(m, n)-cycle covers conjectures

Marcin Serwin

Uniwersytet Jagielloński

М.	Se	rwin	(UJ
			· · · · ·

2020-11-26 1 / 20

An (m, n)-cycle-cover of G is a list L consisting of m cycles so that every edge of G is contained in exactly n of these cycles.

An (m, n)-cycle-cover of G is a list L consisting of m cycles so that every edge of G is contained in exactly n of these cycles.

Note that since L is a list, the same cycle may be repeated several times.

An (m, n)-cycle-cover of G is a list L consisting of m cycles so that every edge of G is contained in exactly n of these cycles.

Note that since L is a list, the same cycle may be repeated several times.

Alternative definition

An (m, n)-cycle-cover of G is a multicoloring $c \colon E \mapsto {\binom{[m]}{[n]}}$ such that every subgraph induced by a color is a cycle.

An (m, n)-cycle-cover of G is a list L consisting of m cycles so that every edge of G is contained in exactly n of these cycles.

Note that since L is a list, the same cycle may be repeated several times.

Alternative definition

An (m, n)-cycle-cover of G is a multicoloring $c \colon E \mapsto {\binom{[m]}{[n]}}$ such that every subgraph induced by a color is a cycle.

Throughout this presentation we assume that $n \leq m$.

Figure: (6,2)-cycle cover of Petersen graph.

Author: David Eppstein, picture is in public domain

M. Serwin (UJ)

Given positive integers n, m a natural question would be to ask what family of graphs have (m, n)-cycle-covers.

Image: A math a math

- Given positive integers n, m a natural question would be to ask what family of graphs have (m, n)-cycle-covers.
- For example, it is easy to answer this question whenever n = m, as such graphs must always be eulerian.

As we've said before the characteristic is known for some values of (m, n).

2020-11-26 5 / 20

・ロト ・ 一下・ ・ ヨト ・

As we've said before the characteristic is known for some values of (m, n). One easy family of values to observe:

Odd n

Every graph that has (m, 2k + 1)-cycle-cover for positive integers m, k is Eulerian.

As we've said before the characteristic is known for some values of (m, n). One easy family of values to observe:

Odd n

Every graph that has (m, 2k + 1)-cycle-cover for positive integers m, k is Eulerian.

The widest possible family of graphs that can have (m, n)-cycle cover are bridgeless graphs.

Bridge

A *bridge* (*cut-edge*) of graph is an edge such that deleting it would increase the number of connected components.

The widest possible family of graphs that can have (m, n)-cycle cover are bridgeless graphs.

Bridge

A *bridge* (*cut-edge*) of graph is an edge such that deleting it would increase the number of connected components.

Are there positive integers m, n such that every bridgeless graph has (m, n)-cycle-cover?

Bermond, Jean-Claude

Graph is bridgeless if and only if it has (7, 4)-cycle-cover.

Bermond, Jean-Claude; Jackson, Bill; Jaeger, François *Shortest coverings of graphs with cycles.* J. Combin. Theory Ser. B 35 (1983), no. 3, 297–308.

Fan

Graph is bridgeless if and only if it has (10, 6)-cycle-cover.

Fan, Genghua Integer flows and cycle covers. J. Combin. Theory Ser. B 54 (1992), no. 1, 113-122.

The Berge-Fulkerson conjecture

If G is a bridgeless cubic graph, then there exist 6 perfect matchings M_1, \ldots, M_6 of G with the property that every edge of G is contained in exactly two of M_1, \ldots, M_6 .

The Berge-Fulkerson conjecture

If G is a bridgeless cubic graph, then there exist 6 perfect matchings M_1, \ldots, M_6 of G with the property that every edge of G is contained in exactly two of M_1, \ldots, M_6 .

By Jaeger this conjecture is equivalent to:

Fan

Graph is bridgeless if and only if it has (6, 4)-cycle-cover.

Jaeger, F. Flows and generalized coloring theorems in graphs. J. Combin. Theory Ser. B 26 (1979), no. 2, 205–216.

The Berge-Fulkerson conjecture

If G is a bridgeless cubic graph, then there exist 6 perfect matchings M_1, \ldots, M_6 of G with the property that every edge of G is contained in exactly two of M_1, \ldots, M_6 .

