
Polynomial algorithms for CFGs via semiring
embeddings

Piotr Miko lajczyk

Theoretical Computer Science Department of Jagiellonian University

November 4, 2020

Piotr Miko lajczyk (TCS) Polynomial algorithms for CFGs November 4, 2020 1 / 33

Sources

Parsing with Derivatives (2011) – by M. Might, D. Darais,
D. Spiewak

On the Complexity and Performance of Parsing with
Derivatives (2016) – by M. Adams, C. Hollenbeck, M. Might

A C++ implementation of Parsing With Derivatives (2019) – ,

Piotr Miko lajczyk (TCS) Polynomial algorithms for CFGs November 4, 2020 2 / 33

http://matt.might.net/papers/might2011derivatives.pdf
https://arxiv.org/pdf/1604.04695.pdf
https://arxiv.org/pdf/1604.04695.pdf
https://www.ap.uj.edu.pl/diplomas/131140/

Regular languages

∅ and {ε} are regular

∀c∈Σ {c} is regular

If A and B are regular, then A ∪ B, A ◦ B and A? are regular

No other language is regular

R = {ε} ∪ {a} · ({a} ∪ {b})?

Piotr Miko lajczyk (TCS) Polynomial algorithms for CFGs November 4, 2020 3 / 33

Regular languages

∅ and {ε} are regular

∀c∈Σ {c} is regular

If A and B are regular, then A ∪ B, A ◦ B and A? are regular

No other language is regular

R = {ε} ∪ {a} · ({a} ∪ {b})?

Piotr Miko lajczyk (TCS) Polynomial algorithms for CFGs November 4, 2020 3 / 33

Context-free languages

They are just like recursive regular languages

As L? ≡ ε ∪ (L ◦ L?), we can give up using Kleene’s star operator

Piotr Miko lajczyk (TCS) Polynomial algorithms for CFGs November 4, 2020 4 / 33

Context-free languages

They are just like recursive regular languages

As L? ≡ ε ∪ (L ◦ L?), we can give up using Kleene’s star operator

Piotr Miko lajczyk (TCS) Polynomial algorithms for CFGs November 4, 2020 4 / 33

Context-free languages

A context-free grammar is a tuple G = (N ,Σ, S ,P). A language which it
generates is denoted as L(G).

Example:

N = {S}
S → aSa|bSb|ε
L(G) = {ε, aa, bb, abba, aaaa, . . . }

Piotr Miko lajczyk (TCS) Polynomial algorithms for CFGs November 4, 2020 5 / 33

Context-free languages

A context-free grammar is a tuple G = (N ,Σ, S ,P). A language which it
generates is denoted as L(G).

Example:

N = {S}
S → aSa|bSb|ε
L(G) = {ε, aa, bb, abba, aaaa, . . . }

Piotr Miko lajczyk (TCS) Polynomial algorithms for CFGs November 4, 2020 5 / 33

Binarization

Each grammar G can be transformed (in polynomial time) to an equivalent
binarized grammar G′ (L(G) = L(G′)) – operators (concatenation and
alternative) are considered as purely binary; operands must be from Σ∪N .

C → ccc

B → b|A

A→ ε|Bb|C

C → C ′c

C ′ → cc

B → b|A

A→ ε|A′

A′ → B ′|C
B ′ → Bb

Piotr Miko lajczyk (TCS) Polynomial algorithms for CFGs November 4, 2020 6 / 33

Binarization

Each grammar G can be transformed (in polynomial time) to an equivalent
binarized grammar G′ (L(G) = L(G′)) – operators (concatenation and
alternative) are considered as purely binary; operands must be from Σ∪N .

C → ccc

B → b|A

A→ ε|Bb|C

C → C ′c

C ′ → cc

B → b|A

A→ ε|A′

A′ → B ′|C
B ′ → Bb

Piotr Miko lajczyk (TCS) Polynomial algorithms for CFGs November 4, 2020 6 / 33

Binarization

Each grammar G can be transformed (in polynomial time) to an equivalent
binarized grammar G′ (L(G) = L(G′)) – operators (concatenation and
alternative) are considered as purely binary; operands must be from Σ∪N .

