The Erdős-Hajnal Conjecture

Krzysztof Potępa

Theoretical Computer Science

November 26, 2020

- Open Problem Garden
- The Erdös-Hajnal Conjecture A Survey (2016) by M. Chudnovsky
- Samsey-type theorems (1989) by P. Erdős, A. Hajnal
- A Ramsey-type theorem for bipartite graphs (2000) by P. Erdős, A. Hajnal, J. Pach

All graphs

For all sufficiently large n:

- every *n*-vertex graph G has either a clique or independent set of size $\frac{\log n}{2\log 2}$;
- there exists an *n*-vertex graph G not containing a clique or independent set of size $\frac{2 \log n}{\log 2}$

All graphs

For all sufficiently large n:

- every *n*-vertex graph G has either a clique or independent set of size $\frac{\log n}{2\log 2}$;
- there exists an *n*-vertex graph G not containing a clique or independent set of size $\frac{2 \log n}{\log 2}$

H-free graphs (Erdős, Hajnal 1989)

For every graph H, there exists a constant c(H) > 0 s.t. every H-free graph G with n vertices has either a clique or independent set of size at least $e^{c(H)\sqrt{\log n}}$.

All graphs

For all sufficiently large n:

- every *n*-vertex graph G has either a clique or independent set of size $\frac{\log n}{2\log 2}$;
- there exists an *n*-vertex graph G not containing a clique or independent set of size $\frac{2 \log n}{\log 2}$

H-free graphs (Erdős, Hajnal 1989)

For every graph *H*, there exists a constant c(H) > 0 s.t. every *H*-free graph *G* with *n* vertices has either a clique or independent set of size at least $e^{c(H)\sqrt{\log n}}$.

The Erdős-Hajnal conjecture (1989)

For every graph H, there exists a constant $\delta(H) > 0$ s.t. every H-free graph G with n vertices has either a clique or independent set of size at least $n^{\delta(H)}$.

Definitions

- G^c = complement of graph G
- $\omega(G)$ = the maximum size of a clique in G
- $\alpha(G)$ = the maximum size of an independent set in G
- $\chi(G)$ = the chromatic number of G

Definitions

- G^c = complement of graph G
- $\omega(G)$ = the maximum size of a clique in G
- $\alpha(G)$ = the maximum size of an independent set in G
- $\chi(G)$ = the chromatic number of G

The Erdős-Hajnal conjecture

For every graph H, there exists a constant $\delta(H) > 0$ s.t. every H-free graph G with n vertices has $\omega(G) \ge n^{\delta(H)}$ or $\alpha(G) \ge n^{\delta(H)}$.

Perfect graph

Graph G is perfect iff $\omega(H) = \chi(H)$ for every induced subgraph H of G.

Perfect graph

Graph G is perfect iff $\omega(H) = \chi(H)$ for every induced subgraph H of G.

Strong Perfect Graph Theorem (Chudnovsky et al. 2006)

Graph G is perfect iff no induced subgraph of G or G^c is an odd cycle of length at least 5.

Source: Wikipedia

Krzysztof Potępa (TCS)

Perfect graphs

$|V(G)| \leq \chi(G)\alpha(G)$

Source: Wikipedia

Krzysztof Potępa (TCS)

 $|V(G)| \leq \chi(G)\alpha(G) = \omega(G)\alpha(G)$

Source: Wikipedia

$$|V(G)| \le \chi(G)\alpha(G) = \omega(G)\alpha(G)$$
$$\implies$$
$$\omega(G) \ge \sqrt{|V(G)|} \text{ or } \alpha(G) \ge \sqrt{|V(G)|}$$

Source: Wikipedia

Theorem

If G is a perfect graph with n vertices, then $\omega(G) \ge \sqrt{n}$ or $\alpha(G) \ge \sqrt{n}$.

Theorem

If G is a perfect graph with n vertices, then $\omega(G) \ge \sqrt{n}$ or $\alpha(G) \ge \sqrt{n}$.

Conjecture equivalent to Erdős-Hajnal

For every graph H, there exists a constant $\psi(H) > 0$ s.t. every H-free graph G with n vertices has a perfect induced subgraph with at least $n^{\psi(H)}$ vertices.

The Erdős-Hajnal property

Graph *H* has the Erdős-Hajnal property if and only if there exists a constant $\delta(H) > 0$ s.t. every *H*-free graph *G* with *n* vertices has $\omega(G) \ge n^{\delta(H)}$ or $\alpha(G) \ge n^{\delta(H)}$.

The Erdős-Hajnal property

Graph *H* has the Erdős-Hajnal property if and only if there exists a constant $\delta(H) > 0$ s.t. every *H*-free graph *G* with *n* vertices has $\omega(G) \ge n^{\delta(H)}$ or $\alpha(G) \ge n^{\delta(H)}$.

The Erdős-Hajnal conjecture

Every graph H has the Erdős-Hajnal property.

