The Erdős-Hajnal Conjecture

Krzysztof Potępa

Theoretical Computer Science

November 26, 2020

Sources

(1) Open Problem Garden
(2) The Erdös-Hajnal Conjecture - A Survey (2016) by M. Chudnovsky
(3) Ramsey-type theorems (1989) by P. Erdős, A. Hajnal
(4) A Ramsey-type theorem for bipartite graphs (2000) by P. Erdős, A. Hajnal, J. Pach

Large cliques and independent sets

All graphs

For all sufficiently large n :

- every n-vertex graph G has either a clique or independent set of size $\frac{\log n}{2 \log 2}$;
- there exists an n-vertex graph G not containing a clique or independent set of size $\frac{2 \log n}{\log 2}$.

Large cliques and independent sets

All graphs

For all sufficiently large n :

- every n-vertex graph G has either a clique or independent set of size $\frac{\log n}{2 \log 2}$;
- there exists an n-vertex graph G not containing a clique or independent set of size $\frac{2 \log n}{\log 2}$.

H-free graphs (Erdős, Hajnal 1989)

For every graph H, there exists a constant $c(H)>0$ s.t. every H-free graph G with n vertices has either a clique or independent set of size at least $e^{c(H) \sqrt{\log n}}$.

Large cliques and independent sets

All graphs

For all sufficiently large n :

- every n-vertex graph G has either a clique or independent set of size $\frac{\log n}{2 \log 2}$;
- there exists an n-vertex graph G not containing a clique or independent set of size $\frac{2 \log n}{\log 2}$.

H-free graphs (Erdős, Hajnal 1989)

For every graph H, there exists a constant $c(H)>0$ s.t. every H-free graph G with n vertices has either a clique or independent set of size at least $e^{c(H) \sqrt{\log n}}$.

The Erdős-Hajnal conjecture (1989)

For every graph H, there exists a constant $\delta(H)>0$ s.t. every H-free graph G with n vertices has either a clique or independent set of size at least $n^{\delta(H)}$.

Notation

Definitions

- $G^{c}=$ complement of graph G
- $\omega(G)=$ the maximum size of a clique in G
- $\alpha(G)=$ the maximum size of an independent set in G
- $\chi(G)=$ the chromatic number of G

Notation

Definitions

- $G^{c}=$ complement of graph G
- $\omega(G)=$ the maximum size of a clique in G
- $\alpha(G)=$ the maximum size of an independent set in G
- $\chi(G)=$ the chromatic number of G

The Erdós-Hajnal conjecture

For every graph H, there exists a constant $\delta(H)>0$ s.t. every H-free graph G with n vertices has $\omega(G) \geq n^{\delta(H)}$ or $\alpha(G) \geq n^{\delta(H)}$.

Perfect graphs

Perfect graph

Graph G is perfect iff $\omega(H)=\chi(H)$ for every induced subgraph H of G.

Perfect graphs

Perfect graph

Graph G is perfect iff $\omega(H)=\chi(H)$ for every induced subgraph H of G.

Strong Perfect Graph Theorem (Chudnovsky et al. 2006)

Graph G is perfect iff no induced subgraph of G or G^{c} is an odd cycle of length at least 5 .

Perfect graphs

Source: Wikipedia

Perfect graphs

$$
|V(G)| \leq \chi(G) \alpha(G)
$$

Source: Wikipedia

Perfect graphs

$$
|V(G)| \leq \chi(G) \alpha(G)=\omega(G) \alpha(G)
$$

Source: Wikipedia

Perfect graphs

$$
\begin{gathered}
|V(G)| \leq \chi(G) \alpha(G)=\omega(G) \alpha(G) \\
\Longrightarrow \\
\omega(G) \geq \sqrt{|V(G)|} \text { or } \alpha(G) \geq \sqrt{|V(G)|}
\end{gathered}
$$

Source: Wikipedia

Perfect graphs

Theorem

If G is a perfect graph with n vertices, then $\omega(G) \geq \sqrt{n}$ or $\alpha(G) \geq \sqrt{n}$.

Perfect graphs

Theorem

If G is a perfect graph with n vertices, then $\omega(G) \geq \sqrt{n}$ or $\alpha(G) \geq \sqrt{n}$.

Conjecture equivalent to Erdős-Hajnal

For every graph H, there exists a constant $\psi(H)>0$ s.t. every H-free graph G with n vertices has a perfect induced subgraph with at least $n^{\psi(H)}$ vertices.

