On small weak epsilon-nets for axis-parallel rectangles

Vladyslav Rachek

October 15th, 2020

Two-player game

Let \mathcal{S} - family of sets in $\mathbb{R}^{2}, k \in \mathbb{N}$

Two-player game

\mathcal{S} - family of sets in $\mathbb{R}^{2}, k \in \mathbb{N}$
Let \mathcal{S} be the set of all axis-parallel rectangles, $k=2$.

Two-player game

Let \mathcal{S} be the set of all axis-parallel rectangles, $k=2$.
First, Player chooses a set P of points in general position in the plane where n is any number. On the picture $n=10$:

Two-player game

Let \mathcal{S} be the set of all axis-parallel rectangles, $k=2$.
Then Spoiler chooses k points on the plane and paints them red.

Two-player game

Let R be a set from \mathcal{S} which contains maximal amount of only black points, and does not intersect red points.

In this game we got $|R| / n=4 / 10=2 / 5$ enforced by Spoiler.

Two-player game

Let $\varepsilon_{k}^{\mathcal{S}}$ be the smallest number that Spoiler can enforce for any set of points chosen by Player.
Player will try to provide a construction of point set which maximizes game value.

Spoiler should provide red points for any set chosen by Player.

Epsilon-nets

Definition 1

Let P be an n-point set in \mathbb{R}^{2}. Consider a family \mathcal{S} of sets in \mathbb{R}^{2}. A set $Q \subset \mathbb{R}^{2}$ is called a weak ε - net for P with respect to \mathcal{S}, if for any $S \in \mathcal{S}$ with $|S \cap P|>\varepsilon n$, we have $S \cap Q=\varnothing$.

Definition 2

Let $0 \leq \varepsilon_{i}^{\mathcal{S}} \leq 1$ denote the smallest real number such that for any finite point set $P \subset \mathbb{R}^{2}$ there exist i-point set, which is $\varepsilon_{i}^{\mathcal{S}}$-net for P with respect to \mathcal{S} (S is fixed).

Epsilon-nets and $\varepsilon_{k}^{\mathcal{R}}$

Suppose that $\varepsilon_{k}^{\mathcal{R}} \leq \frac{2}{k+3} \Leftrightarrow$ with k points we can restrict the largest rectangle to contain not more than $\frac{2}{k+3} n$ points for any set of n points.

What is the optimal size of an ε-net in terms of ε ?

What is the optimal size of a $\frac{2}{k+3}$-net? Clearly, not greater than k $k=O\left(\frac{k+3}{2}\right)=O\left(\frac{1}{\varepsilon}\right)$

Epsilon-nets and $\varepsilon_{k}^{\mathcal{R}}$

Suppose that $\varepsilon_{k}^{\mathcal{R}} \leq \frac{2}{k+3} \Leftrightarrow$ with k points we can restrict the largest rectangle to contain not more than $\frac{2}{k+3} n$ points for any set of n points.

What is the optimal size of an ε-net in terms of ε ?
What is the optimal size of a $\frac{2}{k+3}$-net? Clearly, not greater than k $k=O\left(\frac{k+3}{2}\right)=O\left(\frac{1}{\varepsilon}\right)$

What is the optimal size of an ε-net in terms of ε ?
The best general known upper bound is $O\left(\frac{1}{\varepsilon} \log \log \frac{1}{\varepsilon}\right)$

Nets for axis-parallel rectangles

Let \mathcal{R} denote the family of all axis-parallel rectangles.
Theorem
$\varepsilon_{1}^{\mathcal{R}}=\frac{1}{2}, \varepsilon_{2}^{\mathcal{R}}=\frac{2}{5}, \varepsilon_{3}^{\mathcal{R}}=\frac{2}{6}, \varepsilon_{4}^{\mathcal{R}} \leq \frac{2}{7}, \varepsilon_{5}^{\mathcal{R}} \leq \frac{2}{8}$

Nets for axis-parallel rectangles

Let \mathcal{R} denote the family of all axis-parallel rectangles.
Theorem
$\varepsilon_{1}^{\mathcal{R}}=\frac{1}{2}, \varepsilon_{2}^{\mathcal{R}}=\frac{2}{5}, \varepsilon_{3}^{\mathcal{R}}=\frac{2}{6}, \varepsilon_{4}^{\mathcal{R}} \leq \frac{2}{7}, \varepsilon_{5}^{\mathcal{R}} \leq \frac{2}{8}$