C → ccc

B → b|A

A→ ε|Bb|C

C → C ′c

C ′ → cc

B → b|A

A→ ε|A′

A′ → B ′|C
B ′ → Bb

Piotr Miko lajczyk (TCS) Polynomial algorithms for CFGs November 4, 2020 6 / 33

Grammar graph

Given a binarized grammar G, we can consider its graph G (G) = (V,E),
where: V = (N ∪ Σ ∪ {∅, ε}) and (u, v) ∈ E if and only if there is a
production in P which has u on its left side and v on the right side.

The resulting graph is directed and has ordered edges, i.e. we distinguish
the left child from the right one.

Piotr Miko lajczyk (TCS) Polynomial algorithms for CFGs November 4, 2020 7 / 33

Grammar graph

L = (L · c) ∪ c

L = L′|c
L′ = Lc

Piotr Miko lajczyk (TCS) Polynomial algorithms for CFGs November 4, 2020 8 / 33

Grammar graph

L = (L · c) ∪ c

L = L′|c
L′ = Lc

Piotr Miko lajczyk (TCS) Polynomial algorithms for CFGs November 4, 2020 8 / 33

Derivative of a language

Derivative by a symbol – b – from alphabet:

take a language: {foo, bar , bee}
leave only these words, which start with the chosen symbol:
{bar , bee}
remove first symbol: {ar , ee}
voilà (Db({foo, bar , bee}) = {ar , ee})

Derivative of a language

Dc(L) = {w | cw ∈ L}

Piotr Miko lajczyk (TCS) Polynomial algorithms for CFGs November 4, 2020 9 / 33

Derivative of a language

Derivative by a symbol – b – from alphabet:

take a language: {foo, bar , bee}

leave only these words, which start with the chosen symbol:
{bar , bee}
remove first symbol: {ar , ee}
voilà (Db({foo, bar , bee}) = {ar , ee})

Derivative of a language

Dc(L) = {w | cw ∈ L}

Piotr Miko lajczyk (TCS) Polynomial algorithms for CFGs November 4, 2020 9 / 33

Derivative of a language

Derivative by a symbol – b – from alphabet:

take a language: {foo, bar , bee}
leave only these words, which start with the chosen symbol:
{bar , bee}

remove first symbol: {ar , ee}
voilà (Db({foo, bar , bee}) = {ar , ee})

Derivative of a language

Dc(L) = {w | cw ∈ L}

Piotr Miko lajczyk (TCS) Polynomial algorithms for CFGs November 4, 2020 9 / 33

Derivative of a language

Derivative by a symbol – b – from alphabet:

take a language: {foo, bar , bee}
leave only these words, which start with the chosen symbol:
{bar , bee}
remove first symbol: {ar , ee}

voilà (Db({foo, bar , bee}) = {ar , ee})

Derivative of a language

Dc(L) = {w | cw ∈ L}

Piotr Miko lajczyk (TCS) Polynomial algorithms for CFGs November 4, 2020 9 / 33

Derivative of a language

Derivative by a symbol – b – from alphabet:

take a language: {foo, bar , bee}
leave only these words, which start with the chosen symbol:
{bar , bee}
remove first symbol: {ar , ee}
voilà

(Db({foo, bar , bee}) = {ar , ee})

Derivative of a language

Dc(L) = {w | cw ∈ L}

Piotr Miko lajczyk (TCS) Polynomial algorithms for CFGs November 4, 2020 9 / 33

Derivative of a language

Derivative by a symbol – b – from alphabet:

take a language: {foo, bar , bee}
leave only these words, which start with the chosen symbol:
{bar , bee}
remove first symbol: {ar , ee}
voilà (Db({foo, bar , bee}) = {ar , ee})

