From linear lambda terms to rooted trivalent maps

Mateusz Kaczmarek

Institute of Theoretical Computer Science Jagiellonian University

December 17, 2020

Mateusz Kaczmarek (TCS UJ) From linear lambda terms to rooted trivalent

< 47 ▶

э

Variables

x, y, z... represents free variables.

Variables

x, y, z... represents free variables.

Abstraction

 $\lambda x.M$ bounds every free occurrence of x in M.

Variables

x, y, z... represents free variables.

Abstraction

 $\lambda x.M$ bounds every free occurrence of x in M.

Application

(M N) is an application of N to M.

< (17) > < (17) > <

 $\lambda a.(\lambda b.a(\lambda c.(c(\lambda d.b)b))(a(\lambda e.(\lambda f.\lambda g.e)(\lambda h.((\lambda i.eh)e)(\lambda j.\lambda k.kj)))))$

< 17 > <

э

 $\lambda a.(\lambda b.a(\lambda c.(c(\lambda d.b)b))(a(\lambda e.(\lambda f.\lambda g.e)(\lambda h.((\lambda i.eh)e)(\lambda j.\lambda k.kj)))))$

 $\lambda a.(\lambda b.a(\lambda c.(c(\lambda d.b)b))(a(\lambda e.(\lambda f.\lambda g.e)(\lambda h.((\lambda i.eh)e)(\lambda j.\lambda k.kj)))))$

We can even go further and omit leaves.

We can even go further and omit leaves.

Which corresponds to:

$$\lambda x.(\lambda y(x(\lambda z(y z))))$$

Closed lambda term

Term that contains no free variables.

Closed lambda term

Term that contains no free variables.

Linear lambda term

Bound variables occur once and only once i.e. each unary node is connected to exactly one leaf and vice versa.

Closed lambda term

Term that contains no free variables.

Linear lambda term

Bound variables occur once and only once i.e. each unary node is connected to exactly one leaf and vice versa.

Planar lambda term

Is linear lambda term and its tree can be drawn without edge-crossing.

Definition

Map is embedding $i : G \to X$ of an graph G into surface X: that is representation of vertices $v \in G$ by points $i(v) \in X$ and edges v_1, v_2 by arcs $i(v_1), i(v_2)$ such that no two arcs cross.

Definition

Map is embedding $i : G \to X$ of an graph G into surface X: that is representation of vertices $v \in G$ by points $i(v) \in X$ and edges v_1, v_2 by arcs $i(v_1), i(v_2)$ such that no two arcs cross.

Trivalent map \approx every point has three arcs incident

Definition

Map is embedding $i : G \to X$ of an graph G into surface X: that is representation of vertices $v \in G$ by points $i(v) \in X$ and edges v_1, v_2 by arcs $i(v_1), i(v_2)$ such that no two arcs cross.

Trivalent map \approx every point has three arcs incident

Rooted map is a map M with a distinguished element $r \in M$ called the **root**.

Example of rooted trivalent map:

< 1 k

э

Family of rooted maps	Family of lambda terms	OEIS entry
rooted trivalent maps	linear lambda terms	A062980
rooted planar maps	normal planar lambda terms	A000168
rooted maps	normal linear lambda terms / \sim	A000698

- 2013 Bodini, Gardy, Jacquot
- 2015 Zeilberger, Giorgetti
- 2015 Zeilberger

< 1 k

We will try to show connection between linear lambda terms and rooted trivalent maps.

We will try to show connection between linear lambda terms and rooted trivalent maps.

Forget distinction between @-nodes and λ -nodes, as well as the orientation of the edges:

$\lambda x.(\lambda y(x(\lambda z(y \ z))))$

We need to establish root:

What about free variables?

What about free variables?

Theorem

To any linear lambda term with k free variables, p applications and q abstractions there is naturally associated a rooted trivalent map with boundary of degree k and p + q trivalent vertices.

12 / 22

Theorem

To any linear lambda term with k free variables, p applications and q abstractions there is naturally associated a rooted trivalent map with boundary of degree k and p + q trivalent vertices.

Proof: Consider diagram of the term, which has k incoming edges (free variables), as well as p @-nodes and q λ -nodes. Transform @-nodes and λ -nodes into trivalent vertices, attach a univalent vertex to the end of the outgoing wire (wire out of root), and finally forget the orientations. The result is manifestly a rooted trivalent map with boundary of degree k and p + q trivalent vertices.

12 / 22

Now, given map M, our task is to find a linear lambda term whose underlining rooted trivalent map is M.

Now, given map M, our task is to find a linear lambda term whose underlining rooted trivalent map is M.

Observation

If removing trivalent vertex disconnects graph then the vertex corresponds to an @-node, and otherwise it corresponds to a λ -node.

2

イロト イヨト イヨト イヨト

э

< 47 ▶

Theorem

To any trivalent map M with boundary of degree k and n trivalent vertices there is a unique linear lambda term with k free variables, p applications and q abstractions whose underlying trivalent map is M, for some p + q = n.

Theorem

To any trivalent map M with boundary of degree k and n trivalent vertices there is a unique linear lambda term with k free variables, p applications and q abstractions whose underlying trivalent map is M, for some p + q = n.

Proof: As sketched before, and induction on *n*.

16 / 22

β -normal term

No beta reduction is possible i.e. left child is never a unary node.

3-indecomposable term

Tree stays connected after removing any two edges (ignoring root vertex).

The map is bicubic iff. it is cubic (trivalent) and bipartite.

Conjecture

(Noam Zeilberger, 2019) The number of β -normal 3-indecomposable planar lambda terms is equal to the number of rooted bicubic map.

 $\beta(0,1)$ -trees are planar, rooted and labeled trees:

- leaves have label 0
- the label of the root is equal to the sum of its children's labels plus 1
- the label of any other node exceeds the sum of its children's labels by at most one.

2

イロト イヨト イヨト イヨト 二日

Major number of ilustration were taken from: Noam Zeilberger. Linear lambda terms as invariants of rooted trivalent maps. arXiv:1512.06751. 2015.

22 / 22