Lonely runner conjecture

Gabriela Czarska
Jagiellonian University
June 10, 2020

Definition

Definition

If there are k runners on the track with distinct speeds, a runner r_{i} becomes lonely at some given time if none of the other $k-1$ runners are within a distance of $1 / k$ of r_{i} at that time.

Lonely runner

Conjecture

Let k be an arbitrary natural number, and consider k runners with distinct, fixed, integer speeds traveling along a circle of unit circumference. Then each runner becomes lonely at some time.
$\mathrm{k}=1$

For $\mathrm{k}=1$
any t

For $\mathrm{k}=2$
$t=\frac{1}{2\left(v_{1}-v_{0}\right)}$

Open

Still unsolved for $\mathrm{k} \geq 8$

Lonely runner

To give a precise statement, let $\mathrm{T}=[0,1$) denote the circle (the onedimensional torus). For a real number x, let $\{x\}$ be the fractional part of x (the position of x on the circle), and let $\|x\|$ denote the distance of x to the nearest integer (the circular distance from x to zero).
Notice that $\|\mathrm{x}-\mathrm{y}\|$ is just the length of the shortest circular arc determined by the points x and y on the circle. It is not difficult to see that the following statement is equivalent to the Lonely Runner Conjecture.

Lonely runner

Conjecture 1. For every integer $k \geq 1$ and for every set of positive integers $\left\{d_{1}, d_{2}, \ldots, d_{k}\right\}$ there exists a real number t such that $\left\|t d_{i}\right\| \geq \frac{1}{k+1}$ for all $\mathrm{i}=1,2, \ldots, \mathrm{k}$.

Lonely runner

Let $D=\left\{d_{1}, d_{2}, \ldots, d_{k}\right\}$ be a set of k positive integers. Consider the quantity

$$
\kappa(D)=\sup _{x \in \mathrm{~T}} \min _{d_{i} \in D}\left\|x d_{i}\right\|
$$

and the related function $\kappa(k)=\inf \kappa(D)$, where the infimum is taken over all k-element sets of positive integers. So, the Lonely Runner Conjecture states that $\kappa(k) \geqslant \frac{1}{k+1}$.

Lonely runner

The trivial bound is $\kappa(k)>\frac{1}{2 k}$, as the sets $\left\{x \in T:\left\|x d_{i}\right\|<\frac{1}{2 k}\right\}$ simply cannot cover the whole circle (since each of them is a union of d_{i} open arcs of length $\frac{1}{k d_{i}}$ each)

Lonely runner

Theorem 1. Let k be a fixed positive integer and let $\varepsilon>0$ be fixed real number. Let $D \subseteq\{1,2, \ldots, n\}$ be a k-element subset chosen uniformly at random. Then the probability that $\kappa(D) \geqslant \frac{1}{2}-\varepsilon$ tends to 1 with $n \rightarrow \infty$.

The proof uses elementary Fourier analytic technique for subsets of \mathbb{Z}_{p}.

Lonely runner

For a given set D, consider a graph $G(D)$ whose vertices are positive integers, with two vertices a and b joined by an edge if and only if $|a-b| \in D$. Let $\chi(D)$ denote the chromatic number of this graph. It is not hard to see that $\chi(D) \leqslant|D|+1$.

Lonely runner

To see a connection to parameter $\kappa(D)$, put $N=\left\lceil\kappa(D)^{-1}\right\rceil$ and split the circle into N intervals $I_{i}=[(i-1) / N, i / N), i=1,2, \ldots, N$ (cf. [15]). Let t be a real number such that $\min _{d \in D}\|d t\|=\kappa(D)$. Then define a colouring $c: \mathbb{N} \rightarrow\{1,2, \ldots, N\}$ by $c(a)=i$ if and only if $\{t a\} \in I_{i}$. If $c(a)=c(b)$ then $\{t a\}$ and $\{t b\}$ are in the same interval I_{i}. Hence $\|t a-t b\|<1 / N \leqslant \kappa(D)$, and therefore $|a-b|$ is not in D. This means that c is a proper colouring of a graph $G(D)$. So, we have a relation

$$
\chi(D) \leqslant\left\lceil\frac{1}{\kappa(D)}\right\rceil .
$$

Now, by Theorem 1 we get that $\chi(D) \leqslant 3$ for almost every graph $G(D)$.

END