- It holds $\varepsilon_{k}^{\mathcal{R}} \leq \frac{2}{k+3}$ for $1 \leq k \leq 5$

Nets for axis-parallel rectangles

Let \mathcal{R} denote the family of all axis-parallel rectangles.
Theorem
$\varepsilon_{1}^{\mathcal{R}}=\frac{1}{2}, \varepsilon_{2}^{\mathcal{R}}=\frac{2}{5}, \varepsilon_{3}^{\mathcal{R}}=\frac{2}{6}, \varepsilon_{4}^{\mathcal{R}} \leq \frac{2}{7}, \varepsilon_{5}^{\mathcal{R}} \leq \frac{2}{8}$

- It holds $\varepsilon_{k}^{\mathcal{R}} \leq \frac{2}{k+3}$ for $1 \leq k \leq 5$
! It was claimed in 2008 (Dulieu) that $\varepsilon_{6}^{\mathcal{R}} \leq \frac{2}{9}$ and the proof was computer-based

Nets for axis-parallel rectangles

Let \mathcal{R} denote the family of all axis-parallel rectangles.
Theorem
$\varepsilon_{1}^{\mathcal{R}}=\frac{1}{2}, \varepsilon_{2}^{\mathcal{R}}=\frac{2}{5}, \varepsilon_{3}^{\mathcal{R}}=\frac{2}{6}, \varepsilon_{4}^{\mathcal{R}} \leq \frac{2}{7}, \varepsilon_{5}^{\mathcal{R}} \leq \frac{2}{8}$

- It holds $\varepsilon_{k}^{\mathcal{R}} \leq \frac{2}{k+3}$ for $1 \leq k \leq 5$
! It was claimed in 2008 (Dulieu) that $\varepsilon_{6}^{\mathcal{R}} \leq \frac{2}{9}$ and the proof was computer-based
? Do these nets have any structure which can be computationally exploited?

Nets for axis-parallel rectangles

Let \mathcal{R} denote the family of all axis-parallel rectangles.
Theorem
$\varepsilon_{1}^{\mathcal{R}}=\frac{1}{2}, \varepsilon_{2}^{\mathcal{R}}=\frac{2}{5}, \varepsilon_{3}^{\mathcal{R}}=\frac{2}{6}, \varepsilon_{4}^{\mathcal{R}} \leq \frac{2}{7}, \varepsilon_{5}^{\mathcal{R}} \leq \frac{2}{8}$

- It holds $\varepsilon_{k}^{\mathcal{R}} \leq \frac{2}{k+3}$ for $1 \leq k \leq 5$
! It was claimed in 2008 (Dulieu) that $\varepsilon_{6}^{\mathcal{R}} \leq \frac{2}{9}$ and the proof was computer-based
? Do these nets have any structure which can be computationally exploited?
? What is the asymptotic behaviour of $\varepsilon_{k}^{\mathcal{R}}$?

Proof for 1-point net

Place the point q "in the middle"

Lower bound, $\varepsilon_{2}^{\mathcal{R}} \geq \frac{2}{5}$
Suppose $\varepsilon_{2}^{\mathcal{R}}<\frac{2}{5}$. For n a multiple of 5 , place $\frac{n}{5}$ points in each of the rectangles $A_{1,1}, A_{1,3}, A_{2,2}, A_{3,1}, A_{3,3}$. It follows that $\varepsilon_{2}^{\mathcal{R}} \geq \frac{2}{5}$.

Figure: Red circles are points of Q, green rectangle contains $\frac{2 n}{5}$ points and avoids Q.

Upper bound, $\varepsilon_{2}^{\mathcal{R}} \leq \frac{2}{5}$

Suppose we are given a set P of n points where n is a multiple of 5 .
One of the sets $Q_{1}=\left\{h_{1} \cap v_{1}, h_{2} \cap v_{2}\right\}$ and $Q_{2}=\left\{h_{1} \cap v_{2}, h_{2} \cap v_{1}\right\}$ is a $\frac{2}{5}$-net for P.
For a contradiction, suppose that neither Q_{1} nor Q_{2} is a $\frac{2}{5}$-net for P.

