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Introduction

Suppose that a train is running along a railway network of a special
nature: every time the train traverses a switch, the switch will change its
position immediately afterwards. Hence, the next time the train traverses
the same switch, the other direction will be taken, so that directions
alternate with each traversal of the switch.

Given a network with origin and destination, will the train eventually reach
the destination when starting at the origin?

What is the complexity of deciding so?
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Switch graph

G = (V ,E , s0, s1) is a switch graph, where:

V is a set of vertices

s0, s1 : V 7→ V

E = {(v , s0(v) : v ∈ V )} ∪ {(v , s1(v) : v ∈ V )}, with loops (v , v)
allowed
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Convention

s0(v) is the even successor of v , s1(v) is the odd successor

let n = |V |
E+(v) denotes the set of outgoing edges from v , E−(v) denotes the
set of incoming edges
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Example of switch graph
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Running train

Given a switch graph G = (V ,E , s0, s1) with origin and destination
vertices o, d ∈ V we can define such procedure:

where initially s curr[v ] = s0(v), s next[v ] = s1(v).
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Example run
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Example run
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ARRIVAL

Problem ARRIVAL is to decide whether procedure Run(G , o, d) terminates
for a given switch graph G = (V ,E , s0, s1) and o, d ∈ V .
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Existing research

Most of the existing research is focused on actively controlling
switches.

It was shown (here and here) that if we enrich our network with two
other natural switch types, we could simulate Turing machines

So ARRIVAL becomes NPC problem in the richer setting
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Decidability

Theorem 1.

Problem ARRIVAL is decidable.

Figure: Switch graph, on which RUN procedure takes exponential number of
steps. Solid edges point to the even successors, dashed point to the odd.
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NP

Theorem 2.

Problem ARRIVAL is in NP.

natural witness – run profile

fake run profiles may fool the verifier
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Switching flow

let G = (V ,E , s0, s1) be the switch graph

let o, d ∈ V be origin and destination

x : E 7→ N is a switching flow if:

∀v∈V
∑

e∈E+(v)

x(e)−
∑

e∈E−(v)

x(e) =


1, v = o

−1, v = d

0, otherwise

∀v∈V 0 ≤ x((v , s1(v))) ≤ x((v , s0(v))) ≤ x((v , s1(v))) + 1
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Run profile vs switching flow

Observation 1.

Let G = (V ,E , s0, s1) be a switch graph, and let o, d ∈ V , o 6= d , such
that Run(G , o, d) terminates. Let x(G , o, d) : E 7→ N (the run profile) be
the function that assigns to each edge the number of times it has been
traversed during Run(G , o, d). Then x(G , o, d) is a switching flow.
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Fake flows
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Switching flow is enough

Lemma 1.

Let G = (V ,E , s0, s1) be a switch graph, and let o, d ∈ V , o 6= d . If there
exists a switching flow x , then Run(G , o, d) terminates, and
x(G , o, d) ≤ x (componentwise).

during the run, flow conservation (w.r.t. to the remaining pebbles)
always holds, except at d , and at the current vertex which has one
more pebble on its outgoing edges

by alternation, starting with the even successor, the numbers of
pebbles on (v , s0(v)) and (v , s1(v)) always differ by at most one, for
every vertex v
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So NP

Theorem 2.

Problem ARRIVAL is in NP.
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coNP

Theorem 3.

Problem ARRIVAL is in coNP.
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coNP

dead vertices (dead ends)

dead edges

hopeful edges

edge desperation
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Lemmas

Lemma 2.

Let G = (V ,E , s0, s1) be a switch graph, o, d ∈ V , o 6= d , and let
e = (v ,w) ∈ E be a hopeful edge of desperation k . Then Run(G , o, d)
will traverse e at most 2k + 1− 1 times.

Proof by induction on k.

Lemma 3.

Let G = (V ,E , s0, s1) be a switch graph, and let o, d ∈ V , o 6= d . If
Run(G , o, d) does not terminate, it will reach a dead end.

Proof based on Lemma 1.
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coNP

Theorem 3.

Problem ARRIVAL is in coNP.

Given instance (G , o, d) we will construct (in polynomial time) another
instance (Ḡ , o, d̄) such that Run on the first one terminates iff it does not
terminate on the second one.
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coNP

V̄ = V ∪ {d̄}

if v was a dead end: s̄0(v) = s̄1(v) = d̄

s̄0(d) = s̄1(d) = d

for the rest: s̄0(v) = s0(v), s̄1(v) = s1(v)

Piotr Miko lajczyk (TCS) ARRIVAL game March 25, 2020 25 / 28



coNP

V̄ = V ∪ {d̄}
if v was a dead end: s̄0(v) = s̄1(v) = d̄

s̄0(d) = s̄1(d) = d

for the rest: s̄0(v) = s0(v), s̄1(v) = s1(v)

Piotr Miko lajczyk (TCS) ARRIVAL game March 25, 2020 25 / 28



coNP

V̄ = V ∪ {d̄}
if v was a dead end: s̄0(v) = s̄1(v) = d̄

s̄0(d) = s̄1(d) = d

for the rest: s̄0(v) = s0(v), s̄1(v) = s1(v)

Piotr Miko lajczyk (TCS) ARRIVAL game March 25, 2020 25 / 28



coNP

V̄ = V ∪ {d̄}
if v was a dead end: s̄0(v) = s̄1(v) = d̄

s̄0(d) = s̄1(d) = d

for the rest: s̄0(v) = s0(v), s̄1(v) = s1(v)

Piotr Miko lajczyk (TCS) ARRIVAL game March 25, 2020 25 / 28



ILP

Theorem 4.

Let G = (V ,E , s0, s1) be a switch graph, and let o, d ∈ V , o 6= d .
Run(G , o, d) terminates if and only if there exists an integer solution
satisfying the constraints (1) and (2). In this case, the run profile
x(G , o, d) is the unique integer solution that minimizes the linear objective
function

∑
x =

∑
e∈E

x(e) subject to the constraints (1) and (2).
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No integer solution
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Further results

ARRIVAL ∈ UP ∩ coUP

S − ARRIVAL ∈ PLS

S − ARRIVAL ∈ CLS
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