Graphs known to have the Erdős-Hajnal property

- complete graphs and their complements
- all graphs with at most 4 vertices
- graphs formed by "substitution" operation (Alon, Pach, Solymosi 2001)
- the bull graph (Chudnovsky, Safra 2008)

Graphs known to have the Erdős-Hajnal property

- complete graphs and their complements
- all graphs with at most 4 vertices
- graphs formed by "substitution" operation (Alon, Pach, Solymosi 2001)
- the bull graph (Chudnovsky, Safra 2008)

Open question

Is the Erdős-Hajnal conjecture true when $H \cong C_5$?

Ramsey numbers

- R(n,m) is the minimum k s.t. every graph G with k vertices has $\omega(G) \ge n$ or $\alpha(G) \ge m$
- $R(n,m) \leq \binom{n+m-2}{n-1}$

Ramsey numbers

- R(n,m) is the minimum k s.t. every graph G with k vertices has $\omega(G) \ge n$ or $\alpha(G) \ge m$
- $R(n,m) \le \binom{n+m-2}{n-1}$

Forbidden K_n graph

- A K_n -free graph on $f_n(m) = R(n, m)$ vertices has an independent set of size m
- Function $f_n(x)$ grows polynomially
- $\alpha(G)$ grows polynomially

• K_3 is a clique

- K_3 is a clique
- P_3 -free graph is a disjoint set of cliques, so $\omega(G) \ge \sqrt{|V(G)|}$ or $\alpha(G) \ge \sqrt{|V(G)|}$

- K₃ is a clique
- P_3 -free graph is a disjoint set of cliques, so $\omega(G) \ge \sqrt{|V(G)|}$ or $\alpha(G) \ge \sqrt{|V(G)|}$
- The remaining 3-vertex graphs are complements of K_3 and P_3

Substitution operation

Given graphs H_1 and H_2 , on disjoint vertex sets, each with at least two vertices, and $v \in V(H_1)$, we say that H is obtained from H_1 by subtituting H_2 for v if:

- $V(H) = (V(H_1) \cup V(H_2)) \setminus \{v\}$
- $H[V(H_2)] = H_2$
- $H[V(H_1) \setminus \{v\}] = H_1 \setminus v$
- for $u \in V(H_1), w \in V(H_2)$: $uw \in E(H) \iff uv \in E(H_1)$

Substitution operation

Given graphs H_1 and H_2 , on disjoint vertex sets, each with at least two vertices, and $v \in V(H_1)$, we say that H is obtained from H_1 by subtituting H_2 for v if:

- $V(H) = (V(H_1) \cup V(H_2)) \setminus \{v\}$
- $H[V(H_2)] = H_2$
- $H[V(H_1) \setminus \{v\}] = H_1 \setminus v$
- for $u \in V(H_1), w \in V(H_2)$: $uw \in E(H) \iff uv \in E(H_1)$

Prime graph

A graph is prime if it cannot be obtained from smaller graphs by substitution.

Theorem (Alon, Pach, Solymosi 2001)

If H_1 and H_2 are graphs with the Erdős-Hajnal property, and H is obtained from H_1 and H_2 by subtitution, then H has the Erdős-Hajnal property.

Theorem (Alon, Pach, Solymosi 2001)

If H_1 and H_2 are graphs with the Erdős-Hajnal property, and H is obtained from H_1 and H_2 by subtitution, then H has the Erdős-Hajnal property.

Proof idea

- Let G be an H-free graph with n vertices without "large" cliques and independent sets
- Every induced subgraph of G with n^{ε} vertices contains an induced copy of H_1 and H_2
- By counting, some copy of $H_1 \setminus v$ can be extended to H_1 in at least n^{ε} ways
- There is H_2 among possible extensions, so G is not H-free

- We only need to consider prime graphs
- There is only one 4-vertex prime graph: P_4
- P_4 -free graphs are perfect, so P_4 has the Erdős-Hajnal property

Small graphs

Prime graphs with 5 vertices

- cycle C_5 open...
- path P₅ open...
- complement of P_5 open...
- the bull graph solved (Chudnovsky, Safra 2008)

Small graphs

Prime graphs with 5 vertices

- cycle C_5 open...
- path P₅ open...
- complement of P₅ open...
- the bull graph solved (Chudnovsky, Safra 2008)

Theorem (Chudnovsky, Safra 2008)

Every bull-free graph G with n vertices has $\omega(G) \ge n^{1/4}$ or $\alpha(G) \ge n^{1/4}$.

Conjecture

For every graph *H*, there exists a constant $\epsilon(H) > 0$ s.t. every $\{H, H^c\}$ -free graph *G* with *n* vertices has either a clique or independent set of size at least $n^{\epsilon(H)}$.

Conjecture

For every graph *H*, there exists a constant $\epsilon(H) > 0$ s.t. every $\{H, H^c\}$ -free graph *G* with *n* vertices has either a clique or independent set of size at least $n^{\epsilon(H)}$.

