Small weak epsilon-nets

Vladyslav Rachek

March 26,2020

Introduction

Let P be a set of n points in \mathbb{R}^{2}. A point q (not necessarily in P) is called a centerpoint of P if each closed half-plane containing q contains at least $\left\lceil\frac{n}{3}\right\rceil$ points of P, or, equivalently, any convex set that contains more than $\frac{2}{3} n$ points of P must also contain q.

Convex sets and centerpoint

Theorem (Helly's theorem)

For any $d \geq 1, n \geq d+1$ and any family of convex sets C_{1}, \ldots, C_{n} in \mathbb{R}^{d}, if intersection of any $d+1$ of these sets is non-empty, then all sets C_{i} intersect.

Definition. Let X be an n-point set in \mathbb{R}^{d}. A point x is called a centerpoint of X if each closed half-space containing x contains at least $\frac{1}{d+1}$ points of X

Convex sets and centerpoint

Theorem (Centerpoint theorem)

Each finite point set in \mathbb{R}^{d} has at least one centerpoint

Proof.

We first note the equivalent definition of a centerpoint: x is a centerpoint of $X \subset \mathbb{R}^{d}$ iff it lies in each open half-space γ s.t. $|\gamma \cap X|>\frac{d}{d+1}|X|$ How do we prove that any set X has a centerpoint?
We would like to apply Helly's theorem, to conclude that all such half-spaces intersect. But we can't, because there are infinitely many such γ 's, and they are open and unbounded.

Convex sets and centerpoint

Theorem (Centerpoint theorem)
Each finite point set in \mathbb{R}^{d} has at least one centerpoint

Continuation of proof.

Instead of applying Helly's theorem to γ, we apply it to convex set $\operatorname{Conv}(X \cap \gamma)$ which is compact.

Convex sets and centerpoints

Continuation of proof.

Letting γ run through all open half-spaces such that $|\gamma \cap X|>\frac{d}{d+1}|X|$ we obtain sets $\operatorname{Conv}(X \cap \gamma)$ which do contain more than $\frac{d}{d+1}$ points of X. Because X is finite, there are only finitely many of such sets.

Convex sets and centerpoint

Continuation of proof.

Now we claim, that intersection of every $d+1$ sets from these convex sets is non-empty, and here's why:
Take $d+1$ sets: C_{1}, \ldots, C_{d+1}. We know, that C_{i} contains $\left(\frac{d}{d+1}+\varepsilon_{i}\right)$ points of X where $\varepsilon_{i}>0$.

$$
\begin{array}{r}
1 \geq\left|C_{1} \cup C_{2}\right|=\left|C_{1}\right|+\left|C_{2}\right|-\left|\mathcal{I}_{2}\right|>\frac{2 d}{d+1}-\left|\mathcal{I}_{2}\right| \Rightarrow\left|\mathcal{I}_{2}\right|>\frac{d-1}{d+1} \\
1 \geq\left|\mathcal{I}_{2} \cup C_{3}\right|=\left|\mathcal{I}_{2}\right|+\left|C_{3}\right|-\left|\mathcal{I}_{3}\right|>\frac{2 d-1}{d+1}-\left|\mathcal{I}_{3}\right| \Rightarrow\left|\mathcal{I}_{3}\right|>\frac{d-2}{d+1} \\
\ldots \\
1 \geq\left|\mathcal{I}_{d} \cup C_{d+1}\right|=\left|\mathcal{I}_{d}\right|+\left|C_{3}\right|-\left|\mathcal{I}_{d+1}\right|>\frac{1+d}{d+1}-\left|\mathcal{I}_{d+1}\right| \Rightarrow\left|\mathcal{I}_{d+1}\right|>0
\end{array}
$$

Introduction cd

We've proved that the centerpoint always exists. Besides, it's known that the constant $\frac{2}{3}$ is the best possible.
Can we improve this constant by using, say, two points, or some other small number of points?
What happens when we replace convex sets by, say, axis-parallel rectangles? Here we answer such questions.