Upper bound, $\varepsilon_{2}^{\mathcal{R}} \leq \frac{2}{5}$

Since Q_{1} is not a $\frac{2}{5}$-net for P, at least one of the rectangles R_{1} and R_{2} contains more h_{2} than $\frac{2 n}{5}$ points of P.

Upper bound, $\varepsilon_{2}^{\mathcal{R}} \leq \frac{2}{5}$

Upper bound, $\varepsilon_{2}^{\mathcal{R}} \leq \frac{2}{5}$

For the sake of the argument, suppose that R_{2} and R_{3} each contain at least $2 n / 5$ points of P.
It follows that R, R_{2} and R_{3} altogether
h_{2} contain strictly more than $\frac{2 n}{5}+\left(\frac{2 n}{5}+\frac{2 n}{5}-\frac{n}{5}\right)=n$ points, a contradiction.

Lower bound, $\varepsilon_{3}^{\mathcal{R}} \geq \frac{2}{6}$

Suppose that $\varepsilon_{3}^{\mathcal{R}}<\frac{2}{6}$.
Let P be the set of n points where n is a multiple of 6 , defined as follows: place $\frac{n}{6}$ points inside each of the four rectangles $A_{1,1}, A_{1,3}, A_{3,1}, A_{3,3}$, and place the remaining $\frac{2 n}{6}$ points inside $A_{2,2}$.

Lower bound, $\varepsilon_{3}^{\mathcal{R}} \geq \frac{2}{6}$

Suppose there exists a 3-point $\varepsilon_{3}^{\mathcal{R}}$-net Q for P. Since $\varepsilon_{3}^{\mathcal{R}}<\frac{2}{6}$, one of the points of the net, say $q_{1} \in Q$ should lie inside $A_{2,2}$.

Lower bound, $\varepsilon_{3}^{\mathcal{R}} \geq \frac{2}{6}$

Furthermore, because each of the outer
 strips contains exactly $\frac{2 n}{6}$ points, the net Q has at least one point inside each of those strips.
Since q_{1} is already in $A_{2,2}$, it follows that the remaining two points of Q are placed in $A_{1,1}$ and $A_{3,3}$ or in $A_{1,3}$ and $A_{3,1}$. Assume the latter w.l.o.g.

Lower bound, $\varepsilon_{3}^{\mathcal{R}} \geq \frac{2}{6}$

Since $\frac{2 n}{6}$ is even, either above or below the horizontal line defined by q_{1} there are at least $\frac{n}{6}$ points from $A_{2,2}$. That way, at least one of two rectangles contains no fewer than $2 n / 6$ points of P and avoids Q, a contradiction.

Upper bound, $\varepsilon_{3}^{\mathcal{R}} \leq \frac{2}{6}$

Let P be a set of n points where n is divisible by 6 . Choose $q_{1} \in Q$ so that the vertical line v passing through q_{1} has exactly $n / 3$ points of P on its left, and the horizontal line h passing through q_{1} has exactly $n / 3$ points of P below.

Upper bound, $\varepsilon_{3}^{\mathcal{R}} \leq \frac{2}{6}$

Next, let $P_{\text {above }}$ be the set of all points of P above h, and $P_{\text {right }}$ be the set of all points of P to the right of v.
Let q_{2} be a point which forms a $\frac{1}{2}$-net for $P_{\text {above }}$, and q_{3} - a point which forms a $\frac{1}{2}$-net for $P_{\text {right }}$.

Upper bound, $\varepsilon_{3}^{\mathcal{R}} \leq \frac{2}{6}$

Every rectangle avoiding Q avoids q_{1} and thus lies entirely inside one of the four open half-planes determined by h or v.
Clearly, any rectangle lying fully below h or fully to the left of v contains at most $\frac{2 n}{6}$ points, due to the definition of these lines.

Upper bound, $\varepsilon_{3}^{\mathcal{R}} \leq \frac{2}{6}$

Any other rectangle which avoids q_{1} must lie either fully above h or fully to the right of v, hence the set of points it contains is a subset of $P_{\text {above }}$ or a subset of $P_{\text {right }}$, respectively.

Upper bound, $\varepsilon_{3}^{\mathcal{R}} \leq \frac{2}{6}$

Since q_{2} and q_{3} are $\frac{1}{2}$-nets for $P_{\text {above }}$ and $P_{\text {right }}$, respectively, no such rectangle can contain more than $\frac{2 n}{3} \cdot \frac{1}{2}=\frac{n}{3}$ points of P, which shows that $Q=\left\{q_{1}, q_{2}, q_{3}\right\}$ is a $\frac{2}{6}$-net for P.

