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Sources

Parsing with Derivatives (2011) – by M. Might, D. Darais,
D. Spiewak

On the Complexity and Performance of Parsing with
Derivatives (2016) – by M. Adams, C. Hollenbeck, M. Might

A C++ implementation of Parsing With Derivatives (2019) – ,
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http://matt.might.net/papers/might2011derivatives.pdf
https://arxiv.org/pdf/1604.04695.pdf
https://arxiv.org/pdf/1604.04695.pdf
https://www.ap.uj.edu.pl/diplomas/131140/


Regular languages

∅ and {ε} are regular

∀c∈Σ {c} is regular

If A and B are regular, then A ∪ B, A ◦ B and A? are regular

No other language is regular

R = {ε} ∪ {a} · ({a} ∪ {b})?
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Context-free languages

They are just like recursive regular languages

As L? ≡ ε ∪ (L ◦ L?), we can give up using Kleene’s star operator
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Context-free languages

A context-free grammar is a tuple G = (N ,Σ, S ,P). A language which it
generates is denoted as L(G).

Example:

N = {S}
S → aSa|bSb|ε
L(G) = {ε, aa, bb, abba, aaaa, . . . }
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Binarization

Each grammar G can be transformed (in polynomial time) to an equivalent
binarized grammar G′ (L(G) = L(G′)) – operators (concatenation and
alternative) are considered as purely binary; operands must be from Σ∪N .

C → ccc

B → b|A

A→ ε|Bb|C

C → C ′c

C ′ → cc

B → b|A

A→ ε|A′

A′ → B ′|C
B ′ → Bb
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Grammar graph

Given a binarized grammar G, we can consider its graph G (G) = (V,E),
where: V = (N ∪ Σ ∪ {∅, ε}) and (u, v) ∈ E if and only if there is a
production in P which has u on its left side and v on the right side.

The resulting graph is directed and has ordered edges, i.e. we distinguish
the left child from the right one.
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Grammar graph

L = (L · c) ∪ c

L = L′|c
L′ = Lc
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Derivative of a language

Derivative by a symbol – b – from alphabet:

take a language: {foo, bar , bee}
leave only these words, which start with the chosen symbol:
{bar , bee}
remove first symbol: {ar , ee}
voilà (Db({foo, bar , bee}) = {ar , ee})

Derivative of a language

Dc(L) = {w | cw ∈ L}
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Derivative of a language

Derivative of a language

Dc(L) = {w | cw ∈ L}

So cw ∈ L ⇐⇒ w ∈ Dc(L)

w = a1 . . . ak =⇒ Dw (L) = Dak (. . .Da1(L) . . . )
So w ∈ L ⇐⇒ ε ∈ Dw (L)
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Derivatives

Dc(∅) = ∅
Dc(ε) = ∅

Dc(a) =

{
∅ a 6= c

ε a = c

Dc(L1 ∪ L2) = Dc(L1) ∪ Dc(L2)(
Dc(L?) = Dc(L) ◦ L?

)
Dc(L1 ◦ L2) =

{
Dc(L1) ◦ L2 ε /∈ L1

(Dc(L1) ◦ L2) ∪ Dc(L2) ε ∈ L1
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Nullability function

δ : P(Σ?)→ {∅, {ε}}

δ(L) =

{
∅ ε /∈ L

{ε} ε ∈ L

With this, we have: Dc(L1 ◦ L2) = (Dc(L1) ◦ L2) ∪ (δ(L1) ◦ Dc(L2))
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Nullability function

δ(∅) = ∅
δ(ε) = ε

δ(a) = ∅
δ(L1 ∪ L2) = δ(L1) ∪ δ(L2)

δ(L1 ◦ L2) = δ(L1) ◦ δ(L2)(
δ(L?) = ε

)
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Derivative on graphs

L = (L · c) ∪ c

Dc(L) = (Dc(L) · c) ∪ ε
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Recognizing algorithm

def recognize(G, w):

for c ∈ w:

G = Dc (G)

return δ(G)
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Parsing

Some problems:

forgetting about parsed symbols (tokens) – Dc({c}) = ε

loosing information by using δ –
Dc(L1 ◦ L2) = (Dc(L1) ◦ L2) ∪ (δ(L1) ◦ Dc(L2))

skewing parse tree (by operators associativity)
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Parsed tokens

