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Introduction

Let P be a set of n points in R2 . A point q (not necessarily in P ) is
called a centerpoint of P if each closed half-plane containing q contains
at least dn

3
e points of P, or, equivalently, any convex set that contains more

than 2

3
n points of P must also contain q.

q
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Convex sets and centerpoint

Theorem (Helly's theorem)

For any d ≥ 1, n ≥ d + 1 and any family of convex sets C1, . . . ,Cn in Rd ,

if intersection of any d + 1 of these sets is non-empty, then all sets Ci

intersect.

De�nition. Let X be an n-point set in Rd . A point x is called a
centerpoint of X if each closed half-space containing x contains at least
1

d+1
points of X
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Convex sets and centerpoint

Theorem (Centerpoint theorem)

Each �nite point set in Rd has at least one centerpoint

Proof.

We �rst note the equivalent de�nition of a centerpoint: x is a centerpoint
of X ⊂ Rd i� it lies in each open half-space γ s.t. |γ ∩ X | > d

d+1
|X |

How do we prove that any set X has a centerpoint?
We would like to apply Helly's theorem, to conclude that all such
half-spaces intersect. But we can't, because there are in�nitely many such
γ's, and they are open and unbounded.

Vladyslav Rachek Small weak epsilon-nets March 26,2020 4 / 46



Convex sets and centerpoint

Theorem (Centerpoint theorem)

Each �nite point set in Rd has at least one centerpoint

Continuation of proof.

Instead of applying Helly's theorem to γ, we apply it to convex set
Conv(X ∩ γ) which is compact.

γ
γ

Conv(X ∩ γ)
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Convex sets and centerpoints

Continuation of proof.

Letting γ run through all open half-spaces such that |γ ∩ X | > d
d+1
|X | we

obtain sets Conv(X ∩ γ) which do contain more than d
d+1

points of X .
Because X is �nite, there are only �nitely many of such sets.

γ
γ

Conv(X ∩ γ)
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Convex sets and centerpoint

Continuation of proof.

Now we claim, that intersection of every d + 1 sets from these convex sets
is non-empty, and here's why:
Take d + 1 sets: C1, . . . ,Cd+1. We know, that Ci contains (

d
d+1

+ εi )
points of X where εi > 0.

1 ≥ |C1 ∪ C2| = |C1|+ |C2| − |I2| >
2d

d + 1
− |I2| ⇒ |I2| >

d − 1

d + 1

1 ≥ |I2 ∪ C3| = |I2|+ |C3| − |I3| >
2d − 1

d + 1
− |I3| ⇒ |I3| >

d − 2

d + 1

. . .

1 ≥ |Id ∪ Cd+1| = |Id |+ |C3| − |Id+1| >
1+ d

d + 1
− |Id+1| ⇒ |Id+1| > 0
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Introduction cd

We've proved that the centerpoint always exists. Besides, it's known that
the constant 2

3
is the best possible.

Can we improve this constant by using, say, two points, or some other
small number of points?
What happens when we replace convex sets by, say, axis-parallel rectangles?
Here we answer such questions.
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Epsilon-nets

De�nition 1

Let P be an n-point set in R2 . Consider a family S of sets in R2. A set
Q ⊂ R2 is called a weak ε− net for P with respect to S, if for any S ∈ S
with |S ∩ P| > εn, we have S ∩ Q = ∅. Further, if Q ⊆ P , then Q is
called a (strong) ε -net for P with respect to S
Example 1

Points - set P
Circles with interior - set F
Red points - strong 1

4
-net on

the left example, but not on
the right
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What would it be about

Questions

What's the minimal size of strong/weak epsilon-net for any (P,S)
On which properties does bound depend?

This presentation

Let 0 ≤ εSi ≤ 1 denote the smallest real number such that for any �nite
point set P ⊂ R2 there exist i-point set, which is εSi -net for P with respect
to S (S is �xed).
We try to obtain best bounds for εSi for small values of i and family S

being set of all axis-parallel rectangles, disks, half-planes and convex sets.
We consider only set of points P in general position
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General bounds

Theorem (Lemma 2.1)

If there exists a line L in the plane with the property that for every line

segment on L there is a set s ∈ S such that s ∩ L is that segment, then

εSi ≥
1

i+1

Proof.

{k points

Take n = k ∗ (i+ 1)
place i+ 1 consecutive groups as below

For such placement, if we assume εSi <
1

i+1
, each group has to contain one

point from the net, hence (i + 1) points are needed, a contradiction

Theorem (Lemma 2.2)

If S ⊂ S ′ then εSi ≤ εS
′

i
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Half-planes
Let H denote the family of all half-planes.

