Nowhere Zero Flow and related open problems

Michał Zwonek

07-05-2020

Outline of the seminar

- Introduction and definitions

Outline of the seminar

- Introduction and definitions
- Flow-colouring duality

Outline of the seminar

- Introduction and definitions
- Flow-colouring duality
- Tutte's Flow Conjectures

Outline of the seminar

- Introduction and definitions
- Flow-colouring duality
- Tutte's Flow Conjectures
- The weak 3-Flow Conjecture

Circulations

- Let $G=(V, E)$ be a multigraph.

Circulations

- Let $G=(V, E)$ be a multigraph.
- $\vec{E}=\{(e, x, y) \mid e \in E ; x, y \in V ; e=x y\}=\overleftarrow{E}$

Circulations

- Let $G=(V, E)$ be a multigraph.
- $\vec{E}=\{(e, x, y) \mid e \in E ; x, y \in V ; e=x y\}=\overleftarrow{E}$
- Elements of \vec{E} are \vec{e}

Circulations

- Let $G=(V, E)$ be a multigraph.
- $\vec{E}=\{(e, x, y) \mid e \in E ; x, y \in V ; e=x y\}=\overleftarrow{E}$
- Elements of \vec{E} are \vec{e}
- For $\vec{F} \subset \vec{E}$ let
$\vec{F}(X, Y)=\{(e, x, y) \in \vec{F} \mid e \in E ; x \in X ; y \in Y ; x \neq y\}$

Circulations

- Let $G=(V, E)$ be a multigraph.
- $\vec{E}=\{(e, x, y) \mid e \in E ; x, y \in V ; e=x y\}=\overleftarrow{E}$
- Elements of \vec{E} are \vec{e}
- For $\vec{F} \subset \vec{E}$ let
$\vec{F}(X, Y)=\{(e, x, y) \in \vec{F} \mid e \in E ; x \in X ; y \in Y ; x \neq y\}$
- Let $\vec{F}(x):=\vec{F}(x, V)=\vec{F}(\{x\}, V \backslash\{x\})$.

Circulations

- Let $G=(V, E)$ be a multigraph.
- $\vec{E}=\{(e, x, y) \mid e \in E ; x, y \in V ; e=x y\}=\overleftarrow{E}$
- Elements of \vec{E} are \vec{e}
- For $\vec{F} \subset \vec{E}$ let

$$
\vec{F}(X, Y)=\{(e, x, y) \in \vec{F} \mid e \in E ; x \in X ; y \in Y ; x \neq y\}
$$

- Let $\vec{F}(x):=\vec{F}(x, V)=\vec{F}(\{x\}, V \backslash\{x\})$.
- Given H an abelian group and a function $f: \vec{E} \rightarrow H$, let:

$$
f(X, Y):=\sum_{\vec{e} \in \vec{E}(X, Y)} f(\vec{e})
$$

Circulations

- Given H, an abelian group, and a function $f: \vec{E} \rightarrow H$, let:

$$
f(X, Y):=\sum_{\vec{e} \in \vec{E}(X, Y)} f(\vec{e})
$$

Circulations

- Given H, an abelian group, and a function $f: \vec{E} \rightarrow H$, let:

$$
f(X, Y):=\sum_{\vec{e} \in \vec{E}(X, Y)} f(\vec{e})
$$

- f is a circulation iff:
- $f(e, x, y)=-f(e, y, x)$ for all $(e, x, y) \in \vec{E}$ with $x \neq y$;
- $f(v, V)=0$ for all $v \in V$.

Circulations

- Given H, an abelian group, and a function $f: \vec{E} \rightarrow H$, let:

$$
f(X, Y):=\sum_{\vec{e} \in \vec{E}(X, Y)} f(\vec{e})
$$

- f is a circulation iff:
- $f(e, x, y)=-f(e, y, x)$ for all $(e, x, y) \in \vec{E}$ with $x \neq y$;
- $f(v, V)=0$ for all $v \in V$.
- If f is a circulation, then $f(X, \bar{X})=0$ for every set $X \subset V$.

Circulations

- Given H, an abelian group, and a function $f: \vec{E} \rightarrow H$, let:

$$
f(X, Y):=\sum_{\vec{e} \in \vec{E}(X, Y)} f(\vec{e})
$$

- f is a circulation iff:
- $f(e, x, y)=-f(e, y, x)$ for all $(e, x, y) \in \vec{E}$ with $x \neq y$;
- $f(v, V)=0$ for all $v \in V$.
- If f is a circulation, then $f(X, \bar{X})=0$ for every set $X \subset V$.
- The above implies that for any bridge $e=x y, f(e, x, y)=0$.

