Small weak epsilon-nets

Vladyslav Rachek

March 26,2020

Vladyslav Rachek

Small weak epsilon-nets

March 26,2020 1/46

3

< 47 ▶

Introduction

Let P be a set of n points in \mathbb{R}^2 . A point q (not necessarily in P) is called a **centerpoint** of P if each closed half-plane containing q contains at least $\lceil \frac{n}{3} \rceil$ points of P, or, equivalently, any convex set that contains more than $\frac{2}{3}n$ points of P must also contain q.

Theorem (Helly's theorem)

For any $d \ge 1$, $n \ge d + 1$ and any family of convex sets C_1, \ldots, C_n in \mathbb{R}^d , if intersection of any d + 1 of these sets is non-empty, then all sets C_i intersect.

Definition. Let X be an *n*-point set in \mathbb{R}^d . A point x is called a *centerpoint* of X if each closed half-space containing x contains at least $\frac{1}{d+1}$ points of X

Theorem (Centerpoint theorem)

Each finite point set in \mathbb{R}^d has at least one centerpoint

Proof.

We first note the equivalent definition of a centerpoint: x is a centerpoint of $X \subset \mathbb{R}^d$ iff it lies in each open half-space γ s.t. $|\gamma \cap X| > \frac{d}{d+1}|X|$ How do we prove that any set X has a centerpoint? We would like to apply Helly's theorem, to conclude that all such half-spaces intersect. But we can't, because there are infinitely many such γ 's, and they are open and unbounded.

Theorem (Centerpoint theorem)

Each finite point set in \mathbb{R}^d has at least one centerpoint

Continuation of proof.

Instead of applying Helly's theorem to γ , we apply it to convex set $Conv(X \cap \gamma)$ which is compact.

Continuation of proof.

Letting γ run through all open half-spaces such that $|\gamma \cap X| > \frac{d}{d+1}|X|$ we obtain sets $Conv(X \cap \gamma)$ which do contain more than $\frac{d}{d+1}$ points of X. Because X is finite, there are only finitely many of such sets.

Continuation of proof.

Now we claim, that intersection of every d + 1 sets from these convex sets is non-empty, and here's why:

Take d + 1 sets: C_1, \ldots, C_{d+1} . We know, that C_i contains $\left(\frac{d}{d+1} + \varepsilon_i\right)$ points of X where $\varepsilon_i > 0$.

$$1 \ge |\mathcal{C}_1 \cup \mathcal{C}_2| = |\mathcal{C}_1| + |\mathcal{C}_2| - |\mathcal{I}_2| > \frac{2d}{d+1} - |\mathcal{I}_2| \Rightarrow |\mathcal{I}_2| > \frac{d-1}{d+1}$$
$$1 \ge |\mathcal{I}_2 \cup \mathcal{C}_3| = |\mathcal{I}_2| + |\mathcal{C}_3| - |\mathcal{I}_3| > \frac{2d-1}{d+1} - |\mathcal{I}_3| \Rightarrow |\mathcal{I}_3| > \frac{d-2}{d+1}$$

$$1 \ge |\mathcal{I}_d \cup \mathcal{C}_{d+1}| = |\mathcal{I}_d| + |\mathcal{C}_3| - |\mathcal{I}_{d+1}| > \frac{1+d}{d+1} - |\mathcal{I}_{d+1}| \Rightarrow |\mathcal{I}_{d+1}| > 0$$

7/46

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Introduction cd

We've proved that the centerpoint always exists. Besides, it's known that the constant $\frac{2}{3}$ is the best possible.

Can we improve this constant by using, say, two points, or some other small number of points?

What happens when we replace convex sets by, say, axis-parallel rectangles? Here we answer such questions.

Epsilon-nets

Definition 1

Let P be an n-point set in \mathbb{R}^2 . Consider a family S of sets in \mathbb{R}^2 . A set $Q \subset \mathbb{R}^2$ is called a weak ε – net for P with respect to S, if for any $S \in S$ with $|S \cap P| > \varepsilon n$, we have $S \cap Q = \emptyset$. Further, if $Q \subseteq P$, then Q is called a (strong) ε -net for P with respect to S **Example 1**

Points - set PCircles with interior - set FRed points - strong $\frac{1}{4}$ -net on the left example, but not on the right

What would it be about

Questions

• What's the minimal size of strong/weak epsilon-net for any (P, S)

• On which properties does bound depend?