Upper bound $\varepsilon_{5}^{\mathcal{R}} \leq \frac{2}{8}$

Let P be a set of n points where $8 \mid n$. Let $q_{\text {center }}=h \cap v$.
Let $Q=\left\{q_{\text {center }}, q_{\text {left }}, q_{\text {right }}, q_{\text {top }}, q_{\text {bottom }}\right\}$. Each of the sets $P_{\text {left }}, P_{\text {right }}, P_{\text {top }}, P_{\text {bottom }}$ contains at most $\frac{n}{2}$ points and if any rectangle R avoids Q, then the set of points it contains is a subset of one of the sets $P_{\text {left }}, \ldots, P_{\text {bottom }}$. Since Q contains a $\frac{1}{2}$-net for each of the latter sets, any such rectangle contains at most $\frac{1}{2} \cdot \frac{n}{2}=\frac{n}{4}$ points of P. Therefore our set Q is a $\frac{1}{4}$-net for P.
$\varepsilon_{4}^{\mathcal{R}} \leq \frac{2}{7}$ - lemma 1

Lemma 1

If one of the corners determined by the four lines $v_{\frac{2}{7}}, v_{\frac{5}{7}}, h_{\frac{2}{7}}$ and $h_{\frac{5}{7}}$ contains at least $\frac{n}{7}$ points of P, then there exists a 4 -point $\frac{2}{7}$-net for P.

$\varepsilon_{4}^{\mathcal{R}} \leq \frac{2}{7}$ - lemma 2

Lemma 2

If one of the corners determined by the four lines $v_{\frac{3}{7}}, v_{\frac{4}{7}}, h_{\frac{3}{7}}$ and $h_{\frac{4}{7}}$ contains at least $\frac{2 n}{7}$ points of P, then there exists a 4 -point $\frac{2}{7}$-net for P.

Proof for the first case, $\varepsilon_{7}^{\mathcal{R}} \leq \frac{2}{7}$

Suppose that inside middle 3×3 rectangle there are at mose $2 n / 7$ points.

Proof for the first case, $\varepsilon_{7}^{\mathcal{R}} \leq \frac{2}{7}$

Note that there are exactly $3 n / 7$ points to the left of $v_{\frac{3}{7}}$, which passes through q_{1} and q_{2}.

Proof for the first case, $\varepsilon_{7}^{\mathcal{R}} \leq \frac{2}{7}$

Note that there are exactly $3 n / 7$
 points to the left of $v_{\frac{3}{7}}$, which passes through q_{1} and q_{2}.
Therefore we can choose the third point of a net q_{3} in a way that any rectangle to the left of $v_{\frac{3}{7}}$ and above or below q_{3} contains at most $2 n / 7$ points.

Proof for the first case, $\varepsilon_{7}^{\mathcal{R}} \leq \frac{2}{7}$

Note that there are exactly $3 n / 7$
 points to the left of $v_{\frac{3}{7}}$, which passes through q_{1} and q_{2}.
Therefore we can choose the third point of a net q_{3} in a way that any rectangle to the left of $v_{\frac{3}{7}}$ and above or below q_{3} contains at most $2 n / 7$ points.
The point q_{4} is taken to be a $\frac{1}{2}$-net for those points of P which lie to the right of $v_{\frac{3}{7}}$.

Proof for the first case, $\varepsilon_{7}^{\mathcal{R}} \leq \frac{2}{7}$

Note that there are exactly $3 n / 7$
 points to the left of $v_{\frac{3}{7}}$, which passes through q_{1} and q_{2}.
Therefore we can choose the third point of a net q_{3} in a way that any rectangle to the left of $v_{\frac{3}{7}}$ and above or below q_{3} contains at most $2 n / 7$ points.
The point q_{4} is taken to be a $\frac{1}{2}$-net for those points of P which lie to the right of $v_{\frac{3}{7}}$.
QED?

Proof for the first case, $\varepsilon_{7}^{\mathcal{R}} \leq \frac{2}{7}$

Can there exist R containing more than $\frac{2}{7}$-fraction of points?

R lies between $h_{\frac{2}{7}}$ and $h_{\frac{5}{7}}$.

