Polynomial algorithms for CFGs via semiring embeddings

Piotr Mikołajczyk

Theoretical Computer Science Department of Jagiellonian University
November 4, 2020

Sources

- Parsing with Derivatives (2011) - by M. Might, D. Darais, D. Spiewak
- On the Complexity and Performance of Parsing with Derivatives (2016) - by M. Adams, C. Hollenbeck, M. Might
- A C++ implementation of Parsing With Derivatives (2019) - ©

Regular languages

- \varnothing and $\{\varepsilon\}$ are regular
- $\forall_{c \in \Sigma}\{c\}$ is regular
- If A and B are regular, then $A \cup B, A \circ B$ and A^{\star} are regular
- No other language is regular

Regular languages

- \varnothing and $\{\varepsilon\}$ are regular
- $\forall_{c \in \Sigma}\{c\}$ is regular
- If A and B are regular, then $A \cup B, A \circ B$ and A^{\star} are regular
- No other language is regular

$$
R=\{\epsilon\} \cup\{a\} \cdot(\{a\} \cup\{b\})^{\star}
$$

Context-free languages

- They are just like recursive regular languages

Context-free languages

- They are just like recursive regular languages
- As $L^{\star} \equiv \varepsilon \cup\left(L \circ L^{\star}\right)$, we can give up using Kleene's star operator

Context-free languages

A context-free grammar is a tuple $\mathcal{G}=(\mathcal{N}, \Sigma, S, P)$. A language which it generates is denoted as $\mathcal{L}(\mathcal{G})$.

Context-free languages

A context-free grammar is a tuple $\mathcal{G}=(\mathcal{N}, \Sigma, S, P)$. A language which it generates is denoted as $\mathcal{L}(\mathcal{G})$.

Example:

- $\mathcal{N}=\{S\}$
- $S \rightarrow a S a|b S b| \varepsilon$
- $\mathcal{L}(\mathcal{G})=\{\varepsilon, a a, b b, a b b a, a a a a, \ldots\}$

Binarization

Each grammar \mathcal{G} can be transformed (in polynomial time) to an equivalent binarized grammar $\mathcal{G}^{\prime}\left(\mathcal{L}(\mathcal{G})=\mathcal{L}\left(\mathcal{G}^{\prime}\right)\right)$ - operators (concatenation and alternative) are considered as purely binary; operands must be from $\Sigma \cup \mathcal{N}$.

Binarization

Each grammar \mathcal{G} can be transformed (in polynomial time) to an equivalent binarized grammar $\mathcal{G}^{\prime}\left(\mathcal{L}(\mathcal{G})=\mathcal{L}\left(\mathcal{G}^{\prime}\right)\right)$ - operators (concatenation and alternative) are considered as purely binary; operands must be from $\Sigma \cup \mathcal{N}$.

- $C \rightarrow c c c$
- $B \rightarrow b \mid A$
- $A \rightarrow \varepsilon|B b| C$

Binarization

Each grammar \mathcal{G} can be transformed (in polynomial time) to an equivalent binarized grammar $\mathcal{G}^{\prime}\left(\mathcal{L}(\mathcal{G})=\mathcal{L}\left(\mathcal{G}^{\prime}\right)\right)$ - operators (concatenation and alternative) are considered as purely binary; operands must be from $\Sigma \cup \mathcal{N}$.

- $C \rightarrow C^{\prime} c$
- $C \rightarrow c c c$
- $C^{\prime} \rightarrow c c$
- $B \rightarrow b \mid A$
- $B \rightarrow b \mid A$
- $A \rightarrow \varepsilon \mid A^{\prime}$
- $A \rightarrow \varepsilon|B b| C$
- $A^{\prime} \rightarrow B^{\prime} \mid C$
- $B^{\prime} \rightarrow B b$

Grammar graph

Given a binarized grammar \mathcal{G}, we can consider its graph $G(\mathcal{G})=(\mathbb{V}, \mathbb{E})$, where: $\mathbb{V}=(\mathcal{N} \cup \Sigma \cup\{\varnothing, \varepsilon\})$ and $(u, v) \in \mathbb{E}$ if and only if there is a production in \mathcal{P} which has u on its left side and v on the right side.

The resulting graph is directed and has ordered edges, i.e. we distinguish the left child from the right one.