Derivative of a language

Dc(L) = {w | cw ∈ L}

Piotr Miko lajczyk (TCS) Polynomial algorithms for CFGs November 4, 2020 9 / 33

Derivative of a language

Derivative by a symbol – b – from alphabet:

take a language: {foo, bar , bee}
leave only these words, which start with the chosen symbol:
{bar , bee}
remove first symbol: {ar , ee}
voilà (Db({foo, bar , bee}) = {ar , ee})

Derivative of a language

Dc(L) = {w | cw ∈ L}

Piotr Miko lajczyk (TCS) Polynomial algorithms for CFGs November 4, 2020 9 / 33

Derivative of a language

Derivative of a language

Dc(L) = {w | cw ∈ L}

So cw ∈ L ⇐⇒ w ∈ Dc(L)

w = a1 . . . ak =⇒ Dw (L) = Dak (. . .Da1(L) . . .)
So w ∈ L ⇐⇒ ε ∈ Dw (L)

Piotr Miko lajczyk (TCS) Polynomial algorithms for CFGs November 4, 2020 10 / 33

Derivatives

Dc(∅) = ∅
Dc(ε) = ∅

Dc(a) =

{
∅ a 6= c

ε a = c

Dc(L1 ∪ L2) = Dc(L1) ∪ Dc(L2)(
Dc(L?) = Dc(L) ◦ L?

)
Dc(L1 ◦ L2) =

{
Dc(L1) ◦ L2 ε /∈ L1

(Dc(L1) ◦ L2) ∪ Dc(L2) ε ∈ L1

Piotr Miko lajczyk (TCS) Polynomial algorithms for CFGs November 4, 2020 11 / 33

Nullability function

δ : P(Σ?)→ {∅, {ε}}

δ(L) =

{
∅ ε /∈ L

{ε} ε ∈ L

With this, we have: Dc(L1 ◦ L2) = (Dc(L1) ◦ L2) ∪ (δ(L1) ◦ Dc(L2))

Piotr Miko lajczyk (TCS) Polynomial algorithms for CFGs November 4, 2020 12 / 33

Nullability function

δ : P(Σ?)→ {∅, {ε}}

δ(L) =

{
∅ ε /∈ L

{ε} ε ∈ L

With this, we have: Dc(L1 ◦ L2) = (Dc(L1) ◦ L2) ∪ (δ(L1) ◦ Dc(L2))

Piotr Miko lajczyk (TCS) Polynomial algorithms for CFGs November 4, 2020 12 / 33

Nullability function

δ(∅) = ∅
δ(ε) = ε

δ(a) = ∅
δ(L1 ∪ L2) = δ(L1) ∪ δ(L2)

δ(L1 ◦ L2) = δ(L1) ◦ δ(L2)(
δ(L?) = ε

)

Piotr Miko lajczyk (TCS) Polynomial algorithms for CFGs November 4, 2020 13 / 33

Derivative on graphs

L = (L · c) ∪ c

Dc(L) = (Dc(L) · c) ∪ ε

Piotr Miko lajczyk (TCS) Polynomial algorithms for CFGs November 4, 2020 14 / 33

Recognizing algorithm

def recognize(G, w):

for c ∈ w:

G = Dc (G)

return δ(G)

Piotr Miko lajczyk (TCS) Polynomial algorithms for CFGs November 4, 2020 15 / 33

Parsing

Some problems:

forgetting about parsed symbols (tokens) – Dc({c}) = ε

loosing information by using δ –
Dc(L1 ◦ L2) = (Dc(L1) ◦ L2) ∪ (δ(L1) ◦ Dc(L2))

skewing parse tree (by operators associativity)

