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Large cliques and independent sets

All graphs
For all sufficiently large n:

every n-vertex graph G has either a clique or independent set of size log n
2 log 2 ;

there exists an n-vertex graph G not containing a clique or independent set of size 2 log n
log 2 .

H-free graphs (Erdős, Hajnal 1989)
For every graph H, there exists a constant c(H) > 0 s.t. every H-free graph G with n vertices
has either a clique or independent set of size at least ec(H)

√
log n.

The Erdős-Hajnal conjecture (1989)
For every graph H, there exists a constant δ(H) > 0 s.t. every H-free graph G with n vertices
has either a clique or independent set of size at least nδ(H).
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Notation

Definitions
G c = complement of graph G

ω(G ) = the maximum size of a clique in G

α(G ) = the maximum size of an independent set in G

χ(G ) = the chromatic number of G

The Erdős-Hajnal conjecture
For every graph H, there exists a constant δ(H) > 0 s.t. every H-free graph G with n vertices
has ω(G ) ≥ nδ(H) or α(G ) ≥ nδ(H).
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Perfect graphs

Perfect graph
Graph G is perfect iff ω(H) = χ(H) for every induced subgraph H of G .

Strong Perfect Graph Theorem (Chudnovsky et al. 2006)
Graph G is perfect iff no induced subgraph of G or G c is an odd cycle of length at least 5.
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Perfect graphs

Source: Wikipedia

|V (G )| ≤ χ(G )α(G )

= ω(G )α(G )

=⇒

ω(G ) ≥
√
|V (G )| or α(G ) ≥

√
|V (G )|
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Perfect graphs

Theorem
If G is a perfect graph with n vertices, then ω(G ) ≥

√
n or α(G ) ≥

√
n.

Conjecture equivalent to Erdős-Hajnal
For every graph H, there exists a constant ψ(H) > 0 s.t. every H-free graph G with n vertices
has a perfect induced subgraph with at least nψ(H) vertices.
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Partial results

The Erdős-Hajnal property
Graph H has the Erdős-Hajnal property if and only if there exists a constant δ(H) > 0 s.t.
every H-free graph G with n vertices has ω(G ) ≥ nδ(H) or α(G ) ≥ nδ(H).

The Erdős-Hajnal conjecture
Every graph H has the Erdős-Hajnal property.
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Partial results

Graphs known to have the Erdős-Hajnal property
complete graphs and their complements
all graphs with at most 4 vertices
graphs formed by ”substitution” operation (Alon, Pach, Solymosi 2001)
the bull graph (Chudnovsky, Safra 2008)

Open question
Is the Erdős-Hajnal conjecture true when H ∼= C5?
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Complete graphs and their complements

Ramsey numbers
R(n,m) is the minimum k s.t. every graph G with k vertices has ω(G ) ≥ n or α(G ) ≥ m

R(n,m) ≤
(n+m−2

n−1

)

Forbidden Kn graph
A Kn-free graph on fn(m) = R(n,m) vertices has an independent set of size m

Function fn(x) grows polynomially
α(G ) grows polynomially
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Small graphs

Forbidden graphs with 3 vertices

K3 is a clique
P3-free graph is a disjoint set of cliques, so ω(G ) ≥

√
|V (G )| or α(G ) ≥

√
|V (G )|

The remaining 3-vertex graphs are complements of K3 and P3
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Substitution
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Substitution

Substitution operation
Given graphs H1 and H2, on disjoint vertex sets, each with at least two vertices, and
v ∈ V (H1), we say that H is obtained from H1 by subtituting H2 for v if:

V (H) = (V (H1) ∪ V (H2)) \ {v}
H [V (H2)] = H2

H [V (H1) \ {v}] = H1 \ v
for u ∈ V (H1),w ∈ V (H2): uw ∈ E (H) ⇐⇒ uv ∈ E (H1)

Prime graph
A graph is prime if it cannot be obtained from smaller graphs by substitution.
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Substitution

Theorem (Alon, Pach, Solymosi 2001)
If H1 and H2 are graphs with the Erdős-Hajnal property, and H is obtained from H1 and H2 by
subtitution, then H has the Erdős-Hajnal property.