Epsilon-nets

Definition 1

Let P be an n-point set in \mathbb{R}^{2}. Consider a family \mathcal{S} of sets in \mathbb{R}^{2}. A set $Q \subset \mathbb{R}^{2}$ is called a weak ε - net for P with respect to \mathcal{S}, if for any $S \in \mathcal{S}$ with $|S \cap P|>\varepsilon n$, we have $S \cap Q=\emptyset$. Further, if $Q \subseteq P$, then Q is called a (strong) ε-net for P with respect to \mathcal{S}
Example 1

Points - set P
Circles with interior - set F Red points - strong $\frac{1}{4}$-net on the left example, but not on the right

What would it be about

Questions

- What's the minimal size of strong/weak epsilon-net for any (P, \mathcal{S})
- On which properties does bound depend?

This presentation

Let $0 \leq \varepsilon_{i}^{\mathcal{S}} \leq 1$ denote the smallest real number such that for any finite point set $P \subset \mathbb{R}^{2}$ there exist i-point set, which is $\varepsilon_{i}^{\mathcal{S}}$-net for P with respect to $\mathcal{S}(\mathcal{S}$ is fixed).
We try to obtain best bounds for $\varepsilon_{i}^{\mathcal{S}}$ for small values of i and family \mathcal{S} being set of all axis-parallel rectangles, disks, half-planes and convex sets. We consider only set of points P in general position

General bounds

Theorem (Lemma 2.1)

If there exists a line L in the plane with the property that for every line segment on L there is a set $s \in \mathcal{S}$ such that $s \cap L$ is that segment, then $\varepsilon_{i}^{\mathcal{S}} \geq \frac{1}{i+1}$

Proof.
Take $n=k *(i+1)$
place $i+1$ consecutive groups as below
\rightarrow

For such placement, if we assume $\varepsilon_{i}^{S}<\frac{1}{i+1}$, each group has to contain one point from the net, hence $(i+1)$ points are needed, a contradiction

Theorem (Lemma 2.2)
If $\mathcal{S} \subset \mathcal{S}^{\prime}$ then $\varepsilon_{i}^{\mathcal{S}} \leq \varepsilon_{i}^{\mathcal{S}^{\prime}}$

Half-planes

Let \mathcal{H} denote the family of all half-planes.
Theorem (Lemma 2.3)
$\varepsilon_{1}^{\mathcal{H}}=\frac{2}{3}, \varepsilon_{2}^{\mathcal{H}}=\frac{1}{2}, \varepsilon_{i}^{\mathcal{H}}=0$ for $i \geq 3$

Proof.

Let $/$ be bisecting line of P. Any halfplane containing at least $1 / 2$ points of P must contain one of the points q_{1}, q_{2}. This proves $\varepsilon_{2}^{\mathcal{H}} \leq \frac{1}{2}$. On the other hand, for any n-point set and any points q_{1}, q_{2}, one of the two halfplanes delimited by line going through $q_{1} q_{2}$ contains at least $\frac{n-2}{2}=n\left(\frac{1}{2}-\frac{2}{n}\right)$ points, so because $\frac{2}{n} \rightarrow 0$ we have $\varepsilon_{2}^{\mathcal{H}} \geq \frac{1}{2}$

Half-planes

Let \mathcal{H} denote the family of all half-planes.

$$
\begin{aligned}
& \text { Theorem (Lemma 2.3) } \\
& \varepsilon_{1}^{\mathcal{H}}=\frac{2}{3}, \varepsilon_{2}^{\mathcal{H}}=\frac{1}{2}, \varepsilon_{i}^{\mathcal{H}}=0 \text { for } i \geq 3
\end{aligned}
$$

Proof.

