
Nowhere Zero Flow and related open problems

Michał Zwonek

07-05-2020



Outline of the seminar

I Introduction and definitions

I Flow-colouring duality
I Tutte’s Flow Conjectures
I The weak 3-Flow Conjecture



Outline of the seminar

I Introduction and definitions
I Flow-colouring duality

I Tutte’s Flow Conjectures
I The weak 3-Flow Conjecture



Outline of the seminar

I Introduction and definitions
I Flow-colouring duality
I Tutte’s Flow Conjectures

I The weak 3-Flow Conjecture



Outline of the seminar

I Introduction and definitions
I Flow-colouring duality
I Tutte’s Flow Conjectures
I The weak 3-Flow Conjecture



Circulations

I Let G = (V ,E ) be a multigraph.

I
−→
E = {(e, x , y)|e ∈ E ; x , y ∈ V ; e = xy} =

←−
E

I Elements of
−→
E are −→e

I For
−→
F ⊂

−→
E let−→

F (X ,Y ) = {(e, x , y) ∈
−→
F | e ∈ E ; x ∈ X ; y ∈ Y ; x 6= y}

I Let
−→
F (x) :=

−→
F (x ,V ) =

−→
F ({x},V \ {x}).

I Given H an abelian group and a function f :
−→
E → H, let:

f (X ,Y ) :=
∑

−→e ∈
−→
E (X ,Y )

f (−→e )
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I Given H, an abelian group, and a function f :
−→
E → H, let:

f (X ,Y ) :=
∑

−→e ∈
−→
E (X ,Y )

f (−→e )

I f is a circulation iff:
I f (e, x , y) = −f (e, y , x) for all (e, x , y) ∈

−→
E with x 6= y ;

I f (v ,V ) = 0 for all v ∈ V .

I If f is a circulation, then f (X ,X ) = 0 for every set X ⊂ V .
I The above implies that for any bridge e = xy , f (e, x , y) = 0.
I Similar mental image as in flows works here as well. Pipes with

water.
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Nowhere Zero Flow, aka. H-flow

I An H-flow (nowhere zero flow) is a circulation that is nowhere
zero. That is ∀−→e : f (−→e ) 6= 0.

I Set of H-flows isn’t closed under addition. Even though
circulations could be lineary combined.

I A graph cannot have a bridge if it has an H-flow.
I If H and H ′ are two finite abelian groups of equal order, then

G has an H-flow iff G has an H ′-flow.
I A Z-flow f on G such that 0 < |f (−→e )| < k for all −→e is called

a k-flow.
I The least k such that there exists a k-flow for G we call a

flow-number of G and denote it as φ(G ), if there is no such k
then φ(G ) =∞.
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A warm-up

I Let G be a cubic graph. Then χ′(G ) = 3 iff G has a nowhere
zero flow for H = Z2

2.

I (→) Color the edges with (0, 1), (1, 0), (1, 1).
I (←) The colouring is exactly the value of the flow.
I It is known that NP complete to decide whether a given cubic

graph is 3-colourable.



A warm-up

I Let G be a cubic graph. Then χ′(G ) = 3 iff G has a nowhere
zero flow for H = Z2

2.
I (→) Color the edges with (0, 1), (1, 0), (1, 1).

I (←) The colouring is exactly the value of the flow.
I It is known that NP complete to decide whether a given cubic

graph is 3-colourable.



A warm-up

I Let G be a cubic graph. Then χ′(G ) = 3 iff G has a nowhere
zero flow for H = Z2

2.
I (→) Color the edges with (0, 1), (1, 0), (1, 1).
I (←) The colouring is exactly the value of the flow.

I It is known that NP complete to decide whether a given cubic
graph is 3-colourable.



A warm-up

I Let G be a cubic graph. Then χ′(G ) = 3 iff G has a nowhere
zero flow for H = Z2

2.
I (→) Color the edges with (0, 1), (1, 0), (1, 1).
I (←) The colouring is exactly the value of the flow.
I It is known that NP complete to decide whether a given cubic

graph is 3-colourable.



Some known facts

I Theorem by Tutte 1950
A mutligraph admits a k-flow if and only if it admits a Zk -flow.

I A graph has a 2-flow iff al its degrees are even. This is a direct
consequence of the above.

I For all even n > 4, φ(Kn) = 3. φ(K 4) = 4.
I A cubic graph has a 4-flow iff it is 3-edge-colourable.
I A cubic graph has a 3-flow iff it is bipartite.
I A graph has a 4-flow iff it is the union of two even graphs.
I Every 4-edge connected graph has a 4-flow.
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I Let G be a planar graph and G ∗ its dual graph.

I χ(G ∗) = φ(G )

I Induction by number of bridges. Then the basis of the
induction is a pair of dual bridgeless graphs.

I We compute the flow of an edge as the difference between the
colour of the left face and the right face of the edge.

I f (e, x , y) = c(y)− c(x) ∈ {±1, ...,±(k − 1)}.
I Also, f (x ,V \ {x}) = 0, so that is indeed a k-flow.
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I χ(G ∗) = φ(G )

I To colour the graph using flow we use a depth first search tree
on G.

I We colour the root as 0 and all the other vertices as the sum
of flows (in Zk) in the path from r to said vertex. This assures
that the colours of neighboring vertices are different.
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Tutte’s flow conjectures

I Every 4-edge-connected graph has 3-flow.

I Jeager’s weaker conjecture. There exists a k such that every
k-edge-connected graph has a 3-flow.

I Every bridgeless graph has a 5-flow.
I Every bridgeless graph that does not have the Peterson graph

as a minor has a 4-flow.
I However, Seymour in 1981 proved that every bridgeless graph

has a 6-flow.
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Jeager’s weaker conjecture

I Jeager’s weaker conjecture. There exists a k such that every
k-edge-connected graph has a 3-flow.

I If G has n vertices and edge-connectivity at least 4 log2(n)
then G has a 3-flow. (1992 by Lai and Zhang)

I If G has n vertices and edge-connectivity at least 2 log2(n)
then G has a 3-flow. (1992 by F. Jaeger, N. Linial, C. Payan
and M. Tarsi)

I The conjecture is proven for k = 8 by Thomassen in 2010.
I The above result is improved by Lovasz, Thomassen, Wu and

Zhang for k = 6 in 2013.
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Jeager’s weaker conjecture

I Jeager’s weaker conjecture. There exists a k such that every
k-edge-connected graph has a 3-flow.

I If G has n vertices and edge-connectivity at least 4 log2(n)
then G has a 3-flow. (1992 by Lai and Zhang)

I If G has n vertices and edge-connectivity at least 2 log2(n)
then G has a 3-flow. (1992 by F. Jaeger, N. Linial, C. Payan
and M. Tarsi)

I The conjecture is proven for k = 8 by Thomassen in 2010.
I The above result is improved by Lovasz, Thomassen, Wu and

Zhang for k = 6 in 2013.



Though Jeager’s weaker conjecture has been proved

I What is the best possible k , is it the conjectured 4? Or is it
the 6 that has already been proven.



Thank you for your attention!

Thank you for your attention!