Partial results

The Erdós-Hajnal property

Graph H has the Erdós-Hajnal property if and only if there exists a constant $\delta(H)>0$ s.t. every H-free graph G with n vertices has $\omega(G) \geq n^{\delta(H)}$ or $\alpha(G) \geq n^{\delta(H)}$.

Partial results

The Erdós-Hajnal property

Graph H has the Erdös-Hajnal property if and only if there exists a constant $\delta(H)>0$ s.t. every H-free graph G with n vertices has $\omega(G) \geq n^{\delta(H)}$ or $\alpha(G) \geq n^{\delta(H)}$.

The Erdös-Hajnal conjecture

Every graph H has the Erdös-Hajnal property.

Partial results

Graphs known to have the Erdős-Hajnal property

- complete graphs and their complements
- all graphs with at most 4 vertices
- graphs formed by "substitution" operation (Alon, Pach, Solymosi 2001)
- the bull graph (Chudnovsky, Safra 2008)

Partial results

Graphs known to have the Erdős-Hajnal property

- complete graphs and their complements
- all graphs with at most 4 vertices
- graphs formed by "substitution" operation (Alon, Pach, Solymosi 2001)
- the bull graph (Chudnovsky, Safra 2008)

Open question

Is the Erdős-Hajnal conjecture true when $H \cong C_{5}$?

Complete graphs and their complements

Ramsey numbers

- $R(n, m)$ is the minimum k s.t. every graph G with k vertices has $\omega(G) \geq n$ or $\alpha(G) \geq m$
- $R(n, m) \leq\binom{ n+m-2}{n-1}$

Complete graphs and their complements

Ramsey numbers

- $R(n, m)$ is the minimum k s.t. every graph G with k vertices has $\omega(G) \geq n$ or $\alpha(G) \geq m$
- $R(n, m) \leq\binom{ n+m-2}{n-1}$

Forbidden K_{n} graph

- A K_{n}-free graph on $f_{n}(m)=R(n, m)$ vertices has an independent set of size m
- Function $f_{n}(x)$ grows polynomially
- $\alpha(G)$ grows polynomially

Small graphs

Forbidden graphs with 3 vertices

Small graphs

Forbidden graphs with 3 vertices

- K_{3} is a clique

Small graphs

Forbidden graphs with 3 vertices

- K_{3} is a clique
- P_{3}-free graph is a disjoint set of cliques, so $\omega(G) \geq \sqrt{|V(G)|}$ or $\alpha(G) \geq \sqrt{|V(G)|}$

Small graphs

Forbidden graphs with 3 vertices

- K_{3} is a clique
- P_{3}-free graph is a disjoint set of cliques, so $\omega(G) \geq \sqrt{|V(G)|}$ or $\alpha(G) \geq \sqrt{|V(G)|}$
- The remaining 3-vertex graphs are complements of K_{3} and P_{3}

Substitution

Substitution

Substitution

Substitution

Substitution operation

Given graphs H_{1} and H_{2}, on disjoint vertex sets, each with at least two vertices, and $v \in V\left(H_{1}\right)$, we say that H is obtained from H_{1} by subtituting H_{2} for v if:

- $V(H)=\left(V\left(H_{1}\right) \cup V\left(H_{2}\right)\right) \backslash\{v\}$
- $H\left[V\left(H_{2}\right)\right]=H_{2}$
- $H\left[V\left(H_{1}\right) \backslash\{v\}\right]=H_{1} \backslash v$
- for $u \in V\left(H_{1}\right), w \in V\left(H_{2}\right): u w \in E(H) \Longleftrightarrow u v \in E\left(H_{1}\right)$

Substitution

Substitution operation

Given graphs H_{1} and H_{2}, on disjoint vertex sets, each with at least two vertices, and $v \in V\left(H_{1}\right)$, we say that H is obtained from H_{1} by subtituting H_{2} for v if:

- $V(H)=\left(V\left(H_{1}\right) \cup V\left(H_{2}\right)\right) \backslash\{v\}$
- $H\left[V\left(H_{2}\right)\right]=H_{2}$
- $H\left[V\left(H_{1}\right) \backslash\{v\}\right]=H_{1} \backslash v$
- for $u \in V\left(H_{1}\right), w \in V\left(H_{2}\right): u w \in E(H) \Longleftrightarrow u v \in E\left(H_{1}\right)$

Prime graph

A graph is prime if it cannot be obtained from smaller graphs by substitution.

Substitution

Theorem (Alon, Pach, Solymosi 2001)

If H_{1} and H_{2} are graphs with the Erdős-Hajnal property, and H is obtained from H_{1} and H_{2} by subtitution, then H has the Erdős-Hajnal property.