Given any point set P, pick $Q=\left\{q_{1}, q_{2}, q_{3}\right\}$ so that the triangle formed by those three points contains P. Thus any half-plane containing any point from P must contain at least one point of Q. This proves $\varepsilon_{i}^{\mathcal{H}}=0$ for $i \geq 3$

Convex sets

Let \mathcal{C} denote the family of all convex sets in the plane.
Theorem (Theorem 3.1)
$\varepsilon_{2}^{\mathcal{C}} \geq \frac{5}{9}, \varepsilon_{3}^{\mathcal{R}}=\frac{5}{12}$

Proof for 2-point net.
In order to prove lower bound, we need to...

Convex sets

Let \mathcal{C} denote the family of all convex sets in the plane.
Theorem (Theorem 3.1)
$\varepsilon_{2}^{\mathcal{C}} \geq \frac{5}{9}, \varepsilon_{3}^{\mathcal{R}}=\frac{5}{12}$

Proof for 2-point net.
In order to prove lower bound, we need to construct set P of n points (for any n) s.t. for any pair (p, q) of points there exists convex set K which contains at least $5 n / 9$ of the points of P and avoids p, q.

Convex sets

The set P is made up of three groups, each consists of three subsets, arranged into a triangular shape. Each small subset, call them 1,2, ...,9 lies in some disk of some small diameter δ and contains $n / 9$ points.

Convex sets

For any choice of q and r let L be the line through q and r.
Observe that L can intersect the convex hull of at most two of the subsets $1, \ldots, 9$. We may assume, that L intersects at least one convex hull of some subset (otherwise we would already have $6 n / 9$ points lyinf on some side of L).

- (b)

Convex sets

Moreover, we may assume, that L has at least 3 subsets fully lying on each sides. Otherwise, because L can "cross" at most 2 out of 9 , we would have at least $9-2-2=5$ out of 9 subsets fully contained in one of the half-planes defined by L.

Convex sets

We write $\mathrm{CH}(i, j, \ldots)$ for convex hull of subsets $i \cup j \cup \ldots$
WLOG assume L intersects $C H(1,2,3)$. Consider 2 cases:
a) L intersects $\mathrm{CH}(2)$
b) L intersects $\mathrm{CH}(3)$ (symmetrically, L intersects $\mathrm{CH}(4)$)

(a)

(b)

Theorem 3.1 - case a, L intersects $C H(2)$
Exploiting symmetries, we can assume wlog that L is no closer to 6 than to 7. Then, in order to stab $\mathrm{CH}(4,5,6,7,8)$, one of the points of Q has to lie on or below the upper tangent of $\mathrm{CH}(4)$ and $\mathrm{CH}(8)$.

Theorem 3.1 - case a, L intersects $C H(2)$

Since we must also have $q \in C H(2,3,4,5,6)$, q must lie arbitrarily close to 2 because disk containing all points from 2 can become sufficiently small. Therefore, for proper choice of δ our K would be $C H(1,3,4,5,6)$ and it avoids q and r

Theorem 3.1 - case b, L intersects $\mathrm{CH}(3)$

Observe, that in order to stab $\mathrm{CH}(4,5,6,7,8)$ one of the points of Q must lie on or above the upper tangent of $\mathrm{CH}(8)$ and $\mathrm{CH}(4)$. If L is not closer to 8 than to 7 , then we need $q \in L \cap C H(1,2,3,8,9)$. Otherwise, we need $q \in L \cap C H(3,4,5,6,7)$. In both cases q must lie atbitrarily close to $\mathrm{CH}(3)$ if δ is chosen sufficiently small. Then $K=C H(1,2,4,5,6)$.

(b)

Theorem 3.1 - reminder

Let \mathcal{C} denote the family of all convex sets in the plane.
Theorem (Theorem 3.1)
$\varepsilon_{2}^{\mathcal{C}} \geq \frac{5}{9}, \varepsilon_{3}^{\mathcal{C}}=\frac{5}{12}$

Theorem 3.1

To summarize, using our construction of point set P, for any 2 given points we can find a convex set K which avoids these points and contains $5 n / 9$ points from P. Thus, $\varepsilon_{2}^{\mathcal{C}} \geq \frac{5}{9}$.