Circulations

- Given H, an abelian group, and a function $f: \vec{E} \rightarrow H$, let:

$$
f(X, Y):=\sum_{\vec{e} \in \vec{E}(X, Y)} f(\vec{e})
$$

- f is a circulation iff:
- $f(e, x, y)=-f(e, y, x)$ for all $(e, x, y) \in \vec{E}$ with $x \neq y$;
- $f(v, V)=0$ for all $v \in V$.
- If f is a circulation, then $f(X, \bar{X})=0$ for every set $X \subset V$.
- The above implies that for any bridge $e=x y, f(e, x, y)=0$.
- Similar mental image as in flows works here as well. Pipes with water.

Nowhere Zero Flow, aka. H-flow

- An H-flow (nowhere zero flow) is a circulation that is nowhere zero. That is $\forall \vec{e}: f(\vec{e}) \neq 0$.

Nowhere Zero Flow, aka. H-flow

- An H-flow (nowhere zero flow) is a circulation that is nowhere zero. That is $\forall \vec{e}: f(\vec{e}) \neq 0$.
- Set of H-flows isn't closed under addition. Even though circulations could be lineary combined.

Nowhere Zero Flow, aka. H-flow

- An H-flow (nowhere zero flow) is a circulation that is nowhere zero. That is $\forall \vec{e}: f(\vec{e}) \neq 0$.
- Set of H-flows isn't closed under addition. Even though circulations could be lineary combined.
- A graph cannot have a bridge if it has an H -flow.

Nowhere Zero Flow, aka. H-flow

- An H-flow (nowhere zero flow) is a circulation that is nowhere zero. That is $\forall \vec{e}: f(\vec{e}) \neq 0$.
- Set of H-flows isn't closed under addition. Even though circulations could be lineary combined.
- A graph cannot have a bridge if it has an H -flow.
- If H and H^{\prime} are two finite abelian groups of equal order, then G has an H-flow iff G has an H^{\prime}-flow.

Nowhere Zero Flow, aka. H-flow

- An H-flow (nowhere zero flow) is a circulation that is nowhere zero. That is $\forall \vec{e}: f(\vec{e}) \neq 0$.
- Set of H-flows isn't closed under addition. Even though circulations could be lineary combined.
- A graph cannot have a bridge if it has an H -flow.
- If H and H^{\prime} are two finite abelian groups of equal order, then G has an H-flow iff G has an H^{\prime}-flow.
- A \mathbb{Z}-flow f on G such that $0<|f(\vec{e})|<k$ for all \vec{e} is called a k-flow.

Nowhere Zero Flow, aka. H-flow

- An H-flow (nowhere zero flow) is a circulation that is nowhere zero. That is $\forall \vec{e}: f(\vec{e}) \neq 0$.
- Set of H-flows isn't closed under addition. Even though circulations could be lineary combined.
- A graph cannot have a bridge if it has an H -flow.
- If H and H^{\prime} are two finite abelian groups of equal order, then G has an H-flow iff G has an H^{\prime}-flow.
- A \mathbb{Z}-flow f on G such that $0<|f(\vec{e})|<k$ for all \vec{e} is called a k-flow.
- The least k such that there exists a k-flow for G we call a flow-number of G and denote it as $\phi(G)$, if there is no such k then $\phi(G)=\infty$.

A warm-up

- Let G be a cubic graph. Then $\chi^{\prime}(G)=3$ iff G has a nowhere zero flow for $H=\mathbb{Z}_{2}^{2}$.

A warm-up

- Let G be a cubic graph. Then $\chi^{\prime}(G)=3$ iff G has a nowhere zero flow for $H=\mathbb{Z}_{2}^{2}$.
- (\rightarrow) Color the edges with $(0,1),(1,0),(1,1)$.

A warm-up

- Let G be a cubic graph. Then $\chi^{\prime}(G)=3$ iff G has a nowhere zero flow for $H=\mathbb{Z}_{2}^{2}$.
- (\rightarrow) Color the edges with $(0,1),(1,0),(1,1)$.
- (\leftarrow) The colouring is exactly the value of the flow.

A warm-up

- Let G be a cubic graph. Then $\chi^{\prime}(G)=3$ iff G has a nowhere zero flow for $H=\mathbb{Z}_{2}^{2}$.
- (\rightarrow) Color the edges with $(0,1),(1,0),(1,1)$.
- (\leftarrow) The colouring is exactly the value of the flow.
- It is known that NP complete to decide whether a given cubic graph is 3 -colourable.