Theorem (Lemma 2.3)

εH
1
= 2

3
, εH

2
= 1

2
, εHi = 0 for i ≥ 3

Proof.

l

1
2 of P 1

2 of P

point q1

point q2

Let l be bisecting line of P . Any half-
plane containing at least 1/2 points
of P must contain one of the points
q1, q2. This proves εH

2
≤ 1

2
. On the

other hand, for any n-point set and
any points q1, q2, one of the two half-
planes delimited by line going through
q1q2 contains at least

n−2
2

= n(1
2
− 2

n
)

points, so because 2

n
→ 0 we have

εH
2
≥ 1

2
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Half-planes

Let H denote the family of all half-planes.

Theorem (Lemma 2.3)

εH
1
= 2

3
, εH

2
= 1

2
, εHi = 0 for i ≥ 3

Proof.

q1

q2

q3

set P

Given any point set P , pick
Q = {q1, q2, q3} so that the triangle
formed by those three points contains
P . Thus any half-plane containing
any point from P must contain at least
one point of Q . This proves εHi = 0
for i ≥ 3
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Convex sets

Let C denote the family of all convex sets in the plane.

Theorem (Theorem 3.1)

εC
2
≥ 5

9
, εR

3
= 5

12

Proof for 2-point net.

In order to prove lower bound, we need to...
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Convex sets

Let C denote the family of all convex sets in the plane.

Theorem (Theorem 3.1)

εC
2
≥ 5

9
, εR

3
= 5

12

Proof for 2-point net.

In order to prove lower bound, we need to construct set P of n points (for
any n) s.t. for any pair (p, q) of points there exists convex set K which
contains at least 5n/9 of the points of P and avoids p, q.
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Convex sets

The set P is made up of three groups, each consists of three subsets,
arranged into a triangular shape. Each small subset, call them 1,2, ...,9 lies
in some disk of some small diameter δ and contains n/9 points.
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Convex sets
For any choice of q and r let L be the line through q and r .
Observe that L can intersect the convex hull of at most two of the subsets
1,...,9. We may assume, that L intersects at least one convex hull of some
subset (otherwise we would already have 6n/9 points lyinf on some side of
L).
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Convex sets
Moreover, we may assume, that L has at least 3 subsets fully lying on each
sides. Otherwise, because L can "cross" at most 2 out of 9, we would have
at least 9− 2− 2 = 5 out of 9 subsets fully contained in one of the
half-planes de�ned by L.
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Convex sets
We write CH(i , j , . . . ) for convex hull of subsets i ∪ j ∪ . . .
WLOG assume L intersects CH(1, 2, 3). Consider 2 cases:
a) L intersects CH(2)
b) L intersects CH(3) (symmetrically, L intersects CH(4))
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Theorem 3.1 - case a, L intersects CH(2)

Exploiting symmetries, we can assume wlog that L is no closer to 6 than to
7. Then, in order to stab CH(4, 5, 6, 7, 8), one of the points of Q has to lie
on or below the upper tangent of CH(4) and CH(8).
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Theorem 3.1 - case a, L intersects CH(2)
Since we must also have q ∈ CH(2, 3, 4, 5, 6), q must lie arbitrarily close to
2 because disk containing all points from 2 can become su�ciently small.
Therefore, for proper choice of δ our K would be CH(1, 3, 4, 5, 6) and it
avoids q and r
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Theorem 3.1 - case b, L intersects CH(3)
Observe, that in order to stab CH(4, 5, 6, 7, 8) one of the points of Q must
lie on or above the upper tangent of CH(8) and CH(4). If L is not closer
to 8 than to 7, then we need q ∈ L ∩ CH(1, 2, 3, 8, 9). Otherwise, we need
q ∈ L∩ CH(3, 4, 5, 6, 7). In both cases q must lie atbitrarily close to CH(3)
if δ is chosen su�ciently small. Then K = CH(1, 2, 4, 5, 6).
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Theorem 3.1 - reminder

Let C denote the family of all convex sets in the plane.

Theorem (Theorem 3.1)

εC
2
≥ 5

9
, εC

3
= 5

12
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Theorem 3.1

To summarize, using our construction of point set P , for any 2 given points
we can �nd a convex set K which avoids these points and contains 5n/9
points from P . Thus, εC

2
≥ 5

9
.
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Theorem 3.1 for 3-point net
Let's examine our consruction for 2-point net at a higher level. We needed
a "tangent condition" for point r and "closeness condition" for point q.
We now place 4 triangular shaped groups (instead of the three) in a
circular manner, each group consisting of three subsets of n/12 points.
This gives

(
4

3

)
= 4 instances of type before.
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Theorem 3.1 for 3-point net
Because we have 4 instances of type before, we need to satisfy 4 tangent
conditions and 4 closeness conditions. Two points su�ce to satisfy all the
tangent conditions. Still 4 "closeness conditions" left
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Theorem 3.1 for 3-point net
Because we have 4 instances of type before, we need to satisfy 4 tangent
conditions and 4 closeness conditions. Two points su�ce to satisfy all the
tangent conditions plus two closeness conditions.
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Theorem 3.1 for 3-point net
However, the third point cannot satisfy two other closeness conditions
simultaneously. Hence, we can also construct a convex set with 5 parts
which would have 5n/12 points and avoid any 3-point net.
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Convex sets - upper bounds