(a)

(b)

Theorem 3.1 for 3-point net

Let's examine our consruction for 2-point net at a higher level. We needed a "tangent condition" for point r and "closeness condition" for point q. We now place 4 triangular shaped groups (instead of the three) in a circular manner, each group consisting of three subsets of $n / 12$ points. This gives $\binom{4}{3}=4$ instances of type before.

(a)

$\square(\mathrm{b})$

Theorem 3.1 for 3-point net

Because we have 4 instances of type before, we need to satisfy 4 tangent conditions and 4 closeness conditions. Two points suffice to satisfy all the tangent conditions. Still 4 "closeness conditions" left

Theorem 3.1 for 3-point net

Because we have 4 instances of type before, we need to satisfy 4 tangent conditions and 4 closeness conditions. Two points suffice to satisfy all the tangent conditions plus two closeness conditions.

Theorem 3.1 for 3-point net

However, the third point cannot satisfy two other closeness conditions simultaneously. Hence, we can also construct a convex set with 5 parts which would have $5 n / 12$ points and avoid any 3 -point net.

Convex sets - upper bounds

Theorem (Ham-Sandwich theorem)

Every d finite sets in \mathbb{R}^{d} can be simultaneously bisected by a hyperplane. A hyperplane bisects set A if each open half-space defined by that hyperplane contains at most $\left\lceil\frac{|A|}{2}\right\rceil$ points of A

Convex sets - upper bounds

Theorem (Theorem 3.2)

$$
\varepsilon_{2}^{\mathcal{C}} \geq \frac{5}{8}, \varepsilon_{3}^{\mathcal{C}}=\frac{7}{12}, \varepsilon_{4}^{\mathcal{C}}=\frac{4}{7}, \varepsilon_{5}^{\mathcal{C}}=\frac{1}{2},
$$

Proof for 2-point net.

Convex sets - upper bounds

Theorem (Theorem 3.2)

$$
\varepsilon_{2}^{\mathcal{C}} \leq \frac{5}{8}, \varepsilon_{3}^{\mathcal{C}} \leq \frac{7}{12}, \varepsilon_{4}^{\mathcal{C}} \leq \frac{4}{7}, \varepsilon_{5}^{\mathcal{C}} \leq \frac{1}{2}
$$

Proof for 2-point net.

Let q_{1} be the centerpoint for blue points. q_{0} is defined as $\ell \cap h$. Let K be any convex set with $q_{0}, q_{1} \notin$ K. As $q_{0} \notin K$, the set K avoids at least one of the four quadrants defined by ℓ and h (by convexity).

Convex sets - upper bounds

Proof for $\varepsilon_{2}^{\mathcal{C}} \leq \frac{5}{8}$.

If this quadrant is blue then K avoids at least $3 n / 8$ (blue) points, if it's red then K avoids at least $n / 8$ (red) points. In addition, because $q_{1} \notin K$ and q_{1} is "blue centerpoint", K avoids at least $\frac{1}{3} \cdot \frac{3 n}{4}=\frac{n}{4}$ blue points. Altogether K avoids at least $3 n / 8$ points, so in either case K can't contain more than $5 n / 8$ points. Other proofs are similar, line ℓ is chosen differently.

Convex sets - upper bounds cd

One could recursively apply constructions as above, which leads to bound $\varepsilon_{i}^{\mathcal{C}} \leq \frac{2}{3}\left(\frac{3}{4}\right)^{k}$ for $i=\frac{1}{3}\left(4^{k+1}-1\right), k \geq 0$
A rough calculation shows that a weak ε-net of size $\mathcal{O}\left(\frac{1}{\varepsilon^{5}}\right)$ with respect to \mathcal{C} is obtained. Unfortunately it falls short of the best known bound $\mathcal{O}\left(\frac{1}{\varepsilon^{2}}\right)$. Still, these constructions are better for small nets.