Some known facts

- Theorem by Tutte 1950

A mutligraph admits a k-flow if and only if it admits a \mathbb{Z}_{k}-flow.

Some known facts

- Theorem by Tutte 1950

A mutligraph admits a k-flow if and only if it admits a \mathbb{Z}_{k}-flow.

- A graph has a 2-flow iff al its degrees are even. This is a direct consequence of the above.

Some known facts

- Theorem by Tutte 1950

A mutligraph admits a k-flow if and only if it admits a \mathbb{Z}_{k}-flow.

- A graph has a 2-flow iff al its degrees are even. This is a direct consequence of the above.
- For all even $n>4, \phi\left(K^{n}\right)=3 . \phi\left(K^{4}\right)=4$.

Some known facts

- Theorem by Tutte 1950

A mutligraph admits a k-flow if and only if it admits a \mathbb{Z}_{k}-flow.

- A graph has a 2-flow iff al its degrees are even. This is a direct consequence of the above.
- For all even $n>4, \phi\left(K^{n}\right)=3$. $\phi\left(K^{4}\right)=4$.
- A cubic graph has a 4-flow iff it is 3-edge-colourable.

Some known facts

- Theorem by Tutte 1950

A mutligraph admits a k-flow if and only if it admits a \mathbb{Z}_{k}-flow.

- A graph has a 2-flow iff al its degrees are even. This is a direct consequence of the above.
- For all even $n>4, \phi\left(K^{n}\right)=3$. $\phi\left(K^{4}\right)=4$.
- A cubic graph has a 4-flow iff it is 3-edge-colourable.
- A cubic graph has a 3-flow iff it is bipartite.

Some known facts

- Theorem by Tutte 1950

A mutligraph admits a k-flow if and only if it admits a \mathbb{Z}_{k}-flow.

- A graph has a 2-flow iff al its degrees are even. This is a direct consequence of the above.
- For all even $n>4, \phi\left(K^{n}\right)=3 . \phi\left(K^{4}\right)=4$.
- A cubic graph has a 4-flow iff it is 3-edge-colourable.
- A cubic graph has a 3-flow iff it is bipartite.
- A graph has a 4-flow iff it is the union of two even graphs.

Some known facts

- Theorem by Tutte 1950

A mutligraph admits a k-flow if and only if it admits a \mathbb{Z}_{k}-flow.

- A graph has a 2-flow iff al its degrees are even. This is a direct consequence of the above.
- For all even $n>4, \phi\left(K^{n}\right)=3 . \phi\left(K^{4}\right)=4$.
- A cubic graph has a 4-flow iff it is 3-edge-colourable.
- A cubic graph has a 3-flow iff it is bipartite.
- A graph has a 4-flow iff it is the union of two even graphs.
- Every 4-edge connected graph has a 4-flow.

Flow-colouring duality

- Let G be a planar graph and G^{*} its dual graph.

Flow-colouring duality

- Let G be a planar graph and G^{*} its dual graph.
- $\chi\left(G^{*}\right)=\phi(G)$

Flow-colouring duality

- Let G be a planar graph and G^{*} its dual graph.
- $\chi\left(G^{*}\right)=\phi(G)$
- Induction by number of bridges. Then the basis of the induction is a pair of dual bridgeless graphs.
- We compute the flow of an edge as the difference between the colour of the left face and the right face of the edge.

Flow-colouring duality

- Let G be a planar graph and G^{*} its dual graph.
- $\chi\left(G^{*}\right)=\phi(G)$
- Induction by number of bridges. Then the basis of the induction is a pair of dual bridgeless graphs.
- We compute the flow of an edge as the difference between the colour of the left face and the right face of the edge.
- $f(e, x, y)=c(y)-c(x) \in\{ \pm 1, \ldots, \pm(k-1)\}$.

Flow-colouring duality

- Let G be a planar graph and G^{*} its dual graph.
- $\chi\left(G^{*}\right)=\phi(G)$
- Induction by number of bridges. Then the basis of the induction is a pair of dual bridgeless graphs.
- We compute the flow of an edge as the difference between the colour of the left face and the right face of the edge.
- $f(e, x, y)=c(y)-c(x) \in\{ \pm 1, \ldots, \pm(k-1)\}$.
- Also, $f(x, V \backslash\{x\})=0$, so that is indeed a k-flow.

