χ -boundedness

Mateusz Kaczmarek Based on Paul Seymour and Alex Scott paper

WMil UJ

30 April 2020

Mateusz Kaczmarek

୬୯୯ 1/24

∃ >

Introduction

- 2 The Gyárfás-Sumner conjecture
- 3 Other χ -bounding ideals
- Onnections to Erdős-Hajnal conjecture

5 Bibliography

 $\chi(G)$ - chromatic number $\omega(G)$ - clique number

Definition

A **hole** in G is an induced cycle of length at least four, **odd hole** is one with odd length.

Definition

An **antihole** in G is an induced subgraph whose complement graph is a hole of complement graph \overline{G} of G.

(Strong perfect graph theorem, 2002) If $\chi(G) > \omega(G)$ then some induced subgraph of G is an odd hole or an odd antihole.

-> -< -> -< -> ->

(Strong perfect graph theorem, 2002) If $\chi(G) > \omega(G)$ then some induced subgraph of G is an odd hole or an odd antihole.

But what if we fix some bound κ and consider graphs with $\omega(G) \leq \kappa$ but much larger $\chi(G)$.

Theorem

For all $\kappa \ge 0$, if G is a graph with $\omega(G) \le \kappa$ and $\chi(G) > 2^{2^{\kappa+2}}$ then G has an odd hole.

Definition

An **ideal** is a class of graphs closed under isomorphism and under induced subgraphs.

Definition

We say that graph is **H-free** if does not contain an induced subgraph isomorphic to H.

The class of *H*-free graphs is an ideal; and every ideal \mathcal{I} is defined by the set of (minimal) graphs *H* such that \mathcal{I} is *H*-free.

Definition

An ideal \mathcal{I} is χ -**bounded** if there is a function f such that $\chi(G) \leq f(\omega(G))$ for each graph $G \in \mathcal{I}$. In this case we say that f is a χ -**binding** function for \mathcal{I} .

Definition

Graph H is χ -bounding if ideal of all H-free graphs is χ -bounded.

A = A = A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Conjecture

(The Gyárfás-Sumner conjecture) All forests are χ -bounding

This conjecture is easily reducible to trees, because a forest is χ -bounding if and only if all its components are χ -bounding (inductively on κ).

Stars ($K_{1,n}$) are χ -bounding.

Ξ

<ロト < 回 > < 回 > < 回 > .

Stars ($K_{1,n}$) are χ -bounding.

Proof: It follows from Ramsey's Theorem. Indeed, suppose $\chi(G) > R(n,\kappa)$ and $\omega(G) \le \kappa$. Then G contains a vertex v of degree at least $R(n,\kappa)$ and largest clique in N(v) is size at most $\kappa - 1$. This proves that there exists independent set $S \subseteq N(v)$ of size at least n. Then $\{v\} \cup S$ induces $K_{1,n}$.

(A. Gyárfás) Paths and brooms are χ -bounding.

Original proof introduced χ -binding function $f(x) = (n-1)^{x-1}$ for P_n .

イロト イヨト イヨト -

(A. Scott) Subdivisions of stars are χ -bounding.

臣

イロト イボト イヨト イヨト

Following trees are χ -bounding:

- trees obtained from a star and a star subdivision by adding a path joining their centres
- trees obtained a star subdivision by adding one vertex
- trees obtained from two disjoint paths by adding an edge between them

All three results are variants of following idea. First, we work by induction on clique number. Second, choose a vertex v_0 and classify all vertices by their distance from v_0 into disjoint subsets $L_0, L_1, ...,$ we call this a leveling.

In this leveling, one of the levels L_k has chromatic number at least $\chi(G)/2$. Order the vertices in L_{k-1} , say $L_{k-1} = \{u_1, ..., u_m\}$ and for each *i*, let W_i be the set of vertices in L_k that are adjacent to u_i and nonadjacent to $u_1, ..., u_{i-1}$

This partitions L_k into the sets $W_1, W_2, ..., W_m$. Each of the W_i has bounded chromatic number (from induction), but union of all the W_i has large chromatic number. So there must exist some i and vertex $v \in W_i$ with many neighbours in $W_{i+1} \cup ... \cup W$ pairwise nonadjacent. Since u_i is adjacent to v and nonadjacent to all these neighbours, we have a little bit of a tree, that we can combine with other parts grown elsewhere.

We already know that graph with no odd hole is $\chi\text{-bounded},$ but what about even holes?

э

・ 同 ト ・ ヨ ト ・ ヨ ト

(2008) If a graph has no even hole then its chromatic number is at most twice its clique number.

Easy induction but based on complicated result that even-hole-free graph contains *bisimplicial* vertex (its neighbouring is union of two cliques).

Definition

Intersection graph: given a collection \mathcal{F} of sets, the intersection graph $I(\mathcal{F})$ has vertex set \mathcal{F} , and distinct $X, Y \in \mathcal{F}$ are adjacent whenever $X \cap Y$ is nonempty.

(A. Rok, B. Walczak) For every integer $t \ge 1$ the ideal of intersection graphs of curves each crossing a fixed curve in at least one and at most t points is χ -bounded.

 $\alpha(G)$ - size of maximal stable set

Definition

An ideal \mathcal{I} has the **Erdős-Hajnal property** if there exists some $\epsilon > 0$ such that every graph $G \in I$ has a clique or stable set of size at least $|G|^{\epsilon}$.

Conjecture

(Erdős-Hajnal conjecture) For every graph H, the ideal of H-free graphs has the Erdős-Hajnal property.

Observation

If an ideal \mathcal{I} is χ -bounded with polynomial χ -binding function f then \mathcal{I} satisfies Erdős-Hajnal property.

Indeed, every graph $G \in \mathcal{I}$ satisfies

$$\alpha(G) \ge \frac{G}{\chi(G)} \ge \frac{|G|}{f(\omega(G))}$$

and so $\alpha(G)f(\omega(G)) \leq |G|$. If Erdős-Hajnal property would not be satisfied one could easily choose some constant ϵ based on function f to break this inequality. There is no implication in the other direction. For example, the ideal of triangle free graphs has the Erdős-Hajnal property (it's $\alpha(G) \geq \sqrt{n}$), but is not χ -bounded.

Definition

An ideal \mathcal{I} has the **strong Erdős-Hajnal property** if there exists some $\epsilon > 0$ such that for every graph $G \in I$ with |G| > 1 there exists disjoint $A, B \subseteq V(G)$ with $|A|, |B| \ge \epsilon |G|$ such that A, B are complete or anticomplete.

Here we say that two disjoint sets A, B are **complete** if every vertex in A is adjacent to every vertex in B, and **anticomplete** if there are no edges between A, B.

For all forests H, K, the ideal of all graphs that contain neither H nor \overline{K} has the strong Erdős-Hajnal property.

Conjecture

For all forests H, the ideal of all graphs that contain neither H nor \overline{H} is χ -bounded.

- - Paul Seymour, Alex Scott A survey of χ -boundedness, 2018
- Maria Chudnovsky, Paul Seymour, Alex Scott Induced subgraphs of graphs with large chromatic number.XII. Distant stars,
- Alexandre Rok, Bartosz Walczak *Coloring curves that cross a fixed curve*, 2017