This presentation

Let $0 \leq \varepsilon_i^S \leq 1$ denote the smallest real number such that for any finite point set $P \subset \mathbb{R}^2$ there exist *i*-point set, which is ε_i^S -net for P with respect to S (S is fixed).

We try to obtain best bounds for ε_i^S for small values of *i* and family S being set of all axis-parallel rectangles, disks, half-planes and convex sets. We consider only set of points P in general position

General bounds

Theorem (Lemma 2.1)

Vladyslav Rachek

If there exists a line L in the plane with the property that for every line segment on L there is a set $s \in S$ such that $s \cap L$ is that segment, then $\varepsilon_i^{\mathcal{S}} \geq \frac{1}{i+1}$

Theorem (Lemma 2.2)If
$$S \subset S'$$
 then $\varepsilon_i^S \leq \varepsilon_i^{S'}$ Vladyslay, BachekSmall weak epsilon-netsMarch 26.202011 / 46

Small weak epsilon-nets

11/46

Half-planes

Let \mathcal{H} denote the family of all half-planes.

Theorem (Lemma 2.3) $\varepsilon_1^{\mathcal{H}} = \frac{2}{3}, \ \varepsilon_2^{\mathcal{H}} = \frac{1}{2}, \ \varepsilon_i^{\mathcal{H}} = 0 \text{ for } i \geq 3$

Proof.

Let I be bisecting line of P. Any halfplane containing at least 1/2 points of P must contain one of the points q_1, q_2 . This proves $\varepsilon_2^{\mathcal{H}} \leq \frac{1}{2}$. On the other hand, for any *n*-point set and any points q_1, q_2 , one of the two halfplanes delimited by line going through q_1q_2 contains at least $\frac{n-2}{2} = n(\frac{1}{2} - \frac{2}{n})$ points, so because $\frac{2}{n} \rightarrow 0$ we have $\varepsilon_2^{\mathcal{H}} \geq \frac{1}{2}$

Half-planes

Let \mathcal{H} denote the family of all half-planes.

Theorem (Lemma 2.3)

 $arepsilon_1^{\mathcal{H}}=rac{2}{3},\,arepsilon_2^{\mathcal{H}}=rac{1}{2},\,arepsilon_i^{\mathcal{H}}=0\,\, \textit{for}\,\,i\geq 3$

Proof.

Given any point set P, pick $Q = \{q_1, q_2, q_3\}$ so that the triangle formed by those three points contains P. Thus any half-plane containing any point from P must contain at least one point of Q. This proves $\varepsilon_i^{\mathcal{H}} = 0$ for $i \geq 3$

< □ > < 同 > < 回 > < 回 > < 回 >

Let ${\mathcal C}$ denote the family of all convex sets in the plane.

Theorem (Theorem 3.1) $\varepsilon_2^{\mathcal{C}} \ge \frac{5}{9}, \ \varepsilon_3^{\mathcal{R}} = \frac{5}{12}$

Proof for 2-point net.

In order to prove lower bound, we need to...

V	ady	vsla	vR	lac	hek

3

→

Let $\mathcal C$ denote the family of all convex sets in the plane.

Theorem (Theorem 3.1) $\varepsilon_2^{\mathcal{C}} \ge \frac{5}{9}, \ \varepsilon_3^{\mathcal{R}} = \frac{5}{12}$

Proof for 2-point net.

In order to prove lower bound, we need to construct set P of n points (for any n) s.t. for any pair (p,q) of points there exists convex set K which contains at least 5n/9 of the points of P and avoids p,q.

< 回 > < 回 > < 回 >

The set P is made up of three groups, each consists of three subsets, arranged into a triangular shape. Each small subset, call them 1,2, ...,9 lies in some disk of some small diameter δ and contains n/9 points.

For any choice of q and r let L be the line through q and r.

Observe that L can intersect the convex hull of at most two of the subsets 1,...,9. We may assume, that L intersects at least one convex hull of some subset (otherwise we would already have 6n/9 points lyinf on some side of L).

Moreover, we may assume, that L has at least 3 subsets fully lying on each sides. Otherwise, because L can "cross" at most 2 out of 9, we would have at least 9 - 2 - 2 = 5 out of 9 subsets fully contained in one of the half-planes defined by L.