Piotr Miko lajczyk (TCS) Polynomial algorithms for CFGs November 4, 2020 16 / 33

Parsing

Some problems:

forgetting about parsed symbols (tokens) – Dc({c}) = ε

loosing information by using δ –
Dc(L1 ◦ L2) = (Dc(L1) ◦ L2) ∪ (δ(L1) ◦ Dc(L2))

skewing parse tree (by operators associativity)

Piotr Miko lajczyk (TCS) Polynomial algorithms for CFGs November 4, 2020 16 / 33

Parsing

Some problems:

forgetting about parsed symbols (tokens) – Dc({c}) = ε

loosing information by using δ –
Dc(L1 ◦ L2) = (Dc(L1) ◦ L2) ∪ (δ(L1) ◦ Dc(L2))

skewing parse tree (by operators associativity)

Piotr Miko lajczyk (TCS) Polynomial algorithms for CFGs November 4, 2020 16 / 33

Parsing

Some problems:

forgetting about parsed symbols (tokens) – Dc({c}) = ε

loosing information by using δ –
Dc(L1 ◦ L2) = (Dc(L1) ◦ L2) ∪ (δ(L1) ◦ Dc(L2))

skewing parse tree (by operators associativity)

Piotr Miko lajczyk (TCS) Polynomial algorithms for CFGs November 4, 2020 16 / 33

Parsed tokens

εΣ = {εa : a ∈ Σ}

Da(c) =

{
εa a = c

∅ a 6= c

Piotr Miko lajczyk (TCS) Polynomial algorithms for CFGs November 4, 2020 17 / 33

Delta nodes

Dc(L1 ◦ L2) = (Dc(L1) ◦ L2) ∪ (∆(L1) ◦ Dc(L2))

Da(∆(P)) = ∅

Piotr Miko lajczyk (TCS) Polynomial algorithms for CFGs November 4, 2020 18 / 33

Markers

M = {ai}i∈N

C → ccc a1

B → b a2 | A a3

A→ ε a4 | Bb a5 | C a6

C → C ′C ′′

C ′′ → c a1

C ′ → cc

B → B ′ | B ′′

B ′′ → A a3

B ′ → b a2

. . .

Piotr Miko lajczyk (TCS) Polynomial algorithms for CFGs November 4, 2020 19 / 33

Markers

M = {ai}i∈N

C → ccc a1

B → b a2 | A a3

A→ ε a4 | Bb a5 | C a6

C → C ′C ′′

C ′′ → c a1

C ′ → cc

B → B ′ | B ′′

B ′′ → A a3

B ′ → b a2

. . .

Piotr Miko lajczyk (TCS) Polynomial algorithms for CFGs November 4, 2020 19 / 33

Semirings

A semiring R is a triple (R,+R, ·R, 0R, 1R), where:

R is a set of semiring’s elements

(R,+R) is a commutative monoid with 0R as an identity element

(R, ·R) is a monoid with 1R as an identity element and 0 as an
annihilator

·R is distributive over +R (on both sides)

We skip the R subscript next to the operators and elements whenever
possible.

Piotr Miko lajczyk (TCS) Polynomial algorithms for CFGs November 4, 2020 20 / 33

Semirings

A semiring R is a triple (R,+R, ·R, 0R, 1R), where:

R is a set of semiring’s elements

(R,+R) is a commutative monoid with 0R as an identity element

(R, ·R) is a monoid with 1R as an identity element and 0 as an
annihilator

·R is distributive over +R (on both sides)

We skip the R subscript next to the operators and elements whenever
possible.

Piotr Miko lajczyk (TCS) Polynomial algorithms for CFGs November 4, 2020 20 / 33

Semirings

For our purposes, we will also require the semirings to have an additional
element ∞R (or simply ∞) with the following properties:

∀e∈R e +∞ =∞,
0 · ∞ =∞ · 0 = 0,

∀e∈R−{0} e · ∞ =∞ · e =∞.