Proof for the first case, $\varepsilon_{7}^{\mathcal{R}} \leq \frac{2}{7}$

Can there exist R containing more than $\frac{2}{7}$-fraction of points?

R lies between $h_{\frac{2}{7}}$ and $h_{\frac{5}{7}}$. R cannot lie inside inside $M_{3 \times 3}$.

Proof for the first case, $\varepsilon_{7}^{\mathcal{R}} \leq \frac{2}{7}$

Can there exist R containing more than $\frac{2}{7}$-fraction of points?

R lies between $h_{\frac{2}{7}}$ and $h_{\frac{5}{7}}$. R cannot lie inside inside $M_{3 \times 3}$. It follows that R lies above or below q_{4}, almost touches $v_{\frac{2}{7}}$ with its left side and crosses $V_{\frac{5}{7}}$ with its right side.

Proof for the first case, $\varepsilon_{7}^{\mathcal{R}} \leq \frac{2}{7}$

Can there exist R containing more than $\frac{2}{7}$-fraction of points?

R lies between $h_{\frac{2}{7}}$ and $h_{\frac{5}{7}}$. R cannot lie inside inside $M_{3 \times 3}$. It follows that R lies above or below q_{4}, almost touches $v_{\frac{2}{7}}$ with its left side and crosses $V_{\frac{5}{7}}$ with its right side. Observe that there are at most $n / 7$ points of P in the left upper corner.

Grid conjecture, grid conditions

Conjecture (Walczak, Langerman, personal communication)

Let $k \in \mathbb{N}$ and P be a point set of size n where n is divisible by $k+3$. There exists a k-point $\frac{2}{k+3}$-net for P with respect to \mathcal{R}, where the net is chosen from the set of grid points.

Grid conjecture

Conjecture (Walczak, Langerman, personal communication)

Let $k \in \mathbb{N}$ and P be a point set of size n where n is divisible by $k+3$. There exists a k-point $\frac{2}{k+3}$-net for P with respect to \mathcal{R}, where the net is chosen from the set of grid points.

- When the conjecture is false?

Grid conjecture

Conjecture (Walczak, Langerman, personal communication)

Let $k \in \mathbb{N}$ and P be a point set of size n where n is divisible by $k+3$. There exists a k-point $\frac{2}{k+3}$-net for P with respect to \mathcal{R}, where the net is chosen from the set of grid points.

- When the conjecture is false?

If and only if there exists a point set P of size n, meeting grid conditions, such that for each k-point set Q chosen from the set of grid points there exists a rectangle which contains strictly more than $\frac{2 n}{k+3}$ points and avoids Q.

What is a counterexample, really

- Some set P is a counterexample \Leftrightarrow ?

What is a counterexample, really

- Some set P is a counterexample \Leftrightarrow
$\forall Q \subset \mathcal{I}$ there exists a rectangle R which lies fully inside the grid, avoids Q, and contains more than $\frac{2 n}{k+3}$ points of P.

What is a counterexample, really

- Some set P is a counterexample \Leftrightarrow $\forall Q \subset \mathcal{I}$ there exists a rectangle R which lies fully inside the grid, avoids Q, and contains more than $\frac{2 n}{k+3}$ points of P.
- Instead of R we can consider an open rectangle R^{\prime}, which contains all points from all cells which R intersects and is stretched to the boundary of these cells.

What is a counterexample, really

- Some set P is a counterexample \Leftrightarrow $\forall Q \subset \mathcal{I}$ there exists a rectangle R which lies fully inside the grid, avoids Q, and contains more than $\frac{2 n}{k+3}$ points of P.
- Instead of R we can consider an open rectangle R^{\prime}, which contains all points from all cells which R intersects and is stretched to the boundary of these cells.
\Rightarrow It suffices to consider a finite amount of rectangles!

Not all rectangles are worth considering

Figure: Top-down: oversufficient, insufficient and sufficient rectangles respectively ($k=4$).

We will denote the set of all sufficient rectangles by $R_{\text {suf }}$ and the set of all oversufficient rectangles by $R_{\text {oversuf }}$.

Make our observations programmable

Observation

Any $\frac{2}{k+3}$-net must hit all oversufficient rectangles.
We denote the set of all such nets by \mathcal{Q}.

