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Introduction

Let P be a set of n points in R? . A point g (not necessarily in P ) is
called a centerpoint of P if each closed half-plane containing g contains

at least [ 3] points of P, or, equivalently, any convex set that contains more
than %n points of P must also contain q.
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Convex sets and centerpoint

Theorem (Helly's theorem)

For any d >1,n > d + 1 and any family of convex sets Cy, ..., C, in RY,

if intersection of any d + 1 of these sets is non-empty, then all sets C;
intersect.

Definition. Let X be an n-point set in RY. A point x is called a

centerpoint of X if each closed half-space containing x contains at least
%H points of X
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Convex sets and centerpoint

Theorem (Centerpoint theorem)

Each finite point set in R? has at least one centerpoint

Proof.

We first note the equivalent definition of a centerpoint: x is a centerpoint
of X C RY iff it lies in each open half-space v s.t. |y N X| > dLH|X]

How do we prove that any set X has a centerpoint?

We would like to apply Helly’s theorem, to conclude that all such
half-spaces intersect. But we can't, because there are infinitely many such
~’s, and they are open and unbounded.
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Convex sets and centerpoint

Theorem (Centerpoint theorem)

Each finite point set in R? has at least one centerpoint

Continuation of proof.

Instead of applying Helly’s theorem to 7, we apply it to convex set
Conv(X N ~) which is compact.
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Convex sets and centerpoints

Continuation of proof.

Letting v run through all open half-spaces such that |y N X| > dLH|X| we

obtain sets Conv(X N+y) which do contain more than d;jrl points of X.
Because X is finite, there are only finitely many of such sets.

G onv(X N~)

Vladyslav Rachek

Small weak epsilon-nets March 26,2020 6 /46



Convex sets and centerpoint

Continuation of proof.

Now we claim, that intersection of every d + 1 sets from these convex sets
is non-empty, and here’s why:

Take d + 1 sets: G, ..., Cyy1. We know, that C; contains (OILJr1 +ei)
points of X where ¢; > 0.

2d d—1
1>|1GUG| =G|+ |G| - ‘IQ‘>T—‘I2‘:’.,Z:2’>

d+1
2d — d—2

1> |Z = |7 — |7 7 7

> | U G| = |To| + |G |3|>C,Jr |3|:|3|>d+1

1+d
12> ZgU Cypal| = |Za| + |G| - |Id+1|>d+ — Zg11l = |Za41| > 0
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v
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Introduction cd

We've proved that the centerpoint always exists. Besides, it's known that
the constant % is the best possible.

Can we improve this constant by using, say, two points, or some other
small number of points?

What happens when we replace convex sets by, say, axis-parallel rectangles?
Here we answer such questions.
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Epsilon-nets

Definition 1

Let P be an n-point set in R? . Consider a family S of sets in R2. A set
Q C R? is called a weak € — net for P with respect to S, if for any S € S
with |[S N P| > en, we have SN Q = (). Further, if Q C P, then Q is
called a (strong) € -net for P with respect to S

Example 1

Points - set P
Circles with interior - set F' ’ \

Red points - strong i—net on

the left example, but not on ‘ ’
the right ‘
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What would it be about

Questions

e What's the minimal size of strong/weak epsilon-net for any (P, S)

@ On which properties does bound depend?
This presentation

Let 0 < 5;5 < 1 denote the smallest real number such that for any finite
point set P C R? there exist i-point set, which is e?-net for P with respect
to S (S is fixed).

We try to obtain best bounds for ¥ for small values of i and family S
being set of all axis-parallel rectangles, disks, half-planes and convex sets.
We consider only set of points P in general position
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General bounds

Theorem (Lemma 2.1)

If there exists a line L in the plane with the property that for every line

segment on L there is a set s € S such that s L is that segment, then
S 1
& 2 71

Proof.

Take n =k« (i + 1)
P i place i + 1 consecutive groups as below
—~

For such placement, if we assume 5‘,-3 < -1, each group has to contain one

i+17
point from the net, hence (i + 1) points are needed, a contradiction

O

v

Theorem (Lemma 2.2)

IfS C S thenef <&

v
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Half-planes

Let H denote the family of all half-planes.

Theorem (Lemma 2.3)

H_2 H_ 1 _H_ z
E1" = 3, €' = 35, €] =0 fori>3
Proof.
¢ point ¢
%ofP %ofP
point go
l

Let / be bisecting line of P. Any half-
plane containing at least 1/2 points
of P must contain one of the points
q1,q2. This proves g}t < % On the
other hand, for any n-point set and
any points qi, ¢», one of the two half-
planes delimited by line going through

1 n—2 __ 1 2
192 contains at Ieas’; o2 = n(3—32)
points, so because # — 0 we have

H~ 1
€' 23
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Half-planes

Let H denote the family of all half-planes.