We write CH(i, j, ...) for convex hull of subsets $i \cup j \cup ...$ WLOG assume L intersects CH(1, 2, 3). Consider 2 cases: a) L intersects CH(2)b) L intersects CH(3) (symmetrically, L intersects CH(4))

Theorem 3.1 - case a, L intersects CH(2)

Exploiting symmetries, we can assume wlog that L is no closer to 6 than to 7. Then, in order to stab CH(4,5,6,7,8), one of the points of Q has to lie on or below the upper tangent of CH(4) and CH(8).

Theorem 3.1 - case a, L intersects CH(2)

Since we must also have $q \in CH(2,3,4,5,6)$, q must lie arbitrarily close to 2 because disk containing all points from 2 can become sufficiently small. Therefore, for proper choice of δ our K would be CH(1,3,4,5,6) and it avoids q and r

Vladyslav Rachek

March 26,2020 21/46

Theorem 3.1 - case b, L intersects CH(3)

Observe, that in order to stab CH(4,5,6,7,8) one of the points of Q must lie on or above the upper tangent of CH(8) and CH(4). If L is not closer to 8 than to 7, then we need $q \in L \cap CH(1,2,3,8,9)$. Otherwise, we need $q \in L \cap CH(3,4,5,6,7)$. In both cases q must lie atbitrarily close to CH(3)if δ is chosen sufficiently small. Then K = CH(1,2,4,5,6).

Theorem 3.1 - reminder

Let $\mathcal C$ denote the family of all convex sets in the plane.

Theorem (Theorem 3.1) $\varepsilon_2^{\mathcal{C}} \geq \frac{5}{9}, \ \varepsilon_3^{\mathcal{C}} = \frac{5}{12}$

3

Theorem 3.1

To summarize, using our construction of point set P, for any 2 given points we can find a convex set K which avoids these points and contains 5n/9 points from P. Thus, $\varepsilon_2^{\mathcal{C}} \geq \frac{5}{9}$.

Let's examine our consruction for 2-point net at a higher level. We needed a "tangent condition" for point r and "closeness condition" for point q. We now place 4 triangular shaped groups (instead of the three) in a circular manner, each group consisting of three subsets of n/12 points. This gives $\binom{4}{3} = 4$ instances of type before.

Because we have 4 instances of type before, we need to satisfy 4 tangent conditions and 4 closeness conditions. Two points suffice to satisfy all the tangent conditions. Still 4 "closeness conditions" left

Because we have 4 instances of type before, we need to satisfy 4 tangent conditions and 4 closeness conditions. Two points suffice to satisfy all the tangent conditions plus two closeness conditions.

27 / 46

However, the third point cannot satisfy two other closeness conditions simultaneously. Hence, we can also construct a convex set with 5 parts which would have 5n/12 points and avoid any 3-point net.

28 / 46

Theorem (Ham-Sandwich theorem)

Every d finite sets in \mathbb{R}^d can be simultaneously bisected by a hyperplane. A hyperplane bisects set A if each open half-space defined by that hyperplane contains at most $\lceil \frac{|A|}{2} \rceil$ points of A

Theorem (Theorem 3.2)

$$\varepsilon_2^{\mathcal{C}} \geq \frac{5}{8}, \varepsilon_3^{\mathcal{C}} = \frac{7}{12}, \varepsilon_4^{\mathcal{C}} = \frac{4}{7}, \varepsilon_5^{\mathcal{C}} = \frac{1}{2},$$

Proof for 2-point net.

Theorem (Theorem 3.2)

$$\varepsilon_2^{\mathcal{C}} \leq \frac{5}{8}, \varepsilon_3^{\mathcal{C}} \leq \frac{7}{12}, \varepsilon_4^{\mathcal{C}} \leq \frac{4}{7}, \varepsilon_5^{\mathcal{C}} \leq \frac{1}{2},$$

Proof for 2-point net.

Let q_1 be the centerpoint for blue points. q_0 is defined as $\ell \cap h$. Let K be any convex set with $q_0, q_1 \notin K$. As $q_0 \notin K$, the set K avoids at least one of the four quadrants defined by ℓ and h (by convexity).

A B > A B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Proof for $\varepsilon_2^{\mathcal{C}} \leq \frac{5}{8}$.