By Jaeger this conjecture is equivalent to:

Fan

Graph is bridgeless if and only if it has (6, 4)-cycle-cover.

Jaeger, F. Flows and generalized coloring theorems in graphs. J. Combin. Theory Ser. B 26 (1979), no. 2, 205–216.

This is one better than the theorem on the previous slide (the same for (7, 4)-cycle-covers).

Observation

If a graph G has both (m_1, n_1) -cycle-cover and (m_2, n_2) -cycle-cover then it has $(m_1 + m_2, n_1 + n_2)$ -cycle-cover.

▶ < 토 ▶ < 토

Observation

If a graph G has both (m_1, n_1) -cycle-cover and (m_2, n_2) -cycle-cover then it has $(m_1 + m_2, n_1 + n_2)$ -cycle-cover.

Two previous theorems stated that every bridgeless graph has (7, 4)- and (10, 6)-cycle cover.

Observation

If a graph G has both (m_1, n_1) -cycle-cover and (m_2, n_2) -cycle-cover then it has $(m_1 + m_2, n_1 + n_2)$ -cycle-cover.

Two previous theorems stated that every bridgeless graph has (7, 4)- and (10, 6)-cycle cover. Therefore we can conclude that:

Conclusion:

For each even $n \ge 4$ there exist *m* such that every bridgeless graph has (m, n)-cycle-covering.

Five cycle double cover conjecture

Graph is bridgeless if and only if it has (5, 2)-cycle-cover.

Five cycle double cover conjecture

Graph is bridgeless if and only if it has (5, 2)-cycle-cover.

Even weaker version of this theorem is still open

Cycle double cover conjecture

Graph is bridgeless if and only if it has $(\infty, 2)$ -cycle-cover.

While all Eulerian graphs are the most restrictive cycle covers, and the bridgeless graphs the least there are also instances of (m, n)-cycle covers which are true for non-trivial families of graphs.

While all Eulerian graphs are the most restrictive cycle covers, and the bridgeless graphs the least there are also instances of (m, n)-cycle covers which are true for non-trivial families of graphs.

First let us define a nowhere zero flow

Nowhere zero flow

A flow on a graph (V, E) is a function ϕ such that for each $v \in V$

e

$$\sum_{e \in \delta^+(\mathbf{v})} \phi(e) = \sum_{e \in \delta^-(\mathbf{v})} \phi(e),$$

where $\delta^+(v), \delta^-(v)$ denote the sets of edges respectively coming out of and into into v. A nowhere-zero flow is flow such that for every $e \in E \ \phi(e) \neq 0$. We also need to define a k-flow

k-flow

If k is an integer and $0 < |\phi(e)| < k$ then ϕ is a k-flow.

ъ

・ロト ・ 一下・ ・ ヨト

We also need to define a k-flow

k-flow

If k is an integer and $0 < |\phi(e)| < k$ then ϕ is a k-flow.

A theorem by Tutte states

Tutte

Graph has a nowhere-zero 4-flow if and only if graph has a (3, 2)-cycle-cover if and only if graph has a (4, 2)-cycle-cover.

Tutte, W. T. On the algebraic theory of graph colorings. J. Combinatorial Theory 1 (1966), 15-50.

Odd values of n omitted.

	m												
n		2	3	4	5	6	7	8	9	10	11		
	2	Eulerian	NZ 4-flow	NZ 4-flow	5CDC conj		open						
	4	-		Eulerian	5 post. sets	B-F conj	all						
	6	6 -				Eulerian	7 post. sets	?	?	а			

 $NZ \ k$ -flow = nowhere-zero k-flow - graph has flow that is nowhere zero and all edges have an integer flow between 0 and k

k post. sets = k postman sets - it is possible to partition the edges of G into k postman sets (Route inspection problem)

all = all eulerian graphs

Oriented cycle covers

Oriented cycle

An oriented cycle in directed graph (V, E) is a map $\phi : E \to \{-1, 0, 1\}$ such that for each $v \in V$, the sum of ϕ on the incoming edges is equal to the sum of ϕ on the outgoing edges.

Oriented cycle

An oriented cycle in directed graph (V, E) is a map $\phi : E \to \{-1, 0, 1\}$ such that for each $v \in V$, the sum of ϕ on the incoming edges is equal to the sum of ϕ on the outgoing edges.