Theorem (Lemma 2.3)

eft=2¢clf =1l =0fri>3

Proof.

Given any point set P , pick

= Q = {91, 92, g3} so that the triangle
formed by those three points contains
P . Thus any half-plane containing
any point from P must contain at least
one point of @ . This proves 5}” =0
fori >3

Vladyslav Rachek Small weak epsilon-nets March 26,2020 13 /46



Convex sets

Let C denote the family of all convex sets in the plane.

Theorem (Theorem 3.1)

<5 R_5
€3 25,63 = 13

Proof for 2-point net.

In order to prove lower bound, we need to...
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Convex sets

Let C denote the family of all convex sets in the plane.

Theorem (Theorem 3.1)

C 5 R _ 5

Proof for 2-point net.

In order to prove lower bound, we need to construct set P of n points (for
any n) s.t. for any pair (p, g) of points there exists convex set K which
contains at least 5n/9 of the points of P and avoids p, g.
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Convex sets

The set P is made up of three groups, each consists of three subsets,
arranged into a triangular shape. Each small subset, call them 1,2, ...,9 lies
in some disk of some small diameter 6 and contains n/9 points.
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Convex sets

For any choice of g and r let L be the line through ¢ and r.

Observe that L can intersect the convex hull of at most two of the subsets
1,...,9. We may assume, that L intersects at least one convex hull of some
subset (otherwise we would already have 6n/9 points lyinf on some side of
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Convex sets

Moreover, we may assume, that L has at least 3 subsets fully lying on each
sides. Otherwise, because L can "cross" at most 2 out of 9, we would have

at least 9 — 2 — 2 =5 out of 9 subsets fully contained in one of the
half-planes defined by L.
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Convex sets

We write CH(i,j,...) for convex hull of subsets iU U ...

WLOG assume L intersects CH(1,2,3). Consider 2 cases:
a) L intersects CH(2)

b) L intersects CH(3) (symmetrically, L intersects CH(4))

(b)
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Theorem 3.1 - case a, L intersects CH(2)

Exploiting symmetries, we can assume wlog that L is no closer to 6 than to
7. Then, in order to stab CH(4,5,6,7,8), one of the points of Q has to lie
on or below the upper tangent of CH(4) and CH(8).
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Theorem 3.1 - case a, L intersects CH(2)

Since we must also have g € CH(2,3,4,5,6), q must lie arbitrarily close to
2 because disk containing all points from 2 can become sufficiently small.
Therefore, for proper choice of § our K would be CH(1,3,4,5,6) and it
avoids g and r
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Theorem 3.1 - case b, L intersects CH(3)

Observe, that in order to stab CH(4,5,6,7,8) one of the points of @ must
lie on or above the upper tangent of CH(8) and CH(4). If L is not closer
to 8 than to 7, then we need g € L N CH(1,2,3,8,9). Otherwise, we need
g€ LN CH(3,4,5,6,7). In both cases g must lie atbitrarily close to CH(3)
if ¢ is chosen sufficiently small. Then K = CH(1,2,4,5,6).
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Theorem 3.1 - reminder

Theorem (Theorem 3.1)

Let C denote the family of all convex sets in the plane.
e > g, 8% =

5

1

o &5 = = waQ
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Theorem 3.1

To summarize, using our construction of point set P, for any 2 given points
we can find a convex set K which avoids these points and contains 5n/9
points from P. Thus, 55 > g.
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Theorem 3.1 for 3-point net

Let’s examine our consruction for 2-point net at a higher level. We needed
a "tangent condition" for point r and "closeness condition" for point g.
We now place 4 triangular shaped groups (instead of the three) in a
circular manner, each group consisting of three subsets of n/12 points.
This gives (g) = 4 instances of type before.
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Theorem 3.1 for 3-point net

Because we have 4 instances of type before, we need to satisfy 4 tangent
conditions and 4 closeness conditions. Two points suffice to satisfy all the
tangent conditions. Still 4 "closeness conditions" left
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Theorem 3.1 for 3-point net

Because we have 4 instances of type before, we need to satisfy 4 tangent
conditions and 4 closeness conditions. Two points suffice to satisfy all the
tangent conditions plus two closeness conditions.
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Theorem 3.1 for 3-point net

However, the third point cannot satisfy two other closeness conditions
simultaneously. Hence, we can also construct a convex set with 5 parts
which would have 5n/12 points and avoid any 3-point net.
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Convex sets - upper bounds

Theorem (Ham-Sandwich theorem)

Every d finite sets in RY can be simultaneously bisected by a hyperplane. A

hyperplane bisects set A if each open half-space defined by that hyperplane
contains at most [@] points of A
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Convex sets - upper bounds

Theorem (Theorem 3.2)
5 7 4
C C c C
€3 2 =,63 = ==,E4 = 5,6 = =
2=g 3 w2t T Ty |
Proof for 2-point net.
7 Dboints ¢ %" points
q1
[ )
d
ham-sandwich cut h
red blue
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Convex sets - upper bounds

Theorem (Theorem 3.2)

N | —

§<E <1
8’ 12’

-F(‘A
IA
~Ni A
Bt
IA

Proof for 2-point net.