Axis-parallel rectangles

Let \mathcal{R} denote the family of all axis-parallel rectangles.
Theorem
$\varepsilon_{1}^{\mathcal{R}} \geq \frac{1}{2}, \varepsilon_{2}^{\mathcal{R}}=\frac{2}{5}, \varepsilon_{3}^{\mathcal{R}} \geq \frac{2}{6}$
Proof for 1-point net.
Given any point set P and any point q, we can also construct a rectangle which contains at least $\left\lfloor\frac{n-1}{2}\right\rfloor \geq$ $n / 2-2=n\left(\frac{1}{2}-\frac{2}{n}\right)$ points. Thus, $\varepsilon_{1}^{\mathcal{R}} \geq \frac{1}{2}$ because n can be chosen to be arbitrarily large.

Axis-parallel rectangles-2.1

Suppose for contradiction that $\varepsilon_{2}^{\mathcal{R}}=$ $\varepsilon<\frac{2}{5}$. If a pair of points $Q=\left\{q_{1}, q_{2}\right\}$ is a weak ε-net for P with respect to axis-parallel rectangles and $\varepsilon<2 / 5$, then each of the four strips above h_{1}, below h_{2}, left of v_{1} and right of v_{2} must contain a point of Q. Since no triple of strips has a common intersection, each of the 2 points must be contained in exactly two strips. Then either $Q \subset A_{1,3} \cup A_{3,1}$ or $Q \subset A_{1,1} \cup$ $A_{3,3}$. Assume wlog the former case.

Axis-parallel rectangles-2.2

We've assumed $Q \subset A_{1,3} \cup A_{3,1}$. Let red points be points from Q. But then we can immediately construct green rectangle, containing $\frac{2}{5} n$ points and avoiding Q, a contradiction.

Axis-parallel rectangles-3.1

Next we prove $\varepsilon_{3}^{\mathcal{R}} \geq \frac{2}{6}$. Assume for contradiction $\varepsilon_{3}^{\mathcal{R}}=\varepsilon<\frac{2}{6}$. First, observe that one point from Q should be inside $A_{2,2}$. Let this point be q. Next, by argument from previous proof, we claim that two other points of Q must be either in $A_{1,1} \cap A_{3,3}$ or in $A_{1,3} \cap A_{3,1}$. Assume latter case wlog.

Axis-parallel rectangles-3.2

We've assumed $Q \subset A_{1,3} \cap A_{3,1} \cap A_{2,2}$. But now it's easy to see that one of the green rectangles must contain at least $\frac{n}{6}+\frac{n}{3 \cdot 2}-1=\frac{n}{3}-1$ points, and both are avoiding Q. Since for n large enough, $\frac{1}{3}-\frac{1}{n}>\varepsilon$ we have a contradiction.

Axis-parallel rectangles

Theorem (Theorem 4.3) $\varepsilon_{3}^{\mathcal{R}} \leq \frac{2}{5}$.

Let v_{1} be a vertical line with exactly $2 / 5 \cdot n$ points of P to and let v_{2} be a vertical line with exactly $2 / 5 \cdot n$ points of P to its right. Similarly consider a line h_{1} (resp., h_{2}) with exactly $2 / 5 \cdot n$ points of P above it (resp., below it).Let $\left\{q_{1}, \ldots, q_{4}\right\}$ be points of intersection of these lines.

Axis-parallel rectangles

Theorem (Theorem 4.3)
 $\varepsilon_{3}^{\mathcal{R}} \leq \frac{2}{5}$.

Observe that $Q=\left\{q_{1}, \ldots, q_{4}\right\}$ is $\frac{2}{5}$-net for P. Let $Q_{1}=\left\{q_{1}, q_{3}\right\}, Q_{2}=\left\{q_{2}, q_{4}\right\}$. We'll show that at least one of Q_{1}, Q_{2} is a 2-point $\frac{2}{5}$-net for P. Assume to the contrary that neither is.

Axis-parallel rectangles

Theorem (Theorem 4.3) $\varepsilon_{3}^{\mathcal{R}} \leq \frac{2}{5}$.