Theorem (Ham-Sandwich theorem)

Every d �nite sets in Rd can be simultaneously bisected by a hyperplane. A

hyperplane bisects set A if each open half-space de�ned by that hyperplane

contains at most d |A|
2
e points of A
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Convex sets - upper bounds

Theorem (Theorem 3.2)

εC2 ≥
5

8
, εC3 =

7

12
, εC4 =

4

7
, εC5 =

1

2
,

Proof for 2-point net.

red blue

`

q0

q1

n
4 points 3n

4 points

ham-sandwich cut h
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Convex sets - upper bounds

Theorem (Theorem 3.2)

εC2 ≤
5

8
, εC3 ≤

7

12
, εC4 ≤

4

7
, εC5 ≤

1

2
,

Proof for 2-point net.

red blue

`

q0

q1

n
4 points 3n

4 points

ham-sandwich cut h

Let q1 be the centerpoint for blue
points. q0 is de�ned as ` ∩ h. Let
K be any convex set with q0, q1 /∈
K . As q0 /∈ K , the set K avoids
at least one of the four quadrants
de�ned by ` and h (by convexity).
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Convex sets - upper bounds

Proof for εC
2
≤ 5

8
.

red blue

`

q0

q1

n
4 points 3n

4 points

ham-sandwich cut h

If this quadrant is blue then K

avoids at least 3n/8 (blue) points,
if it's red then K avoids at least n/8
(red) points. In addition, because
q1 /∈ K and q1 is "blue center-
point", K avoids at least 1

3
· 3n
4
= n

4

blue points. Altogether K avoids
at least 3n/8 points, so in either
case K can't contain more than
5n/8 points. Other proofs are sim-
ilar, line ` is chosen di�erently.
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Convex sets - upper bounds cd

One could recursively apply constructions as above, which leads to bound

εCi ≤
2

3

(
3

4

)k
for i = 1

3
(4k+1 − 1), k ≥ 0

A rough calculation shows that a weak ε-net of size O( 1

ε5
) with respect to

C is obtained. Unfortunately it falls short of the best known bound O( 1

ε2
).

Still, these constructions are better for small nets.

Vladyslav Rachek Small weak epsilon-nets March 26,2020 33 / 46



Axis-parallel rectangles

Let R denote the family of all axis-parallel rectangles.

Theorem

εR
1
≥ 1

2
, εR

2
= 2

5
, εR

3
≥ 2

6

Proof for 1-point net.

l

q

Given any point set P and any point
q, we can also construct a rectan-
gle which contains at least bn−1

2
c ≥

n/2 − 2 = n(1
2
− 2

n
) points. Thus,

εR
1
≥ 1

2
because n can be chosen to

be arbitrarily large.
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Axis-parallel rectangles-2.1

A1,1 A1,2 A1,3

A2,1 A2,2 A2,3

A3,1 A3,2 A3,3

n
5

n
5

n
5

n
5

n
5

h1

h2

v1 v2

Suppose for contradiction that εR
2

=
ε < 2

5
. If a pair of points Q = {q1, q2}

is a weak ε-net for P with respect to
axis-parallel rectangles and ε < 2/5,
then each of the four strips above h1,
below h2, left of v1 and right of v2
must contain a point of Q . Since no
triple of strips has a common inter-
section, each of the 2 points must be
contained in exactly two strips. Then
either Q ⊂ A1,3 ∪ A3,1 or Q ⊂ A1,1 ∪
A3,3. Assume wlog the former case.
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Axis-parallel rectangles-2.2

A1,1 A1,2 A1,3

A2,1 A2,2 A2,3

A3,1 A3,2 A3,3

n
5

n
5

n
5

n
5

n
5

h1

h2

v1 v2

We've assumed Q ⊂ A1,3 ∪ A3,1.
Let red points be points from Q.
But then we can immediately con-
struct green rectangle, containing
2

5
n points and avoiding Q, a con-

tradiction.
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Axis-parallel rectangles-3.1

A1,1 A1,2 A1,3

A2,1 A2,2 A2,3

A3,1 A3,2 A3,3

n
6

n
6

n
6

n
6

n
3

q

v1 v2

h2

h1

Next we prove εR
3
≥ 2

6
. Assume for

contradiction εR
3

= ε < 2

6
. First, ob-

serve that one point from Q should be
inside A2,2. Let this point be q. Next,
by argument from previous proof, we
claim that two other points of Q must
be either in A1,1∩A3,3 or in A1,3∩A3,1.
Assume latter case wlog.
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Axis-parallel rectangles-3.2