Piotr Miko lajczyk (TCS) Polynomial algorithms for CFGs November 4, 2020 21 / 33

Embedding

Every nonterminal P can be associated with the language L(P) ⊆ Σ?.
Thus we can perceive alternative and concatenation as respective
operators in the semiring RΣ = (℘(Σ?),∪, ·,∅, {ε}).

Now we can generalize the function δ introduced previously. From now, δR
will represent any homomorphism between RΣ and an arbitrary semiring
R.

Piotr Miko lajczyk (TCS) Polynomial algorithms for CFGs November 4, 2020 22 / 33

Embedding

Every nonterminal P can be associated with the language L(P) ⊆ Σ?.
Thus we can perceive alternative and concatenation as respective
operators in the semiring RΣ = (℘(Σ?),∪, ·,∅, {ε}).

Now we can generalize the function δ introduced previously. From now, δR
will represent any homomorphism between RΣ and an arbitrary semiring
R.

Piotr Miko lajczyk (TCS) Polynomial algorithms for CFGs November 4, 2020 22 / 33

Generic algorithm

def recognize <R>(G, w):

for c ∈ w:

G = Dc (G)

return δR(G)

Piotr Miko lajczyk (TCS) Polynomial algorithms for CFGs November 4, 2020 23 / 33

Back to recognition

For recognition we can work with the Boolean semiring, i.e.
RB = (B,∨,∧, 0, 1) with B = {0, 1}, ∞ = 1.

δB(∅) = 0,

δB(ε) = 1,

∀a∈Σ δB(εa) = 1,

∀a∈Σ δB(a) = 0.

Piotr Miko lajczyk (TCS) Polynomial algorithms for CFGs November 4, 2020 24 / 33

Back to recognition

For recognition we can work with the Boolean semiring, i.e.
RB = (B,∨,∧, 0, 1) with B = {0, 1}, ∞ = 1.

δB(∅) = 0,

δB(ε) = 1,

∀a∈Σ δB(εa) = 1,

∀a∈Σ δB(a) = 0.

Piotr Miko lajczyk (TCS) Polynomial algorithms for CFGs November 4, 2020 24 / 33

Counting parse trees

For counting parse trees we can work with RN = (N ∪ {∞},+, ·, 0, 1),
which is the standard semiring of non-negative integers, enriched with a
special element ∞ behaving “naturally”, except that ∞ · 0 = 0.

δN(∅) = 0

δN(ε) = 1

∀a∈Σ∪M δN(εa) = 1

∀a∈Σ δN(a) = 0

Piotr Miko lajczyk (TCS) Polynomial algorithms for CFGs November 4, 2020 25 / 33

Counting parse trees

For counting parse trees we can work with RN = (N ∪ {∞},+, ·, 0, 1),
which is the standard semiring of non-negative integers, enriched with a
special element ∞ behaving “naturally”, except that ∞ · 0 = 0.

δN(∅) = 0

δN(ε) = 1

∀a∈Σ∪M δN(εa) = 1

∀a∈Σ δN(a) = 0

Piotr Miko lajczyk (TCS) Polynomial algorithms for CFGs November 4, 2020 25 / 33

Parsing

For parsing we can work with Rℵ = (Q× (εΣ ∪M)?,⊕,⊗), where the
first coordinate, an element from Q = { none, unique, finitely many,
infinitely many} is one of the quantity categories.

if the first coordinate is unique, the second one is the postorder of
this unique parse tree; otherwise there could be anything - we do not
care

both operators ⊕,⊗ when given two elements from Rℵ firstly look at
the quantity coordinates and depending on them determine the
resulting quantity. Then, if the resulting quantity is unique, they
combine the second coordinates.