So Q_{1} is not $\frac{2}{5}$-net for P. That means, there exist a rectangle containing more than $\frac{2}{5}$ points and avoiding q_{1}, q_{3}. Observe that such rectangle should contain either q_{2} or q_{4}. Assume wlog it contains q_{4}. Symmetrically, there must exist a rectangle proving that Q_{2} is not a weak ${ }_{5}^{2}$-net, and suppose it contains q_{1}

Axis-parallel rectangles

```
Theorem (Theorem 4.3)
\varepsilon\mp@code{R}
```


Symmetrically, there must exist a rectangle proving that Q_{2} is not a weak $\frac{2}{5}$-net, and suppose it contains q_{1}

Axis-parallel rectangles

Theorem (Theorem 4.3)
$\varepsilon_{3}^{\mathcal{R}} \leq \frac{2}{5}$.

Let A, \ldots, F - amount of points inside corresponding rectangles, induced by lines $h_{1}, h_{2}, v_{1}, v_{2}$ (not inside colored rectangles). Now we have:

$$
\begin{aligned}
A+B+D+E & >\frac{2 n}{5} \\
B+C+E+F & >\frac{2 n}{5} \\
A+B+C=\frac{n}{5}, D+E+F & =\frac{2 n}{5} \\
\Rightarrow B+E & >\frac{n}{5},
\end{aligned}
$$

a contradiction, which ends the proof.

Axis-parallel rectangles - general lemma

Theorem (Lemma 4.2)

For all positive integers k, i, j and $\ell \leq k+1$, $\varepsilon_{k^{2}+2 \ell i+2(k+1-\ell) j}^{\mathcal{R}} \leq \frac{\varepsilon_{i}^{\mathcal{R}} \varepsilon_{j}^{\mathcal{R}}}{\ell \varepsilon_{j}^{\mathcal{R}}+(k+1-\ell) \varepsilon_{i}^{\mathcal{R}}}$.

Using this lemma, we can obtain the following bounds:

$$
\varepsilon_{1}^{\mathcal{R}} \leq \frac{1}{2}, \varepsilon_{3}^{\mathcal{R}} \leq \frac{1}{3}, \varepsilon_{5}^{\mathcal{R}} \leq \frac{1}{4}, \varepsilon_{7}^{\mathcal{R}} \leq \frac{2}{9}, \varepsilon_{8}^{\mathcal{R}} \leq \frac{1}{5}, \varepsilon_{10}^{\mathcal{R}} \leq \frac{1}{6}, \varepsilon_{16}^{\mathcal{R}} \leq \frac{2}{15}
$$

Remark 1 - disks on the plane

Theorem (Theorem 5.1)

It is interesting to note that some bounds on the size of weak ε-nets follow rather directly from classical results. We illustrate this fact for the collection \mathcal{D} of all disks in the plane. $\varepsilon_{4}^{\mathcal{D}} \leq \frac{1}{2}$.

Let P be a set of n points in the plane. We need to show that there exists a set Q of four points such that every disk d for which $|d \cap P|>\frac{n}{2}$ must intersect Q. Consider the collection $D \subset \mathcal{D}$ of all disks d that contain more than $n / 2$ points of P. Obviously every pair of disks of D must have a non-empty intersection. By the result of [6], there exists a set Q of four points that stab all disks in D. This completes the proof.

Remark 2 - results

	Convex sets			Half-planes			Disks			Rectangles		
	LB		UB									
ε_{0}		1			1			1			1	
ε_{1}		2/3			2/3			2/3			1/2	
ε_{2}	5/9		5/8		1/2		1/2		5/8		2/5	
ε_{3}	5/12		7/12		0		1/4		7/12		1/3	
ε_{4}	$1 / 5$		4/7		0		1/5		1/2	1/5		5/16
ε_{5}	1/6		1/2		0					1/6		1/4

It's been shown that $\varepsilon_{i}^{\mathcal{R}} \leq \frac{2}{i+3}$ for all $1 \leq i \leq 5$. It's open whether it holds for all i.
One hypothesis is that it's true, for nets chosen from grid similar as appeared in previous proofs.

