i.e., square and nonsingular) over GF(2).

## n-cube graph

## n -cube graph

The $n$-cube $Q n$ is the graph whose vertex set is the set of $\{0, /\}$ sequences of length $n$ with an edge between two such sequences if they differ in exactly one position.

## n-cube graph

## Theorem

Let $v$ be any vertex in the $n$-cube $Q_{n}$, then the second player wins a game that starts from $v$ if and only if n is even.

## n-cube graph

$$
=>
$$

Every $Q_{n}$ is bipartite. For even n it is also Eulerian.

## n-cube graph

$$
<=
$$

Suppose n is odd. Without loss of generality, let $v=(0,0, \ldots, 0)$.
Let $w=(1,0, \ldots, 1)$ and let $S$ be a set of $\{0,1\}$ sequences of length $n$ with exactly single 1 .
S is an even kernel for $\left(Q_{n}-v w, w\right)=>$ the second player wins in $\left(Q_{n}-v w, w\right)$.
The winning strategy for the first player in $Q_{n}$ is to always move into $S$.

## $m \times n$-grid graph

$m \times n$-grid
The $m \times n$-grid $G_{m \times n}$ is the graph whose vertex set is $\{1,2, \ldots, m\} \times\{1,2, \ldots, n\}$ with an edge between $(i, j)$ and $(k, l)$ if and only if $|i-k|+|j-I|=1$.

## $m \times n$-grid graph

## Theorem

Take $m, n \geq 2$ and let $v=(1,1)$. Then the second player wins a game on $G_{m \times n}$ that starts from $v$ if and only if $\operatorname{gcd}(m+1, n+1) \neq 1$.

## $m \times n$-grid graph

$$
=>
$$

Let $d>1$ be a common divisor of $m+1$ and $n+1$. Let

$$
S=\{(i, j): d \nmid i \wedge d \nmid j \wedge(2 d|(i-j) \vee 2 d|(i+j)\}
$$

$S$ is an even kernel for $G_{m \times n}$ so the second player wins a game on $G_{m \times n}$ that starts from $(1,1)$


## $m \times n$-grid graph

$$
<=
$$

Suppose $\operatorname{gcd}(m+1, n+1)=1$. Either $m$ or $n$ is even, without loss of generality let $m$ be even.

We show that at least one of possible opening moves leads to a second-player-wins situation.

## $m \times n$-grid graph

Imagine a billiard ball rolling on an $(m+1)$-by- $(n+1)$ billiard table (with corners coordinatized by $(O, O),(m+l, O),(0, n+l)$, and $(m+1, n+1)$ ).

The billiard ball begins its journey at corner $(m+1,0)$ always maintaining a $45^{\circ}$ angle with the sides of the table. As it travels, the ball bounces off the edges of the table. After traveling through $\operatorname{Icm}(m+1, n+1)=(m+1)(n+1)$ steps, it is
 "absorbed" in another corner.

## $m \times n$-grid graph

- The ball's trajectory can take it through any given vertex of the grid graph at most twice,
- The ball can travel through only half of the vertices $((i, j): i+j=1(\bmod 2))$
The orbit visits every vertex $(i, j): i+j=1(\bmod 2)$ exactly twice.



## $m \times n$-grid graph

Four portions of the trajectory are labeled by $a, b, c$ and $d$. Two of these four portions lead to corners of the table.

It is not the case that both the $a$ and $d$ portions lead to a corner (for otherwise we would only visit $(1,2)$ and $(2,1)$ once); likewise at most one of $b$ and $c$ lead to a corner.


## $m \times n$-grid graph

Therefore, exactly one of portions $b$ or $c$ lead to a corner; let us say it is portion $b$.

Let $S$ be the set of all vertices which are traversed an odd number of times on portion $b$.


## $m \times n$-grid graph

Observe that every vertex not in $S$ (an independent set) is adjacent to an even number of members of $S$ except vertex $(1,1)$.
A move from $(1,1)$ to $(1,2)$ results in wining position for the second player $=>$ this is a winning move for the first player.


## Problems

- Even Kernel Computational Complexity,
- Unrooted Undirected Edge Geography,
- Random graphs,
- Grids in general,
- Partizan Versions.


# Undirected edge geography 

Adam Pardyl

April 2, 2020

## References

固 Aviezri S Fraenkel, Edward R Scheinerman, and Daniel Ullman.
Undirected edge geography.
Theoretical Computer Science, 112(2):371-381, 1993.
固 Thomas J Schaefer.
On the complexity of some two-person perfect-information games. Journal of Computer and System Sciences, 16(2):185-225, 1978.