0-element is (none, ε) (in fact the second coordinate can contain
anything)

1-element is (unique, ε)

∞-element is (infinitely many, ε) (in fact the second coordinate
can contain anything)

Piotr Miko lajczyk (TCS) Polynomial algorithms for CFGs November 4, 2020 26 / 33

Parsing

For parsing we can work with Rℵ = (Q× (εΣ ∪M)?,⊕,⊗), where the
first coordinate, an element from Q = { none, unique, finitely many,
infinitely many} is one of the quantity categories.

if the first coordinate is unique, the second one is the postorder of
this unique parse tree; otherwise there could be anything - we do not
care

both operators ⊕,⊗ when given two elements from Rℵ firstly look at
the quantity coordinates and depending on them determine the
resulting quantity. Then, if the resulting quantity is unique, they
combine the second coordinates.

0-element is (none, ε) (in fact the second coordinate can contain
anything)

1-element is (unique, ε)

∞-element is (infinitely many, ε) (in fact the second coordinate
can contain anything)

Piotr Miko lajczyk (TCS) Polynomial algorithms for CFGs November 4, 2020 26 / 33

Parsing

δℵ(∅) = (none, ε)

δℵ(ε) = (unique, ε)

∀a∈Σ∪M δℵ(εa) = (unique, εa)

∀a∈Σ δℵ(a) = (none, ε)

Piotr Miko lajczyk (TCS) Polynomial algorithms for CFGs November 4, 2020 27 / 33

All of them

Piotr Miko lajczyk (TCS) Polynomial algorithms for CFGs November 4, 2020 28 / 33

Computing embedding

δ : V(G) → R

δ(X) =

0 if X : Empty

0 if X : Token

1 if X : Epsilon

eX ∈ R if X : ParsedToken

δ(X .ref) if X : Delta

δ(X .left) +R δ(X .right) if X : Alternative

δ(X .left) ·R δ(X .right) if X : Concatenation

Piotr Miko lajczyk (TCS) Polynomial algorithms for CFGs November 4, 2020 29 / 33

Disambiguation

Any ambiguities (that may appear due to cycles) can be dealt with by the
following two rules:

δ(X) = α1 · δ(X) · α2 =⇒ δ(X) = 0

δ(X) = α1 · δ(X) · α2 + β ∧ αi , β 6= 0 ∧ δ(X) /∈ β =⇒ δ(X) =∞

Piotr Miko lajczyk (TCS) Polynomial algorithms for CFGs November 4, 2020 30 / 33

Algorithm

1 find all nodes X for which δR(X) = 0R,

2 propagate all “finite” values from R as far as it is possible

3 what remains, should be equal to ∞R.

Piotr Miko lajczyk (TCS) Polynomial algorithms for CFGs November 4, 2020 31 / 33

Pseudocode

See in the full version.

Piotr Miko lajczyk (TCS) Polynomial algorithms for CFGs November 4, 2020 32 / 33

Correctness

finding all zeros (induction on the number of connected components)

after marking all 0s and propagating finite values as far as possible,
any value not yet calculated must be ∞ (by recursive alternatives)

sum disjointness (by (semi-)parse-words)

Piotr Miko lajczyk (TCS) Polynomial algorithms for CFGs November 4, 2020 33 / 33

Correctness

finding all zeros (induction on the number of connected components)

after marking all 0s and propagating finite values as far as possible,
any value not yet calculated must be ∞ (by recursive alternatives)

sum disjointness (by (semi-)parse-words)

Piotr Miko lajczyk (TCS) Polynomial algorithms for CFGs November 4, 2020 33 / 33

Correctness

finding all zeros (induction on the number of connected components)

after marking all 0s and propagating finite values as far as possible,
any value not yet calculated must be ∞ (by recursive alternatives)

sum disjointness (by (semi-)parse-words)

Piotr Miko lajczyk (TCS) Polynomial algorithms for CFGs November 4, 2020 33 / 33

Correctness

finding all zeros (induction on the number of connected components)

after marking all 0s and propagating finite values as far as possible,
any value not yet calculated must be ∞ (by recursive alternatives)

sum disjointness (by (semi-)parse-words)

Piotr Miko lajczyk (TCS) Polynomial algorithms for CFGs November 4, 2020 33 / 33