Proof idea
Let G be an H-free graph with n vertices without ”large” cliques and independent sets
Every induced subgraph of G with nε vertices contains an induced copy of H1 and H2

By counting, some copy of H1 \ v can be extended to H1 in at least nε ways
There is H2 among possible extensions, so G is not H-free
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Small graphs

Forbidden graphs with 4 vertices
We only need to consider prime graphs
There is only one 4-vertex prime graph: P4

P4-free graphs are perfect, so P4 has the Erdős-Hajnal property
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Small graphs

Prime graphs with 5 vertices
cycle C5 - open...
path P5 - open...
complement of P5 - open...
the bull graph - solved (Chudnovsky, Safra 2008)

Theorem (Chudnovsky, Safra 2008)

Every bull-free graph G with n vertices has ω(G ) ≥ n1/4 or α(G ) ≥ n1/4.
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A weaker conjecture

Conjecture
For every graph H, there exists a constant ε(H) > 0 s.t. every {H,Hc}-free graph G with n
vertices has either a clique or independent set of size at least nε(H).

History of solved cases of H
5-edge path (Chudnovsky, Seymour 2013)
all paths (Bousquet, Lagoutte, Thomassé 2014)
hooks (Bousquet, Lagoutte, Thomassé 2014)
caterpillars (Liebenau, Pilipczuk 2017)
caterpillar subdivisions (Liebenau, Pilipczuk, Seymour, Spirkl 2018)
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Other classes of graphs

Polynomially bounded max(ω(G ), α(G ))

string graphs (Tomon 2020)
graphs with no induced "holes with hats" (Chudnovsky, Seymour 2020)
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Bipartite variant

Definitions
Let A,B ⊆ V (G ) be disjoint sets of vertices.

A is complete to B iff every vertex of A is adjacent to every vertex of B
A is anticomplete to B iff every vertex of A is non-adjacent to every vertex of B

Theorem (Erdős, Hajnal, Pach 2000)
For every graph H, there exists a constant δ(H) > 0 s.t. for every H-free graph G with n
vertices there exists two disjoint sets A,B ⊆ V (H) with the following properties:

|A|, |B| ≥ nδ(H), and
either A is complete to B , or A is anticomplete to B .
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Bipartite variant - proof idea

Lemma
Let G be a k-partite graph with vertex classes V1, ...,Vk , s.t. |Vi | = tk−1 for t, k ≥ 2.
One of the following is holds:

1 There is i 6= j s.t. Vi and Vj contain t-element subsets anticomplete to each other
2 G contains a k-vertex clique

Suppose that (1) doesn’t hold.
There exists a vertex v1 ∈ V1 with at least tk−2 neighbours in each Vi , i ≥ 2.
We reduce the problem to k − 1 classes with tk−2 vertices each.
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Bipartite variant - proof idea

Suppose, that for every v ∈ V1, v has at most tk−2 − 1 neighbours in Vi(v) for i(v) 6= 1.

Since tk−1/(k − 1) ≥ t, we can find i 6= 1 and t-element subset V ′1 ⊆ V1, s.t. i(v) = i .
Let V ′i denote the set of vertices not connected to any element in V ′1.
We have |V ′i | ≥ |Vi | − t(tk−2 − 1) = t, and V ′1 is anticomplete to V ′i .

V1
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Bipartite variant - stronger version

Theorem (Fox, Sudakov 2010)
For every graph H, there exists a constant δ(H) > 0 s.t. for every H-free graph G with n
vertices and ω(G ) < nδ(H), there exists two disjoint sets A,B ⊆ V (H) with the following
properties:

|A|, |B| ≥ nδ(H), and
A is anticomplete to B .

Krzysztof Potępa (TCS) The Erdős-Hajnal Conjecture November 26, 2020 22 / 24



Asymptotic result

Theorem (Loebl et al. 2010)
Let Fn

H be a class of all H-free graphs on n vertices.
Let Qn,ε

H be a subclass of Fn
H consisting of graphs with ω(G ) ≥ nε or α(G ) ≥ nε.

For every graph H, there exists a constant ε(H) > 0 s.t. |Q
n,ε(H)
H |
|Fn

H |
→ 1 as n→∞.
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Tournament variant

Definitions
α(T ) = the maximum size of an acyclic subtournament of T
Tournament T is S − free iff no subtournament of T is isomorphic to S

Conjecture equivalent to Erdős-Hajnal (Alon, Pach, Solymosi 2001)
For every tournament S , there exists a constant δ(S) > 0 s.t. every S-free tournament T with
n vertices satisfies α(T ) ≥ nδ(S).
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