Theorem (Alon, Pach, Solymosi 2001)

If H_{1} and H_{2} are graphs with the Erdős-Hajnal property, and H is obtained from H_{1} and H_{2} by subtitution, then H has the Erdős-Hajnal property.

Proof idea

- Let G be an H-free graph with n vertices without "large" cliques and independent sets
- Every induced subgraph of G with n^{ε} vertices contains an induced copy of H_{1} and H_{2}
- By counting, some copy of $H_{1} \backslash v$ can be extended to H_{1} in at least n^{ε} ways
- There is H_{2} among possible extensions, so G is not H-free

Small graphs

Forbidden graphs with 4 vertices

- We only need to consider prime graphs
- There is only one 4-vertex prime graph: P_{4}
- P_{4}-free graphs are perfect, so P_{4} has the Erdős-Hajnal property

Small graphs

Prime graphs with 5 vertices

- cycle C_{5} - open...
- path P_{5} - open...
- complement of P_{5} - open...
- the bull graph - solved (Chudnovsky, Safra 2008)

Small graphs

Prime graphs with 5 vertices

- cycle C_{5} - open...
- path P_{5} - open...
- complement of P_{5} - open...
- the bull graph - solved (Chudnovsky, Safra 2008)

Theorem (Chudnovsky, Safra 2008)

Every bull-free graph G with n vertices has $\omega(G) \geq n^{1 / 4}$ or $\alpha(G) \geq n^{1 / 4}$.

A weaker conjecture

Conjecture

For every graph H, there exists a constant $\epsilon(H)>0$ s.t. every $\left\{H, H^{c}\right\}$-free graph G with n vertices has either a clique or independent set of size at least $n^{\epsilon(H)}$.

A weaker conjecture

Conjecture

For every graph H, there exists a constant $\epsilon(H)>0$ s.t. every $\left\{H, H^{c}\right\}$-free graph G with n vertices has either a clique or independent set of size at least $n^{\epsilon(H)}$.

History of solved cases of H

- 5-edge path (Chudnovsky, Seymour 2013)
- all paths (Bousquet, Lagoutte, Thomassé 2014)
- hooks (Bousquet, Lagoutte, Thomassé 2014)
- caterpillars (Liebenau, Pilipczuk 2017)
- caterpillar subdivisions (Liebenau, Pilipczuk, Seymour, Spirkl 2018)

Other classes of graphs

Polynomially bounded $\max (\omega(G), \alpha(G))$

- string graphs (Tomon 2020)
- graphs with no induced "holes with hats" (Chudnovsky, Seymour 2020)

Bipartite variant

Definitions

Let $A, B \subseteq V(G)$ be disjoint sets of vertices.

- A is complete to B iff every vertex of A is adjacent to every vertex of B
- A is anticomplete to B iff every vertex of A is non-adjacent to every vertex of B

Bipartite variant

Definitions

Let $A, B \subseteq V(G)$ be disjoint sets of vertices.

- A is complete to B iff every vertex of A is adjacent to every vertex of B
- A is anticomplete to B iff every vertex of A is non-adjacent to every vertex of B

Theorem (Erdős, Hajnal, Pach 2000)

For every graph H, there exists a constant $\delta(H)>0$ s.t. for every H-free graph G with n vertices there exists two disjoint sets $A, B \subseteq V(H)$ with the following properties:

- $|A|,|B| \geq n^{\delta(H)}$, and
- either A is complete to B, or A is anticomplete to B.

Bipartite variant - proof idea

Lemma

Let G be a k-partite graph with vertex classes V_{1}, \ldots, V_{k}, s.t. $\left|V_{i}\right|=t^{k-1}$ for $t, k \geq 2$. One of the following is holds:
(1) There is $i \neq j$ s.t. V_{i} and V_{j} contain t-element subsets anticomplete to each other
(2) G contains a k-vertex clique

Bipartite variant - proof idea

Lemma

Let G be a k-partite graph with vertex classes V_{1}, \ldots, V_{k}, s.t. $\left|V_{i}\right|=t^{k-1}$ for $t, k \geq 2$. One of the following is holds:
(1) There is $i \neq j$ s.t. V_{i} and V_{j} contain t-element subsets anticomplete to each other
(2) G contains a k-vertex clique

- Suppose that (1) doesn't hold.

