Double-critical graph conjecture

Wojciech Grabis

December 3, 2020

Double critical graph

Definition
 A connected simple graph G is called double-critical, if removing any pair of adjacent vertexes lowers the chromatic number by two.

Theorem

Every complete graph on n vertices is an n -chromatic double-critical graph.

Double critical graph conjecture

Conjecture (Erdös-Lovász Tihany)

For any graph G with $\chi(G)>\omega(G)$ and any two integers $a, b \geq 2$ with $a+b=\chi(G)+1$, there is a partition (A, B) of the vertex set $V(G)$ such that $\chi(G[A]) \geq a$ and $\chi(G[B]) \geq b$.

Double-critical graph conjecture is a special case of the above conjecture.
Conjecture (Double critical graph conjecture)
Complete graph K_{n} is the only n-chromatic double-critical graph.

Properties

Definition

A graph G is called vertex-critical, if $\chi(G-v)<\chi(G)$ for every vertex $v \in V(G)$.

Theorem

Every double-critical graph is also vertex-critical.

Lets take any edge $e=\{v, x\} \in V(G)$. G is double-critical so we can colour $G-\{v, x\}$ with $k-2$ colours. Then can add x to the graph, colour x with $k-1$, and we get a $k-1$ colouring for $G-\{v\}$.

$K_{k \leq 4}$

Theorem

For $k \leq 4$ double-critical conjecture holds.

Theorem (Stiebitz 1987)

The only double-critical graph with chromatic number 5 is the complete graph on 5 vertices.

Definition

For graph G, and $x \in V(G)$ We denote $N(x: G)$ as the set of vertices of G, which are adjacent to x.

Definition

For edge $e=\{x, y\} \in E(G)$ we denote $T(e: G)=N(x: G) \cap N(y: G)$.

K_{5}

Proposition

For all edges $e=\{x, y\} \in E(G)$ and for all 3-colourings c of $G-\{x, y\}$, $|c(T(e: G))|=3$. This implies, in particular, $|T(e: G)| \geq 3$ for all edges $e \in E(G)$.

Let $e=\{x, y\}$ be an edge of G , since G is double-critical $G-\{x, y\}$ is 3 -colourable with some coloring c. We can extend c to 5 -coloring h of G :

$$
h(z)= \begin{cases}4, & \text { if } z=x \\ 5, & \text { if } z=y \\ c(z), & \text { otherwise }\end{cases}
$$

And now because G is 5 -colourable there must exist some z_{i} that $h\left(N\left(z_{i}: G\right)\right)=\{1,2,3,4,5\}-\{i\}$.

K_{5}

Proposition

G contains a 4-clique.
Let $H_{1}, H_{2}, \ldots, H_{r}$ be a sequence of graphs of G such:

- H_{i} is a uniquely 3 -colourable graph with i vertices.
- H_{i} is a subgraph of H_{i+1}.
- There is no uniquely 3 -colourable subgraph of G with $r+1$ vertices containing H_{r}.
The idea of the proof is that if we take $X=V(G)-V\left(H_{r}\right)$, and two vertices u, v of $T(e: G)-T\left(e: H_{r}\right)$, and $x, y \in H_{r}$ we know that both $H_{r}+u$ and $H_{r}+v$ and 4-chromatic, so $X-\{u\}$ and $X-\{v\}$ are independent sets of G, but X cannot be independent set of G, because G is 5 - chromatic, so $\{x, y, u, v\}$ is a 4-clique of G .

Double-critical graph conjecture

Open problem 1

Double-critical graph conjecture remains open for $k \geq 6$.

Non-complete double-critical graphs

Lemma

If G is k-chromatic non-complete double critical graph with $k \geq 6$, then G does not contain a complete $(k-1)$-graph as a subgraph.

Results for 6-double critical graphs

Definition

A claw is a 4-vertex graph with one vertex of degree 3 and the others of degree 1. A graph is claw - free if it does not have a claw as an induced subgraph.

Theorem

Let G be a double-critical graph with $\chi(G)=6$. If G is claw-free then $G \cong K_{6}$

Claw-free graphs

Lemma

Let G be a 6 -double critical graph that is claw-free. If G is not a complete graph then for any $e=\{x, y\} \in E(G), 4 \leq|N(x: G) \cap N(y: G)| \leq 5$.

Lemma

Let G be a 6 -double-critical graph that is claw-free. If $|N(x: G) \cap N(y: G)|=4$ for some $\{x, y\} \in E(G)$, then $G \cong K_{6}$.

Lemma

Let G be 6-double-critical graph, and assume that G is claw-free. Suppose $|N(x: G) \cap N(y: G)| \geq 5$ for all $\{x, y\} \in E(G)$, then $G \cong K_{6}$.

Weaker conjecture

Conjecture

Every double-critical k-chromatic graph is contractible to the complete k-graph

Additional properties

Let G be a k-chromatic double-critical graph.

Theorem

For all edges $x y \in E(G)$ and (k-2) colourings of $G-x-y$ set of neighbours $N(x: G) \cap N(y: G)$ contains vertices of every colour class $i \in[k-2]$, and from that $|N(x: G) \cap N(y: G)| \geq k-2$ and $\{x, y\}$ is contained in at least $k-2$ triangles.

Proposition

For all vertices $x \in V(G)$, the minimum degree of the induced graph of neighbourhood of x in G is at least $k-2$.

Non-complete double critical graphs

Proposition

Suppose G is a non-complete double-critical k -chromatic graph with $k \geq 6$. Then no minimal separating set S of G can be partitioned into two disjoint sets A and B such that $G[A]$ and $G[B]$ are edge-empty and complete respectively.

Theorem

Every double-critical k-chromatic non-complete graph is 6-connected.

Non-complete double critical graphs

Proposition

For any vertex $x \in V(G)$, there exists a vertex $y \in N(x)$ such that the set $N(x: G) \backslash N(y: G)$ is not empty.

Proposition

Every vertex of G has at least $k+1$ neighbours.

Weaker conjecture - results

Theorem
 Every double-critical 6-chromatic graph G contains K_{6} as a minor.

Theorem

Every double-critical 7-chromatic graph G contains K_{7} as a minor.
Open problem 2
Problem of proving the weaker double-critical conjecture for $k \geq 8$ remains open.

Similar problems

Definition (Double-edge critical graph)

A connected simple graph G is called double-edge critical, if removing any pair of non-incident edges lowers the chromatic number by two.

Definition (Mixed-double critical)

A connected simple graph G is called mixed-double critical, if removing any vertex $x \in V(G)$ and any edge in the graph $G-\{x\}$ lowers the chromatic number by two.

Theorem

A graph G is k -chromatic double-edge critical (mixed-double critical) if and only if it is the complete k -graph

Bibliography

(1) K_{5} is the only double-critical 5-chromatic graph(1987) by Michael Stiebitz
(2) A note on the double-critical graph conjecture (2016) by Hao Huang and Alexander Yu
(3) Double-critical graphs and complete minors (2010) by Ken-ichi Kawarabayashi, Anders Sune Pedersen and Bjarne Toft