Observation

A counterexample to conjecture exists if and only if there exists a subset $S \subseteq R_{\text {suf }}$ such that the following conditions are met:
(i) No net from \mathcal{Q} hits all rectangles from S (for each net $Q \in \mathcal{Q}$ there exist some rectangle $R \in S$ which avoids Q).
(ii) There exist a point set P meeting grid conditions such that every rectangle in S contains strictly more than $\frac{2}{k+3}$-fraction of points of P.

Naive algorithm

1: procedure Find-set
2: \quad for $S \subseteq R_{\text {suf }}$ do $\triangleright O\left(2^{\left|R_{\text {suf }}\right|}\right)$ iterations if $\forall Q \in \mathcal{Q} \exists R \in S$ such that $R \cap Q=\varnothing$ then $\quad \triangleright$ no net can hit all rectangles from S
4:
if $\exists P: \forall R \in S R$ contains more than the $\frac{2}{k+3}$-fraction of points of P then
5:
return P
$\triangleright P$ is a counterexample
6: end if
7: \quad end if
8: end for
9: return \varnothing
10: end procedure

Enter linear programming

How to look for a point set P ?

Enter linear programming

Matrix $X=\left(x_{i, j}\right)_{1 \leq i, j \leq k+1}$ satisfies:
(P1) $x_{i, j} \geq 0$ for any i, j
(P2) $\sum_{i, j} x_{i, j}=1$
(P3) $\sum_{j} x_{1, j}=\sum_{j} x_{k+1, j}=\sum_{i} x_{i, 1}=\sum_{i} x_{i, k+1}=\frac{2}{k+3}$, and
$\sum_{i} x_{i, h}=\sum_{j} x_{h, j}=\frac{1}{k+3}$ for $2 \leq h \leq k$
(P1, P2) basically say that X represents some set of points P
(P3) forces the grid conditions on any set which X represents.

Enter linear programming

Now it is easy to add another condition. Fix some $S \subseteq R_{\text {suf }}$. For any $R \in S$, let $C_{R}:=\{(i, j): R$ intersects the (i, j)-cell of a grid $\}$. Now, let $4(S))$ For all $R \in S \sum_{i, j \in C_{R}} x_{i, j}>\frac{2}{k+3}$

Enter linear programming

1: procedure Find-set
2: for $S \subseteq R_{\text {suf }}$ do $\quad \triangleright O\left(2^{\left|R_{\text {suf }}\right|}\right)$ iterations
3: if $\forall Q \in \mathcal{Q} \quad \exists R \in S$ such that $R \cap Q=\varnothing$ then \triangleright no net can hit all rectangles from S

Final touch

Observation

Take any $S_{1}, S_{2} \in \mathcal{P}$ such that $S_{1} \subset S_{2}$. If $L P\left(S_{2}\right)$ has a solution, then $L P\left(S_{1}\right)$ has a solution.

Let $\mathcal{G} \subset \mathcal{P}$ denote the set of all inclusion-minimal elements of \mathcal{P} :

$$
\mathcal{G}:=\left\{S \in \mathcal{P}: \nexists S^{\prime} \in \mathcal{P} \text { such that } S^{\prime} \subset S\right\}
$$

Observation

For any $S \in \mathcal{G}, S$ cannot contain two rectangles R_{1} and R_{2} such that R_{1} lies fully inside R_{2}. Thus, S must form an antichain in the set \mathcal{S} ordered by inclusion (in a geometrical sense).

Check your intuition!

Harvest the fruits counterexamples

1	2	0	1
0	0	0	2
2	0	0	0
1	0	2	1

Figure: Four presented rectangles contain more than $\frac{2}{6} \cdot 12$ points each.

Harvest the fruits counterexamples

Figure: Five presented rectangles contain more than $\frac{2}{7} \cdot 28$ points each.

Figure: Six presented rectangles contain more than $\frac{2}{8} \cdot 32$ points each

Bringing upper bound back

It was claimed that $\varepsilon_{6}^{\mathcal{R}} \leq \frac{2}{9}$, and the proof given there was via a program which chooses a net from the set of grid points. Our result shows that that proof was incorrect, so whether $\varepsilon_{6}^{\mathcal{R}} \leq \frac{2}{9}$ remains unsolved.

Figure: Seven presented rectangles contain more than $\frac{2}{9} \cdot 45$ points each

Open problems

- True value of $\varepsilon_{6}^{\mathcal{R}}$
- Asymptotic behaviour of $\varepsilon_{i}^{\mathcal{R}}$