εΣ = {εa : a ∈ Σ}

Da(c) =

{
εa a = c

∅ a 6= c
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Delta nodes

Dc(L1 ◦ L2) = (Dc(L1) ◦ L2) ∪ (∆(L1) ◦ Dc(L2))

Da(∆(P)) = ∅
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Markers

M = {ai}i∈N

C → ccc a1

B → b a2 | A a3

A→ ε a4 | Bb a5 | C a6

C → C ′C ′′

C ′′ → c a1

C ′ → cc

B → B ′ | B ′′

B ′′ → A a3

B ′ → b a2

. . .
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Semirings

A semiring R is a triple (R,+R, ·R, 0R, 1R), where:

R is a set of semiring’s elements

(R,+R) is a commutative monoid with 0R as an identity element

(R, ·R) is a monoid with 1R as an identity element and 0 as an
annihilator

·R is distributive over +R (on both sides)

We skip the R subscript next to the operators and elements whenever
possible.
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Semirings

For our purposes, we will also require the semirings to have an additional
element ∞R (or simply ∞) with the following properties:

∀e∈R e +∞ =∞,
0 · ∞ =∞ · 0 = 0,

∀e∈R−{0} e · ∞ =∞ · e =∞.
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Embedding

Every nonterminal P can be associated with the language L(P) ⊆ Σ?.
Thus we can perceive alternative and concatenation as respective
operators in the semiring RΣ = (℘(Σ?),∪, ·,∅, {ε}).

Now we can generalize the function δ introduced previously. From now, δR
will represent any homomorphism between RΣ and an arbitrary semiring
R.
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Generic algorithm

def recognize <R>(G, w):

for c ∈ w:

G = Dc (G)

return δR(G)
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Back to recognition

For recognition we can work with the Boolean semiring, i.e.
RB = (B,∨,∧, 0, 1) with B = {0, 1}, ∞ = 1.

δB(∅) = 0,

δB(ε) = 1,

∀a∈Σ δB(εa) = 1,

∀a∈Σ δB(a) = 0.
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Counting parse trees

For counting parse trees we can work with RN = (N ∪ {∞},+, ·, 0, 1),
which is the standard semiring of non-negative integers, enriched with a
special element ∞ behaving “naturally”, except that ∞ · 0 = 0.

δN(∅) = 0

δN(ε) = 1

∀a∈Σ∪M δN(εa) = 1

∀a∈Σ δN(a) = 0
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Parsing

For parsing we can work with Rℵ = (Q× (εΣ ∪M)?,⊕,⊗), where the
first coordinate, an element from Q = { none, unique, finitely many,
infinitely many} is one of the quantity categories.

if the first coordinate is unique, the second one is the postorder of
this unique parse tree; otherwise there could be anything - we do not
care

both operators ⊕,⊗ when given two elements from Rℵ firstly look at
the quantity coordinates and depending on them determine the
resulting quantity. Then, if the resulting quantity is unique, they
combine the second coordinates.

0-element is (none, ε) (in fact the second coordinate can contain
anything)

1-element is (unique, ε)

∞-element is (infinitely many, ε) (in fact the second coordinate
can contain anything)
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Parsing

δℵ(∅) = (none, ε)

δℵ(ε) = (unique, ε)

∀a∈Σ∪M δℵ(εa) = (unique, εa)

∀a∈Σ δℵ(a) = (none, ε)
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All of them
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Computing embedding

δ : V(G) → R

δ(X ) =



0 if X : Empty

0 if X : Token

1 if X : Epsilon

eX ∈ R if X : ParsedToken

δ(X .ref ) if X : Delta

δ(X .left) +R δ(X .right) if X : Alternative

δ(X .left) ·R δ(X .right) if X : Concatenation
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Disambiguation

Any ambiguities (that may appear due to cycles) can be dealt with by the
following two rules:

δ(X ) = α1 · δ(X ) · α2 =⇒ δ(X ) = 0

δ(X ) = α1 · δ(X ) · α2 + β ∧ αi , β 6= 0 ∧ δ(X ) /∈ β =⇒ δ(X ) =∞
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Algorithm

1 find all nodes X for which δR(X ) = 0R,

2 propagate all “finite” values from R as far as it is possible

3 what remains, should be equal to ∞R.
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Pseudocode

See in the full version.
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Correctness

finding all zeros (induction on the number of connected components)

after marking all 0s and propagating finite values as far as possible,
any value not yet calculated must be ∞ (by recursive alternatives)

sum disjointness (by (semi-)parse-words)
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