Grammar graph

- $\mathcal{L}=(\mathcal{L} \cdot c) \cup c$
- $L=L^{\prime} \mid c$
- $L^{\prime}=L c$

Grammar graph

- $\mathcal{L}=(\mathcal{L} \cdot c) \cup c$
- $L=L^{\prime} \mid c$
- $L^{\prime}=L c$

Derivative of a language

Derivative by a symbol - b - from alphabet:

Derivative of a language

Derivative by a symbol - b - from alphabet:

- take a language: $\{f o o$, bar, bee $\}$

Derivative of a language

Derivative by a symbol - b - from alphabet:

- take a language: $\{$ foo, bar, bee $\}$
- leave only these words, which start with the chosen symbol: \{bar, bee\}

Derivative of a language

Derivative by a symbol - b - from alphabet:

- take a language: $\{$ foo, bar, bee $\}$
- leave only these words, which start with the chosen symbol: \{bar, bee\}
- remove first symbol: $\{a r, e e\}$

Derivative of a language

Derivative by a symbol - b - from alphabet:

- take a language: $\{f o o$, bar, bee $\}$
- leave only these words, which start with the chosen symbol: \{bar, bee\}
- remove first symbol: $\{a r, e e\}$
- voilà

Derivative of a language

Derivative by a symbol - b - from alphabet:

- take a language: $\{$ foo, bar, bee $\}$
- leave only these words, which start with the chosen symbol: \{bar, bee\}
- remove first symbol: $\{a r, e e\}$
- voilà $\left(D_{b}(\{f o o, b a r, b e e\})=\{a r, e e\}\right)$

Derivative of a language

Derivative by a symbol - b - from alphabet:

- take a language: $\{f o o$, bar, bee $\}$
- leave only these words, which start with the chosen symbol: \{bar, bee\}
- remove first symbol: $\{a r, e e\}$
- voilà $\left(D_{b}(\{f o o\right.$, bar, bee $\left.\})=\{a r, e e\}\right)$

Derivative of a language

$D_{c}(L)=\{w \mid c w \in L\}$

Derivative of a language

Derivative of a language

$D_{c}(L)=\{w \mid c w \in L\}$
So $c w \in L \Longleftrightarrow w \in D_{c}(L)$
$w=a_{1} \ldots a_{k} \Longrightarrow D_{w}(L)=D_{a_{k}}\left(\ldots D_{a_{1}}(L) \ldots\right)$
So $w \in L \Longleftrightarrow \varepsilon \in D_{w}(L)$

Derivatives

- $D_{c}(\varnothing)=\varnothing$
- $D_{c}(\varepsilon)=\varnothing$
- $D_{c}(a)= \begin{cases}\varnothing & a \neq c \\ \varepsilon & a=c\end{cases}$
- $D_{c}\left(L_{1} \cup L_{2}\right)=D_{c}\left(L_{1}\right) \cup D_{c}\left(L_{2}\right)$
- $\left(D_{c}\left(L^{\star}\right)=D_{c}(L) \circ L^{\star}\right)$
- $D_{c}\left(L_{1} \circ L_{2}\right)= \begin{cases}D_{c}\left(L_{1}\right) \circ L_{2} & \varepsilon \notin L_{1} \\ \left(D_{c}\left(L_{1}\right) \circ L_{2}\right) \cup D_{c}\left(L_{2}\right) & \varepsilon \in L_{1}\end{cases}$

Nullability function

$$
\begin{aligned}
& \delta: \mathcal{P}\left(\Sigma^{\star}\right) \rightarrow\{\varnothing,\{\varepsilon\}\} \\
& \delta(L)= \begin{cases}\varnothing & \varepsilon \notin L \\
\{\varepsilon\} & \varepsilon \in L\end{cases}
\end{aligned}
$$

Nullability function

$$
\begin{aligned}
& \delta: \mathcal{P}\left(\Sigma^{\star}\right) \rightarrow\{\varnothing,\{\varepsilon\}\} \\
& \delta(L)= \begin{cases}\varnothing & \varepsilon \notin L \\
\{\varepsilon\} & \varepsilon \in L\end{cases}
\end{aligned}
$$

With this, we have: $D_{c}\left(L_{1} \circ L_{2}\right)=\left(D_{c}\left(L_{1}\right) \circ L_{2}\right) \cup\left(\delta\left(L_{1}\right) \circ D_{c}\left(L_{2}\right)\right)$