History of solved cases of H

- 5-edge path (Chudnovsky, Seymour 2013)
- all paths (Bousquet, Lagoutte, Thomassé 2014)
- hooks (Bousquet, Lagoutte, Thomassé 2014)
- caterpillars (Liebenau, Pilipczuk 2017)
- caterpillar subdivisions (Liebenau, Pilipczuk, Seymour, Spirkl 2018)

Polynomially bounded $max(\omega(G), \alpha(G))$

- string graphs (Tomon 2020)
- graphs with no induced "holes with hats" (Chudnovsky, Seymour 2020)

Definitions

Let $A, B \subseteq V(G)$ be disjoint sets of vertices.

- A is complete to B iff every vertex of A is adjacent to every vertex of B
- A is anticomplete to B iff every vertex of A is non-adjacent to every vertex of B

Definitions

Let $A, B \subseteq V(G)$ be disjoint sets of vertices.

- A is complete to B iff every vertex of A is adjacent to every vertex of B
- A is anticomplete to B iff every vertex of A is non-adjacent to every vertex of B

Theorem (Erdős, Hajnal, Pach 2000)

For every graph *H*, there exists a constant $\delta(H) > 0$ s.t. for every *H*-free graph *G* with *n* vertices there exists two disjoint sets $A, B \subseteq V(H)$ with the following properties:

- $|A|, |B| \ge n^{\delta(H)}$, and
- either A is complete to B, or A is anticomplete to B.

- **1** There is $i \neq j$ s.t. V_i and V_j contain *t*-element subsets anticomplete to each other
- **2** G contains a k-vertex clique

- There is $i \neq j$ s.t. V_i and V_j contain *t*-element subsets anticomplete to each other
- **2** G contains a k-vertex clique
- Suppose that (1) doesn't hold.

- There is $i \neq j$ s.t. V_i and V_j contain *t*-element subsets anticomplete to each other
- **2** G contains a k-vertex clique
- Suppose that (1) doesn't hold.
- There exists a vertex $v_1 \in V_1$ with at least t^{k-2} neighbours in each $V_i, i \geq 2$.

- There is $i \neq j$ s.t. V_i and V_j contain *t*-element subsets anticomplete to each other
- **2** G contains a k-vertex clique
- Suppose that (1) doesn't hold.
- There exists a vertex $v_1 \in V_1$ with at least t^{k-2} neighbours in each $V_i, i \geq 2$.
- We reduce the problem to k-1 classes with t^{k-2} vertices each.

• Suppose, that for every $v \in V_1$, v has at most $t^{k-2} - 1$ neighbours in $V_{i(v)}$ for $i(v) \neq 1$.

- Suppose, that for every $v \in V_1$, v has at most $t^{k-2} 1$ neighbours in $V_{i(v)}$ for $i(v) \neq 1$.
- Since $t^{k-1}/(k-1) \ge t$, we can find $i \ne 1$ and t-element subset $V'_1 \subseteq V_1$, s.t. i(v) = i.

- Suppose, that for every $v \in V_1$, v has at most $t^{k-2} 1$ neighbours in $V_{i(v)}$ for $i(v) \neq 1$.
- Since $t^{k-1}/(k-1) \ge t$, we can find $i \ne 1$ and t-element subset $V'_1 \subseteq V_1$, s.t. i(v) = i.
- Let V'_i denote the set of vertices **not connected** to any element in V'_1 .

- Suppose, that for every $v \in V_1$, v has at most $t^{k-2} 1$ neighbours in $V_{i(v)}$ for $i(v) \neq 1$.
- Since $t^{k-1}/(k-1) \ge t$, we can find $i \ne 1$ and t-element subset $V'_1 \subseteq V_1$, s.t. i(v) = i.
- Let V'_i denote the set of vertices **not connected** to any element in V'_1 .
- We have $|V'_i| \ge |V_i| t(t^{k-2} 1) = t$, and V'_1 is anticomplete to V'_i .

Theorem (Fox, Sudakov 2010)

For every graph *H*, there exists a constant $\delta(H) > 0$ s.t. for every *H*-free graph *G* with *n* vertices and $\omega(G) < n^{\delta(H)}$, there exists two disjoint sets $A, B \subseteq V(H)$ with the following properties:

- $|A|, |B| \ge n^{\delta(H)}$, and
- A is anticomplete to B.

Theorem (Loebl et al. 2010)

Let \mathcal{F}_{H}^{n} be a class of all *H*-free graphs on *n* vertices. Let $\mathcal{Q}_{H}^{n,\epsilon}$ be a subclass of \mathcal{F}_{H}^{n} consisting of graphs with $\omega(G) \ge n^{\epsilon}$ or $\alpha(G) \ge n^{\epsilon}$. For every graph *H*, there exists a constant $\epsilon(H) > 0$ s.t. $\frac{|\mathcal{Q}_{H}^{n,\epsilon(H)}|}{|\mathcal{F}_{H}^{n}|} \to 1$ as $n \to \infty$.

Definitions

- $\alpha(T)$ = the maximum size of an acyclic subtournament of T
- Tournament T is S free iff no subtournament of T is isomorphic to S

Conjecture equivalent to Erdős-Hajnal (Alon, Pach, Solymosi 2001)

For every tournament S, there exists a constant $\delta(S) > 0$ s.t. every S-free tournament T with n vertices satisfies $\alpha(T) \ge n^{\delta(S)}$.