If this guadrant is blue then K avoids at least 3n/8 (blue) points, if it's red then K avoids at least n/8(red) points. In addition, because $q_1 \notin K$ and q_1 is "blue centerpoint", K avoids at least $\frac{1}{3} \cdot \frac{3n}{4} = \frac{n}{4}$ blue points. Altogether K avoids at least 3n/8 points, so in either case K can't contain more than 5n/8 points. Other proofs are similar, line ℓ is chosen differently.

Vladyslav Rachek

Small weak epsilon-nets

March 26,2020 32/46

・ロト ・ 一下 ・ コト ・ ヨト

One could recursively apply constructions as above, which leads to bound $\varepsilon_i^{\mathcal{C}} \leq \frac{2}{3} \left(\frac{3}{4}\right)^k$ for $i = \frac{1}{3} (4^{k+1} - 1), k \geq 0$ A rough calculation shows that a weak ε -net of size $\mathcal{O}(\frac{1}{\varepsilon^5})$ with respect to \mathcal{C} is obtained. Unfortunately it falls short of the best known bound $\mathcal{O}(\frac{1}{\varepsilon^2})$. Still, these constructions are better for small nets.

Let $\mathcal R$ denote the family of all axis-parallel rectangles.

Theorem

 $\varepsilon_1^{\mathcal{R}} \geq \frac{1}{2}$, $\varepsilon_2^{\mathcal{R}} = \frac{2}{5}$, $\varepsilon_3^{\mathcal{R}} \geq \frac{2}{6}$

Proof for 1-point net.

Given any point set P and any point q, we can also construct a rectangle which contains at least $\lfloor \frac{n-1}{2} \rfloor \ge n/2 - 2 = n(\frac{1}{2} - \frac{2}{n})$ points. Thus, $\varepsilon_1^{\mathcal{R}} \ge \frac{1}{2}$ because n can be chosen to be arbitrarily large.

- 4 回 ト 4 回 ト

Suppose for contradiction that $\varepsilon_2^{\mathcal{R}} =$ $\varepsilon < \frac{2}{5}$. If a pair of points Q = $\{q_1, q_2\}$ is a weak ε -net for P with respect to axis-parallel rectangles and $\varepsilon < 2/5$, then each of the four strips above h_1 , below h_2 , left of v_1 and right of v_2 must contain a point of Q . Since no triple of strips has a common intersection, each of the 2 points must be contained in exactly two strips. Then either $Q \subset A_{1,3} \cup A_{3,1}$ or $Q \subset A_{1,1} \cup$ $A_{3,3}$. Assume wlog the former case.

We've assumed $Q \subset A_{1,3} \cup A_{3,1}$. Let red points be points from Q. But then we can immediately construct green rectangle, containing $\frac{2}{5}n$ points and avoiding Q, a contradiction.

March 26,2020 36 / 46

Next we prove $\varepsilon_3^{\mathcal{R}} \geq \frac{2}{6}$. Assume for contradiction $\varepsilon_3^{\mathcal{R}} = \varepsilon < \frac{2}{6}$. First, observe that one point from Q should be inside $A_{2,2}$. Let this point be q. Next, by argument from previous proof, we claim that two other points of Q must be either in $A_{1,1} \cap A_{3,3}$ or in $A_{1,3} \cap A_{3,1}$. Assume latter case wlog.

We've assumed $Q \subset A_{1,3} \cap A_{3,1} \cap A_{2,2}$. But now it's easy to see that one of the green rectangles must contain at least $\frac{n}{6} + \frac{n}{3\cdot 2} - 1 = \frac{n}{3} - 1$ points, and both are avoiding Q. Since for n large enough, $\frac{1}{3} - \frac{1}{n} > \varepsilon$ we have a contradiction.

March 26,2020 38 / 46

Theorem (Theorem 4.3) $\varepsilon_3^{\mathcal{R}} \leq \frac{2}{5}.$

Let v_1 be a vertical line with exactly $2/5 \cdot n$ points of P to and let v_2 be a vertical line with exactly $2/5 \cdot n$ points of P to its right. Similarly consider a line h_1 (resp., h_2) with exactly $2/5 \cdot n$ points of P above it (resp., below it).Let $\{q_1, \ldots, q_4\}$ be points of intersection of these lines.

Theorem (Theorem 4.3) $\varepsilon_3^{\mathcal{R}} \leq \frac{2}{5}.$

Observe that
$$Q = \{q_1, \ldots, q_4\}$$
 is $\frac{2}{5}$ -net
for P . Let $Q_1 = \{q_1, q_3\}, Q_2 = \{q_2, q_4\}$.
We'll show that at least one of Q_1, Q_2
is a 2-point $\frac{2}{5}$ -net for P . Assume to the
contrary that neither is.