Bipartite variant - proof idea

Lemma

Let G be a k-partite graph with vertex classes V_{1}, \ldots, V_{k}, s.t. $\left|V_{i}\right|=t^{k-1}$ for $t, k \geq 2$. One of the following is holds:
(1) There is $i \neq j$ s.t. V_{i} and V_{j} contain t-element subsets anticomplete to each other
(2) G contains a k-vertex clique

- Suppose that (1) doesn't hold.
- There exists a vertex $v_{1} \in V_{1}$ with at least t^{k-2} neighbours in each $V_{i}, i \geq 2$.

Bipartite variant - proof idea

Lemma

Let G be a k-partite graph with vertex classes V_{1}, \ldots, V_{k}, s.t. $\left|V_{i}\right|=t^{k-1}$ for $t, k \geq 2$. One of the following is holds:
(1) There is $i \neq j$ s.t. V_{i} and V_{j} contain t-element subsets anticomplete to each other
(2) G contains a k-vertex clique

- Suppose that (1) doesn't hold.
- There exists a vertex $v_{1} \in V_{1}$ with at least t^{k-2} neighbours in each $V_{i}, i \geq 2$.
- We reduce the problem to $k-1$ classes with t^{k-2} vertices each.

Bipartite variant - proof idea

- Suppose, that for every $v \in V_{1}, v$ has at most $t^{k-2}-1$ neighbours in $V_{i(v)}$ for $i(v) \neq 1$.

Bipartite variant - proof idea

- Suppose, that for every $v \in V_{1}, v$ has at most $t^{k-2}-1$ neighbours in $V_{i(v)}$ for $i(v) \neq 1$.
- Since $t^{k-1} /(k-1) \geq t$, we can find $i \neq 1$ and t-element subset $V_{1}^{\prime} \subseteq V_{1}$, s.t. $i(v)=i$.

Bipartite variant - proof idea

- Suppose, that for every $v \in V_{1}, v$ has at most $t^{k-2}-1$ neighbours in $V_{i(v)}$ for $i(v) \neq 1$. - Since $t^{k-1} /(k-1) \geq t$, we can find $i \neq 1$ and t-element subset $V_{1}^{\prime} \subseteq V_{1}$, s.t. $i(v)=i$.
- Let V_{i}^{\prime} denote the set of vertices not connected to any element in V_{1}^{\prime}.

Bipartite variant - proof idea

- Suppose, that for every $v \in V_{1}, v$ has at most $t^{k-2}-1$ neighbours in $V_{i(v)}$ for $i(v) \neq 1$.
- Since $t^{k-1} /(k-1) \geq t$, we can find $i \neq 1$ and t-element subset $V_{1}^{\prime} \subseteq V_{1}$, s.t. $i(v)=i$.
- Let V_{i}^{\prime} denote the set of vertices not connected to any element in V_{1}^{\prime}.
- We have $\left|V_{i}^{\prime}\right| \geq\left|V_{i}\right|-t\left(t^{k-2}-1\right)=t$, and V_{1}^{\prime} is anticomplete to V_{i}^{\prime}.

Bipartite variant - stronger version

Theorem (Fox, Sudakov 2010)

For every graph H, there exists a constant $\delta(H)>0$ s.t. for every H-free graph G with n vertices and $\omega(G)<n^{\delta(H)}$, there exists two disjoint sets $A, B \subseteq V(H)$ with the following properties:

- $|A|,|B| \geq n^{\delta(H)}$, and
- A is anticomplete to B.

Asymptotic result

Theorem (Loebl et al. 2010)

Let \mathcal{F}_{H}^{n} be a class of all H-free graphs on n vertices.
Let $\mathcal{Q}_{H}^{n, \epsilon}$ be a subclass of \mathcal{F}_{H}^{n} consisting of graphs with $\omega(G) \geq n^{\epsilon}$ or $\alpha(G) \geq n^{\epsilon}$.
For every graph H, there exists a constant $\epsilon(H)>0$ s.t. $\frac{\left|\mathcal{Q}_{H}^{n, \epsilon(H)}\right|}{\left|\mathcal{F}_{H}^{n}\right|} \rightarrow 1$ as $n \rightarrow \infty$.

Tournament variant

Definitions

- $\alpha(T)=$ the maximum size of an acyclic subtournament of T
- Tournament T is S - free iff no subtournament of T is isomorphic to S

Conjecture equivalent to Erdős-Hajnal (Alon, Pach, Solymosi 2001)
For every tournament S, there exists a constant $\delta(S)>0$ s.t. every S-free tournament T with n vertices satisfies $\alpha(T) \geq n^{\delta(S)}$.

