Perfect Numbers

Kornel Dulęba

Presentation overview

1. Introduction
2. Even Perfect Numbers
3. Odd Perfect Numbers

- A number is perfect if it is equal to the sum of its divisors, formally

Introduction

- $\sigma(n)=\sum_{x \mid n} x$
- n is perfect iff
$2 * n=\sigma(n)$
- 2 * $6=6+3+2+1$

Some perfect numbers

- 6,
- 28,
- 496,
- 8128
- 33550336,
- 8589869056,
- 137438691328,
- 2305843008139952128,
- 2658455991569831744654692615953842176,
- 191561942608236107294793378084303638130997321548169216

Definitions

- $k=\omega(N)$ - number of distinct prime factors of N .
- $N=\prod_{i=1}^{k} p_{i}^{\alpha_{i}}$

Basic properties

- $\sigma(n m)=\sigma(n) \sigma(n) \Longleftrightarrow g c d(n, m)=1$
- $\sigma\left(p^{m}\right)=1+p+p^{2}+\ldots+p^{m}$
- $\sigma(N)=\prod_{i=1}^{k}\left(1+p_{i}+\ldots+p_{i}^{\alpha_{i}}\right)=\prod_{i=1}^{k} \frac{p_{i+i+1}^{p_{i}-1}}{p_{i}-1}$

Euclid theorem

$$
2^{n}-1 \in \text { Primes } \Rightarrow 2^{n-1} *\left(2^{n}-1\right) \in \text { Perfect }
$$

- $\sigma\left(2^{n}-1\right)=2^{n}-1+1$
- $\sigma\left(2^{n-1}\right)=\left(2^{n}-1\right) \div(2-1)$
- $\sigma(N)=\sigma\left(2^{n-1}\right) \sigma\left(2^{n}-1\right)$
- $\sigma(N)=\left(2^{n}-1\right) 2^{n}=2 N$

Euler theorem

$2 \mid n$ and $N \in$ Perfect $\Rightarrow N=2^{n-1}\left(2^{n}-1\right)$ and $2^{n}-1 \in$ Primes

- $N=2^{n-1} m, \sigma(N)=\left(2^{n}-1\right) \sigma(m)$
- $N \in \operatorname{perfect} \Rightarrow 2^{n} m=\left(2^{n}-1\right) \sigma(m)$
- $\sigma(m)=\frac{2^{n} m}{2^{n}-1}=m+\frac{m}{2^{n}-1}=m+d$
- $d \neq 1 \Rightarrow \sigma(m)=m+d+1$

Conclusion

The set of Mersennes' Primes is infinite iff. the set of Even Perfect Numbers is infinite

Odd Perfect Numbers

- We don't know if they exist
- Theorems about them are in form "Odd Perfect numbers have to satisfy..."

Lower bound

Why not just try to brute force method - check every odd number <= x to see if it's perfect.

- Odd perfect numbers are $>=10^{\wedge} 300$

Brent and Cohen(1991)

- Odd perfect numbers are >= 10^1500

Ochem and Rao (2012)

Multiplicative structure

- $N=\alpha^{\beta} m^{2}$, where $\alpha \equiv \beta \equiv 1(\bmod 4)$ and $g c d(\alpha, m)=1$
- Euler
- $N \equiv 1(\bmod 9)$ or $N \equiv 9(\bmod 36)$

Touchard (1953)

Cyclotomic polynomials

- $F_{d}(X)=\prod_{1<=k<=n \text { and } \operatorname{gcd}(k, n)=1}\left(X-e^{2 i \pi \frac{k}{n}}\right)$
- $p \in$ Primes $\Rightarrow F_{p}(x)=1+x+x^{2}+\ldots+x^{p-1}$
- $x^{n}-1=\prod_{d \mid n} F_{d}(x)$
- $\sigma(N)=2 N=\prod_{i=0}^{k} \sigma\left(p_{i}^{\alpha_{i}}\right)=\prod_{i=0}^{k} \prod_{d \mid\left(\alpha_{i}+1\right), d>1} F_{d}\left(p_{i}\right)$

Prime factors

Odd perfect number has a prime factor > 10^7-
Jenkins(2003)

Prime factors

- $p_{i}\left|N \Longleftrightarrow p_{i}\right| F_{d}(q)$
- Let $h(p, m)$ represent order of $\mathrm{p} \bmod \mathrm{m}$.
- $p^{k}| | n \Longleftrightarrow p^{k} \mid n$ and $p^{k+1} / \mid n$

Prime factors

Lemma 2.1. It is true that $q \mid F_{m}(p)$ if and only if $m=q^{b} h(p ; q)$. If $b>0$, then $q \| F_{m}(p)$. If $b=0$, then $q \equiv 1(\bmod m)$.

It follows from Lemma [2.]] that, for r prime,
Lemma 2.2. If $q \mid F_{r}(p)$, then either $r=q$ and $p \equiv 1(\bmod q)$, so that $q \| F_{r}(p)$, or $q \equiv 1(\bmod r)$.

Idea

- $F_{r}(p)$ is acceptable iff all of its prime factors <= 10^7
- Let's check all pairs (r, p), where $r<=\frac{10^{7}}{2}, p<10^{7}$
- After computer search 143 acceptable were found.
- For each of those pairs author used a combinatorial proof

Upper bound on prime factors

- $k=\omega(N)$ - the number of distinctive prime factors
- $N<2^{4^{k}}$ - Nielsen (2003)

Upper bound on prime factors

- $\omega(N) \geq 9$ - Nielsen (2006)
- $N / \mid 3 \Rightarrow \omega(N) \geq 11-$ McDaniel (1970)

Original theorem

$N \in$ Perfect and $\omega(N)=8$, then $5 \mid N$

References

1. Open Problem Garden - http://www.openproblemgarden.org
2. J. Voight - On the nonexistence of odd perfect numbers
3. J. Voight - Perfect Numbers: An elementary introduction
4. Paul M. Jenkins -Odd Perfect Numbers have a prime factor exceeding 10^7

Questions?

1. We know quite a lot about Even Perfect Numbers.
2. We don't know if Odd Perfect Numbers exist.