Theorem (Theorem 4.3) $\varepsilon_3^{\mathcal{R}} \leq \frac{2}{5}.$

So Q_1 is not $\frac{2}{5}$ -net for P. That means, there exist a rectangle containing more than $\frac{2}{5}$ points and avoiding q_1, q_3 . Observe that such rectangle should contain either q_2 or q_4 . Assume wlog it contains q_4 . Symmetrically, there must exist a rectangle proving that Q_2 is not a weak $\frac{2}{5}$ -net, and suppose it contains q_1

Theorem (Theorem 4.3) $\varepsilon_3^{\mathcal{R}} \leq \frac{2}{5}.$

Symmetrically, there must exist a rectangle proving that Q_2 is not a weak $\frac{2}{5}$ -net, and suppose it contains q_1

Theorem (Theorem 4.3)

 $\varepsilon_3^{\mathcal{R}} \leq \frac{2}{5}.$

Let A, \ldots, F - amount of points inside corresponding rectangles, induced by lines h_1, h_2, v_1, v_2 (**not** inside colored rectangles). Now we have:

$$A + B + D + E > \frac{2n}{5}$$
$$B + C + E + F > \frac{2n}{5}$$
$$A + B + C = \frac{n}{5}, D + E + F = \frac{2n}{5}$$
$$\Rightarrow B + E > \frac{n}{5},$$

a contradiction, which ends the proof.

Axis-parallel rectangles - general lemma

Theorem (Lemma 4.2)
For all positive integers
$$k, i, j$$
 and $\ell \le k + 1$,
 $\varepsilon_{k^2+2\ell i+2(k+1-\ell)j}^{\mathcal{R}} \le \frac{\varepsilon_i^{\mathcal{R}}\varepsilon_j^{\mathcal{R}}}{\ell\varepsilon_i^{\mathcal{R}}+(k+1-\ell)\varepsilon_i^{\mathcal{R}}}.$

Using this lemma, we can obtain the following bounds:

$$\varepsilon_1^{\mathcal{R}} \leq \frac{1}{2}, \varepsilon_3^{\mathcal{R}} \leq \frac{1}{3}, \varepsilon_5^{\mathcal{R}} \leq \frac{1}{4}, \varepsilon_7^{\mathcal{R}} \leq \frac{2}{9}, \varepsilon_8^{\mathcal{R}} \leq \frac{1}{5}, \varepsilon_{10}^{\mathcal{R}} \leq \frac{1}{6}, \varepsilon_{16}^{\mathcal{R}} \leq \frac{2}{15}$$

< 47 ▶

3

Remark 1 - disks on the plane

Theorem (Theorem 5.1)

It is interesting to note that some bounds on the size of weak ε -nets follow rather directly from classical results. We illustrate this fact for the collection \mathcal{D} of all disks in the plane. $\varepsilon_4^{\mathcal{D}} \leq \frac{1}{2}$.

Let P be a set of n points in the plane. We need to show that there exists a set Q of four points such that every disk d for which $|d \cap P| > \frac{n}{2}$ must intersect Q. Consider the collection $D \subset D$ of all disks d that contain more than n/2 points of P. Obviously every pair of disks of D must have a non-empty intersection. By the result of [6], there exists a set Q of four points that stab all disks in D. This completes the proof.

イロト 不得下 イヨト イヨト 二日

Remark 2 - results

	Convex sets		Half-planes		Disks		Rectangles	
	LB	UB	LB	UB	LB	UB	LB	UB
80	1		1		1		1	
ε1	2/3		2/3		2/3		1/2	
82	5/9	5/8	1	/2	1/2	5/8	2/5	
83	5/12	7/12		D	1/4	7/12	1/3	
84	1/5	4/7		D	1/5	1/2	1/5	5/16
85	1/6	1/2		D			1/6	1/4

It's been shown that $\varepsilon_i^{\mathcal{R}} \leq \frac{2}{i+3}$ for all $1 \leq i \leq 5$. It's open whether it holds for all *i*.

One hypothesis is that it's true, for nets chosen from grid similar as appeared in previous proofs.

イロト イポト イヨト イヨト 二日