Nullability function

- $\delta(\varnothing)=\varnothing$
- $\delta(\varepsilon)=\varepsilon$
- $\delta(a)=\varnothing$
- $\delta\left(L_{1} \cup L_{2}\right)=\delta\left(L_{1}\right) \cup \delta\left(L_{2}\right)$
- $\delta\left(L_{1} \circ L_{2}\right)=\delta\left(L_{1}\right) \circ \delta\left(L_{2}\right)$
- $\left(\delta\left(L^{\star}\right)=\varepsilon\right)$

Derivative on graphs

$$
\begin{aligned}
\mathcal{L} & =(\mathcal{L} \cdot c) \cup c \\
D_{c}(\mathcal{L}) & =\left(D_{c}(\mathcal{L}) \cdot c\right) \cup \varepsilon
\end{aligned}
$$

Recognizing algorithm

```
def recognize(G, w):
    for c \in w:
        G = D (G)
        return \delta(G)
```


Parsing

Some problems:

Parsing

Some problems:

- forgetting about parsed symbols (tokens) $-D_{c}(\{c\})=\varepsilon$

Parsing

Some problems:

- forgetting about parsed symbols (tokens) $-D_{c}(\{c\})=\varepsilon$
- loosing information by using δ -

$$
D_{c}\left(L_{1} \circ L_{2}\right)=\left(D_{c}\left(L_{1}\right) \circ L_{2}\right) \cup\left(\delta\left(L_{1}\right) \circ D_{c}\left(L_{2}\right)\right)
$$

Parsing

Some problems:

- forgetting about parsed symbols (tokens) $-D_{c}(\{c\})=\varepsilon$
- loosing information by using δ -
$D_{c}\left(L_{1} \circ L_{2}\right)=\left(D_{c}\left(L_{1}\right) \circ L_{2}\right) \cup\left(\delta\left(L_{1}\right) \circ D_{c}\left(L_{2}\right)\right)$
- skewing parse tree (by operators associativity)

Parsed tokens

$$
\begin{aligned}
\varepsilon_{\Sigma} & =\left\{\varepsilon_{a}: a \in \Sigma\right\} \\
D_{a}(c) & = \begin{cases}\varepsilon_{a} & a=c \\
\varnothing & a \neq c\end{cases}
\end{aligned}
$$

Delta nodes

$$
\begin{gathered}
D_{c}\left(L_{1} \circ L_{2}\right)=\left(D_{c}\left(L_{1}\right) \circ L_{2}\right) \cup\left(\Delta\left(L_{1}\right) \circ D_{c}\left(L_{2}\right)\right) \\
D_{a}(\Delta(P))=\varnothing
\end{gathered}
$$

Markers

$$
\mathcal{M}=\left\{\dashv_{i}\right\}_{i \in \mathbb{N}}
$$

- $C \rightarrow \operatorname{ccc}^{-}{ }_{1}$
- $B \rightarrow b \dashv_{2} \mid A \dashv_{3}$
- $A \rightarrow \varepsilon \dashv_{4}\left|B b \dashv_{5}\right| C \dashv_{6}$

Markers

$$
\mathcal{M}=\left\{\dashv_{i}\right\}_{i \in \mathbb{N}}
$$

- $C \rightarrow \operatorname{ccc}^{-} \dashv_{1}$
- $C \rightarrow C^{\prime} C^{\prime \prime}$
- $C^{\prime \prime} \rightarrow c \dashv_{1}$
- $C^{\prime} \rightarrow c c$
- $B \rightarrow b \dashv_{2} \mid A \dashv_{3}$
- $B \rightarrow B^{\prime} \mid B^{\prime \prime}$
- $B^{\prime \prime} \rightarrow A \dashv_{3}$
- $A \rightarrow \varepsilon \dashv_{4}\left|B b \dashv_{5}\right| C \dashv_{6}$
- $B^{\prime} \rightarrow b \dashv_{2}$
- ...