(m, n)-oriented-cycle-cover

For an even integer n, a (m, n)-oriented-cycle-cover of a graph G is a list of m oriented cycles so that every edge of G appears as a forward edge n/2 times and a backward edge n/2 times.

Oriented cycle

An oriented cycle in directed graph (V, E) is a map $\phi : E \to \{-1, 0, 1\}$ such that for each $v \in V$, the sum of ϕ on the incoming edges is equal to the sum of ϕ on the outgoing edges.

(m, n)-oriented-cycle-cover

For an even integer n, a (m, n)-oriented-cycle-cover of a graph G is a list of m oriented cycles so that every edge of G appears as a forward edge n/2 times and a backward edge n/2 times.

Similarly to unoriented case there exists conjecture about (5,2) case:

Orientable five cycle double cover conjecture

Graph is bridgeless if and only if it has (5, 2)-oriented-cycle-cover.

Similarly to unoriented case there exists conjecture about (5,2) case:

Orientable five cycle double cover conjecture

Graph is bridgeless if and only if it has (5, 2)-oriented-cycle-cover.

And similarly even weaker conjecture is still open

Orientable five cycle double cover conjecture

Graph is bridgeless if and only if it has $(\infty, 2)$ -oriented-cycle-cover.

Connection with (m, n)-cycle covers

Every graph that has an (m, n)-cycle covers also has an (2m, 2n)-oriented-cycle covers.

Connection with (m, n)-cycle covers

Every graph that has an (m, n)-cycle covers also has an (2m, 2n)-oriented-cycle covers.

It is easy to see that if we take every cycle in (m, n)-cycle covers twice with opposite directions, then it is a valid (2m, 2n)-oriented-cycle covers.

Connection with (m, n)-cycle covers

Every graph that has an (m, n)-cycle covers also has an (2m, 2n)-oriented-cycle covers.

It is easy to see that if we take every cycle in (m, n)-cycle covers twice with opposite directions, then it is a valid (2m, 2n)-oriented-cycle covers.

Together with theorem about (7, 4)-cycle-cover for bridgeless graphs that gives us

Observation

Graph is bridgeless if and only if it has (14,8)-oriented-cycle-cover.

It has been shown by Matt DeVoss and Luis Goddyn that using previously proven Seymour's 6-flow theorem

NZ 6-flow Every bridgeless graph has a nowhere-zero 6-flow.

it can be proven that every bridgeless graph contains an (11, 6)-oriented-cycle-cover.

It has been shown by Matt DeVoss and Luis Goddyn that using previously proven Seymour's 6-flow theorem

NZ 6-flow

Every bridgeless graph has a nowhere-zero 6-flow.

it can be proven that every bridgeless graph contains an (11, 6)-oriented-cycle-cover. Together with an observation about linear combinations analogous to unoriented cycle covers we can easily observe that

Observation

For every even integer $n \ge 12$ there exists an m so that every bridgeless graph has an (m, n)-oriented-cycle-cover.

It has been shown by Matt DeVoss and Luis Goddyn that using previously proven Seymour's 6-flow theorem

NZ 6-flow

Every bridgeless graph has a nowhere-zero 6-flow.

it can be proven that every bridgeless graph contains an (11, 6)-oriented-cycle-cover. Together with an observation about linear combinations analogous to unoriented cycle covers we can easily observe that

Observation

For every even integer $n \ge 12$ there exists an m so that every bridgeless graph has an (m, n)-oriented-cycle-cover.

This question is still open for n = 2, 4, 10.

Conjectures for cases n = 2, 4:

O5CDC

Every bridgeless graph has a (5, 2)-oriented-cycle-cover.

O(8,4)

Every bridgeless graph has a (8, 4)-oriented-cycle-cover.

Odd values of n omitted.

		m									
n		2	3	4	5	6	7	8	9	10	11
	2	Eulerian	NZ 3-flow	NZ 4-flow	O5CDC conj	open					
	4	- Ei		Eulerian	?	?	?	O(8,4) conj	open		
	6	-				Eulerian	?	?	?	?	all

 $NZ \ k$ -flow = nowhere-zero k-flow - graph has flow that is nowhere zero and all edges have an integer flow between 0 and k

k post. sets = k postman sets - it is possible to partition the edges of G into k postman sets (Route inspection problem)

all = all eulerian graphs

Fin

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●