A1,1 A1,2 A1,3

A2,1 A2,2 A2,3

A3,1 A3,2 A3,3

n
6

n
6

n
6

n
6

n
3

q

v1 v2

h2

h1

We've assumed Q ⊂ A1,3∩A3,1∩A2,2.
But now it's easy to see that one of the
green rectangles must contain at least
n
6
+ n

3·2−1 = n
3
−1 points, and both are

avoiding Q. Since for n large enough,
1

3
− 1

n
> ε we have a contradiction.
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Axis-parallel rectangles

Theorem (Theorem 4.3)

εR
3
≤ 2

5
.

n
5

2n
5

2n
5

n
5

2n
5

2n
5

q1

q2 q3

q4

A B C

D E F

v2v1

h1

h2

Let v1 be a vertical line with exactly
2/5 · n points of P to and let v2 be a
vertical line with exactly 2/5 ·n points
of P to its right. Similarly consider
a line h1 (resp., h2 ) with exactly
2/5 · n points of P above it (resp., be-
low it).Let {q1, . . . , q4} be points of
intersection of these lines.
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Axis-parallel rectangles

Theorem (Theorem 4.3)

εR
3
≤ 2

5
.

n
5

2n
5

2n
5

n
5

2n
5

2n
5

q1

q2 q3

q4

A B C

D E F

v2v1

h1

h2

Observe that Q = {q1, . . . , q4} is 2

5
-net

for P . Let Q1 = {q1, q3},Q2 = {q2, q4}.
We'll show that at least one of Q1,Q2

is a 2-point 2

5
-net for P . Assume to the

contrary that neither is.
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Axis-parallel rectangles

Theorem (Theorem 4.3)

εR
3
≤ 2

5
.

n
5

2n
5

2n
5

n
5

2n
5

2n
5

q1

q2 q3

q4

A B C

D E F

v2v1

h1

h2

So Q1 is not 2

5
-net for P . That means,

there exist a rectangle containing more
than 2

5
points and avoiding q1, q3. Ob-

serve that such rectangle should contain
either q2 or q4. Assume wlog it con-
tains q4. Symmetrically, there must exist
a rectangle proving that Q2 is not a weak
2

5
-net, and suppose it contains q1
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Axis-parallel rectangles

Theorem (Theorem 4.3)

εR
3
≤ 2

5
.

n
5

2n
5

2n
5

n
5

2n
5

2n
5

q1

q2 q3

q4

A B C

D E F

v2v1

h1

h2

Symmetrically, there must exist a rectan-
gle proving that Q2 is not a weak 2

5
-net,

and suppose it contains q1
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Axis-parallel rectangles

Theorem (Theorem 4.3)

εR
3
≤ 2

5
.

n
5

2n
5

2n
5

n
5

2n
5

2n
5

q1

q2 q3

q4

A B C

D E F

v2v1

h1

h2

Let A, . . . ,F - amount of points in-
side corresponding rectangles, induced
by lines h1, h2, v1, v2 (not inside colored
rectangles). Now we have:

A+ B + D + E >
2n

5

B + C + E + F >
2n

5

A+ B + C =
n

5
, D + E + F =

2n

5

⇒ B + E >
n

5
,

a contradiction, which ends the proof.
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Axis-parallel rectangles - general lemma

Theorem (Lemma 4.2)

For all positive integers k, i , j and ` ≤ k + 1,

εR
k2+2`i+2(k+1−`)j ≤

εR
i
εR

j

`εR
j
+(k+1−`)εR

i

.

Using this lemma, we can obtain the following bounds:

εR1 ≤
1

2
, εR3 ≤

1

3
, εR5 ≤

1

4
, εR7 ≤

2

9
, εR8 ≤

1

5
, εR10 ≤

1

6
, εR16 ≤

2

15
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Remark 1 - disks on the plane

Theorem (Theorem 5.1)

It is interesting to note that some bounds on the size of weak ε-nets follow
rather directly from classical results. We illustrate this fact for the

collection D of all disks in the plane. εD
4
≤ 1

2
.

Let P be a set of n points in the plane. We need to show that there exists
a set Q of four points such that every disk d for which |d ∩ P| > n

2
must

intersect Q. Consider the collection D ⊂ D of all disks d that contain more
than n/2 points of P . Obviously every pair of disks of D must have a
non-empty intersection. By the result of [6], there exists a set Q of four
points that stab all disks in D . This completes the proof.

Vladyslav Rachek Small weak epsilon-nets March 26,2020 45 / 46



Remark 2 - results

It's been shown that εRi ≤
2

i+3
for all 1 ≤ i ≤ 5. It's open whether it holds

for all i .
One hypothesis is that it's true, for nets chosen from grid similar as
appeared in previous proofs.
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