Semirings

A semiring \mathcal{R} is a triple $\left(R,+_{\mathcal{R}}, \cdot_{\mathcal{R}}, 0_{\mathcal{R}}, 1_{\mathcal{R}}\right)$, where:

- R is a set of semiring's elements
- $\left(R, y_{\mathcal{R}}\right)$ is a commutative monoid with $0_{\mathcal{R}}$ as an identity element
- $\left(R, \cdot_{\mathcal{R}}\right)$ is a monoid with $1_{\mathcal{R}}$ as an identity element and 0 as an annihilator
- $\cdot \mathcal{R}$ is distributive over $+_{\mathcal{R}}$ (on both sides)

Semirings

A semiring \mathcal{R} is a triple $\left(R,+_{\mathcal{R}}, \cdot_{\mathcal{R}}, 0_{\mathcal{R}}, 1_{\mathcal{R}}\right)$, where:

- R is a set of semiring's elements
- $\left(R,+_{\mathcal{R}}\right)$ is a commutative monoid with $0_{\mathcal{R}}$ as an identity element
- $\left(R, \cdot_{\mathcal{R}}\right)$ is a monoid with $1_{\mathcal{R}}$ as an identity element and 0 as an annihilator
- $\cdot \mathcal{R}$ is distributive over $+_{\mathcal{R}}$ (on both sides)

We skip the $\mathcal{R}_{\mathcal{R}}$ subscript next to the operators and elements whenever possible.

Semirings

For our purposes, we will also require the semirings to have an additional element $\infty_{\mathcal{R}}$ (or simply ∞) with the following properties:

$$
\begin{array}{r}
\forall_{e \in R} \quad e+\infty=\infty \\
0 \cdot \infty=\infty \cdot 0=0 \\
\forall_{e \in R-\{0\}} \quad e \cdot \infty=\infty \cdot e=\infty
\end{array}
$$

Embedding

Every nonterminal P can be associated with the language $\mathcal{L}(P) \subseteq \Sigma^{\star}$. Thus we can perceive alternative and concatenation as respective operators in the semiring $\mathcal{R}_{\Sigma}=\left(\wp\left(\Sigma^{\star}\right), \cup, \cdot, \varnothing,\{\varepsilon\}\right)$.

Embedding

Every nonterminal P can be associated with the language $\mathcal{L}(P) \subseteq \Sigma^{\star}$.
Thus we can perceive alternative and concatenation as respective operators in the semiring $\mathcal{R}_{\Sigma}=\left(\wp\left(\Sigma^{\star}\right), \cup, \cdot, \varnothing,\{\varepsilon\}\right)$.

Now we can generalize the function δ introduced previously. From now, $\delta_{\mathcal{R}}$ will represent any homomorphism between \mathcal{R}_{Σ} and an arbitrary semiring \mathcal{R}.

Generic algorithm

```
def recognize<\mathcal{R}>(G, w):
    for c \in w:
        G = D c (G)
        return }\mp@subsup{\delta}{\mathcal{R}}{(G)
```


Back to recognition

For recognition we can work with the Boolean semiring, i.e. $\mathcal{R}_{\mathbb{B}}=(\mathbb{B}, \vee, \wedge, 0,1)$ with $\mathbb{B}=\{0,1\}, \infty=1$.

Back to recognition

For recognition we can work with the Boolean semiring, i.e. $\mathcal{R}_{\mathbb{B}}=(\mathbb{B}, \vee, \wedge, 0,1)$ with $\mathbb{B}=\{0,1\}, \infty=1$.

$$
\begin{aligned}
\delta_{\mathbb{B}}(\varnothing) & =0, \\
\delta_{\mathbb{B}}(\epsilon) & =1, \\
\forall_{a \in \Sigma} \quad \delta_{\mathbb{B}}\left(\varepsilon_{a}\right) & =1, \\
\forall_{a \in \Sigma} \quad \delta_{\mathbb{B}}(a) & =0 .
\end{aligned}
$$

Counting parse trees

For counting parse trees we can work with $\mathcal{R}_{\mathbb{N}}=(\mathbb{N} \cup\{\infty\},+, \cdot, 0,1)$, which is the standard semiring of non-negative integers, enriched with a special element ∞ behaving "naturally", except that $\infty \cdot 0=0$.