Flow-colouring duality

Flow-colouring duality

- Let G be a planar graph and G^{*} its dual graph.

Flow-colouring duality

- Let G be a planar graph and G^{*} its dual graph.
- $\chi\left(G^{*}\right)=\phi(G)$

Flow-colouring duality

- Let G be a planar graph and G^{*} its dual graph.
- $\chi\left(G^{*}\right)=\phi(G)$

Flow-colouring duality

- Let G be a planar graph and G^{*} its dual graph.
- $\chi\left(G^{*}\right)=\phi(G)$
- To colour the graph using flow we use a depth first search tree on G.

Flow-colouring duality

- Let G be a planar graph and G^{*} its dual graph.
- $\chi\left(G^{*}\right)=\phi(G)$
- To colour the graph using flow we use a depth first search tree on G.
- We colour the root as 0 and all the other vertices as the sum of flows (in \mathbb{Z}_{k}) in the path from r to said vertex. This assures that the colours of neighboring vertices are different.

Tutte's flow conjectures

- Every 4-edge-connected graph has 3-flow.

Tutte's flow conjectures

- Every 4-edge-connected graph has 3-flow.
- Jeager's weaker conjecture. There exists a k such that every k-edge-connected graph has a 3-flow.

Tutte's flow conjectures

- Every 4-edge-connected graph has 3-flow.
- Jeager's weaker conjecture. There exists a k such that every k-edge-connected graph has a 3-flow.
- Every bridgeless graph has a 5-flow.

Tutte's flow conjectures

- Every 4-edge-connected graph has 3-flow.
- Jeager's weaker conjecture. There exists a k such that every k-edge-connected graph has a 3-flow.
- Every bridgeless graph has a 5-flow.
- Every bridgeless graph that does not have the Peterson graph as a minor has a 4-flow.

Tutte's flow conjectures

- Every 4-edge-connected graph has 3-flow.
- Jeager's weaker conjecture. There exists a k such that every k-edge-connected graph has a 3-flow.
- Every bridgeless graph has a 5-flow.
- Every bridgeless graph that does not have the Peterson graph as a minor has a 4-flow.
- However, Seymour in 1981 proved that every bridgeless graph has a 6 -flow.

Jeager's weaker conjecture

- Jeager's weaker conjecture. There exists a k such that every k-edge-connected graph has a 3-flow.

Jeager's weaker conjecture

- Jeager's weaker conjecture. There exists a k such that every k-edge-connected graph has a 3-flow.
- If G has n vertices and edge-connectivity at least $4 \log _{2}(n)$ then G has a 3-flow. (1992 by Lai and Zhang)

Jeager's weaker conjecture

- Jeager's weaker conjecture. There exists a k such that every k-edge-connected graph has a 3-flow.
- If G has n vertices and edge-connectivity at least $4 \log _{2}(n)$ then G has a 3-flow. (1992 by Lai and Zhang)
- If G has n vertices and edge-connectivity at least $2 \log _{2}(n)$ then G has a 3 -flow. (1992 by F. Jaeger, N. Linial, C. Payan and M. Tarsi)

Jeager's weaker conjecture

- Jeager's weaker conjecture. There exists a k such that every k-edge-connected graph has a 3-flow.
- If G has n vertices and edge-connectivity at least $4 \log _{2}(n)$ then G has a 3-flow. (1992 by Lai and Zhang)
- If G has n vertices and edge-connectivity at least $2 \log _{2}(n)$ then G has a 3 -flow. (1992 by F. Jaeger, N. Linial, C. Payan and M. Tarsi)
- The conjecture is proven for $k=8$ by Thomassen in 2010.

Jeager's weaker conjecture

- Jeager's weaker conjecture. There exists a k such that every k-edge-connected graph has a 3-flow.
- If G has n vertices and edge-connectivity at least $4 \log _{2}(n)$ then G has a 3-flow. (1992 by Lai and Zhang)
- If G has n vertices and edge-connectivity at least $2 \log _{2}(n)$ then G has a 3 -flow. (1992 by F. Jaeger, N. Linial, C. Payan and M. Tarsi)
- The conjecture is proven for $k=8$ by Thomassen in 2010.
- The above result is improved by Lovasz, Thomassen, Wu and Zhang for $k=6$ in 2013.

Though Jeager's weaker conjecture has been proved

- What is the best possible k, is it the conjectured 4? Or is it the 6 that has already been proven.

Thank you for your attention!

Thank you for your attention!