Counting parse trees

For counting parse trees we can work with $\mathcal{R}_{\mathbb{N}}=(\mathbb{N} \cup\{\infty\},+, \cdot, 0,1)$, which is the standard semiring of non-negative integers, enriched with a special element ∞ behaving "naturally", except that $\infty \cdot 0=0$.

$$
\begin{aligned}
\delta_{\mathbb{N}}(\varnothing) & =0 \\
\delta_{\mathbb{N}}(\varepsilon) & =1 \\
\forall_{a \in \Sigma \cup \mathcal{M}} \quad \delta_{\mathbb{N}}\left(\varepsilon_{a}\right) & =1 \\
\forall a \in \Sigma \quad \delta_{\mathbb{N}}(a) & =0
\end{aligned}
$$

Parsing

For parsing we can work with $\mathcal{R}_{\aleph}=\left(\mathcal{Q} \times\left(\epsilon_{\Sigma} \cup \mathcal{M}\right)^{\star}, \oplus, \otimes\right)$, where the first coordinate, an element from $\mathcal{Q}=\{$ NONE, UNIQUE, FINITELY_MANY, INFINITELY_MANY $\}$ is one of the quantity categories.

Parsing

For parsing we can work with $\mathcal{R}_{\aleph}=\left(\mathcal{Q} \times\left(\epsilon_{\Sigma} \cup \mathcal{M}\right)^{\star}, \oplus, \otimes\right)$, where the first coordinate, an element from $\mathcal{Q}=\{$ NONE, UNIQUE, FINITELY_MANY, INFINITELY_MANY $\}$ is one of the quantity categories.

- if the first coordinate is UNIQUE, the second one is the postorder of this unique parse tree; otherwise there could be anything - we do not care
- both operators \oplus, \otimes when given two elements from R_{\aleph} firstly look at the quantity coordinates and depending on them determine the resulting quantity. Then, if the resulting quantity is UNIQUE, they combine the second coordinates.
- 0-element is (NONE, ϵ) (in fact the second coordinate can contain anything)
- 1-element is (UNIQUE, ϵ)
- ∞-element is (infinitely_many, ϵ) (in fact the second coordinate can contain anything)

Parsing

$$
\begin{aligned}
\delta_{\aleph}(\varnothing) & =(\text { NONE }, \varepsilon) \\
\delta_{\aleph}(\varepsilon) & =(\text { UNIQUE }, \varepsilon) \\
\forall_{a \in \Sigma \cup \mathcal{M}} \delta_{\aleph}\left(\varepsilon_{a}\right) & =\left(\text { UNIQUE, } \varepsilon_{a}\right) \\
\forall_{a} \in \Sigma \quad \delta_{\aleph}(a) & =(\text { NONE }, \varepsilon)
\end{aligned}
$$

All of them

Computing embedding

$$
\begin{gathered}
\delta: \mathbb{V}(\mathcal{G}) \rightarrow R \\
\delta(X)= \begin{cases}0 & \text { if } X: \text { Empty } \\
0 & \text { if } X: \text { Token } \\
1 & \text { if }: \text { Epsilon } \\
e_{X} \in R & \text { if } X: \text { ParsedToken } \\
\delta(X . r e f) & \text { if } X: \text { Delta } \\
\delta(X . l e f t)+\mathcal{R} \delta(X . r i g h t) & \text { if } X: \text { Alternative } \\
\delta(X . l e f t) \cdot \mathcal{R} \delta(X . r i g h t) & \text { if } X: \text { Concatenation }\end{cases}
\end{gathered}
$$

Disambiguation

Any ambiguities (that may appear due to cycles) can be dealt with by the following two rules:

$$
\begin{aligned}
\delta(X)=\alpha_{1} \cdot \delta(X) \cdot \alpha_{2} & \Longrightarrow \quad \delta(X)=0 \\
\delta(X)=\alpha_{1} \cdot \delta(X) \cdot \alpha_{2}+\beta \wedge \alpha_{i}, \beta \neq 0 \wedge \delta(X) \notin \beta & \Longrightarrow \quad \delta(X)=\infty
\end{aligned}
$$

Algorithm

(1) find all nodes X for which $\delta_{\mathcal{R}}(X)=0_{\mathcal{R}}$,
(2) propagate all "finite" values from \mathcal{R} as far as it is possible
(3) what remains, should be equal to $\infty_{\mathcal{R}}$.

Pseudocode

See in the full version.

Correctness

Correctness

- finding all zeros (induction on the number of connected components)

Correctness

- finding all zeros (induction on the number of connected components)
- after marking all 0s and propagating finite values as far as possible, any value not yet calculated must be ∞ (by recursive alternatives)

Correctness

- finding all zeros (induction on the number of connected components)
- after marking all 0s and propagating finite values as far as possible, any value not yet calculated must be ∞ (by recursive alternatives)
- sum disjointness (by (semi-)parse-words)