Let g; be the centerpoint for blue
points. ¢ is defined as /N h. Let
K be any convex set with qo, g1 ¢
K. As gy ¢ K, the set K avoids
at least one of the four quadrants
defined by ¢ and h (by convexity).

4 3n

4 points 22 points

q1

\@ °

ham-sandwich cut h

red blue
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Convex sets - upper bounds

Proof for &5 < 2.

If this quadrant is blue then K
avoids at least 3n/8 (blue) points,
- if it's red then K avoids at least n/8

— 4 (red) points. In addition, because

g1 ¢ K and g1 is "blue center-
point", K avoids at least %% =7
blue points. Altogether K avoids
red e at least 3n/8 points, so in either
case K can’t contain more than
5n/8 points. Other proofs are sim-

ilar, line £ is chosen differently.

4 points 4 37” points

ham-sandwich cut h
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Convex sets - upper bounds cd

One could recursively apply constructions as above, which leads to bound
£ < 3(3) for 1= 3@ 1) k>0

A rough calculation shows that a weak e-net of size (’)(6%) with respect to
C is obtained. Unfortunately it falls short of the best known bound O(a%)
Still, these constructions are better for small nets.
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Axis-parallel rectangles

Let R denote the family of all axis-parallel rectangles.

Theorem
R<~1 R_2 R~<2
€1 25,6 =5/ 63 2§

Given any point set P and any point

57, © . . g, we can also construct a rectan-
SO o gle which contains at least |52 >
L o d o o . n/2 -2 = n(% = %) points. Thus,
y . el > % because n can be chosen to
l o o
be arbitrarily large.
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Axis-parallel rectangles-2.1

‘ Suppose for contradiction that e =

l €< % If a pair of points Q = {q1, ¢}

i . is a weak e-net for P with respect to

,,,,A;f,,T,,,A;;,,:_,,,Ai;,hl axis-parallel rectangles and ¢ < 2/5,

; then each of the four strips above hy,

| below hy, left of v; and right of v,

****************** 3”*"”"’” must contain a point of @ . Since no

L. triple of strips has a common inter-

3 A section, each of the 2 points must be

i v2 contained in exactly two strips. Then

either Q C Aj3UAz10or QC A1 U
Az 3. Assume wlog the former case.
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Axis-parallel rectangles-2.2

We've assumed @ C A3 U Azj.

Aq 1 Ao : Ars . .
. j j . Let red points be points from Q.
. ! ! . B . .
. L e D) But then we can immediately con-
5 | | e .
AL T AL T A sztruct green rectangle, containing
! ” ! £n points and avoiding @, a con-
e " . |l tradiction.
,,,,,,,,, :,,,,,,,,,:,,,,,,,,,hz
L) o ! ! © L)
o ! ! .
Ay o Ass L Ass
U1 o
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Axis-parallel rectangles-3.1

Next we prove eX > 2. Assume for
p 3 6

Aia ! Aq ! Az
. L e T8 contradiction ¢ e < %. First, ob-
A " ", serve that one point from Q should be
S e inside A 5. Let this point be g. Next,
| 5 | by argument from previous proof, we
3 SR 3 claim that two other points of Q must
T T ST 72 beeitherin A; 1NAsz 3 orin A; 3NAs 1.
Do 3 3 -0 Assume latter case wlog.
Asa ) . 3 As e 3 ° A:_;
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Axis-parallel rectangles-3.2

All ; Al,‘ Al‘i. n
.
e o ‘ .
noe e . .
6 .
,,,,,,, T T 51
Az | Az > Az
| ® o
T
| e U
| n
e 3 .
! . 1
‘.
|
,,,,,,,,, ol L _____hs
n o I | "
I3 ° | * G
| | L]
. . | | .
. H H .
e
Az .: 733 | AT
vy Vo
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‘ We've assumed @ C A1’3 ﬂA371 ﬁAz}z.
l - 8 But now it's easy to see that one of the
| green rectangles must contain at least
3 2+3%—1 = £—1points, and both are
| avoiding Q. Since for n large enough,
| 1 — 1> ¢ we have a contradiction.
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Axis-parallel rectangles

Theorem (Theorem 4.3)

R 2
€3 Sg

Let vy be a vertical line with exactly
2/5 - n points of P to and let v» be a

5 n vertical line with exactly 2/5- n points
t.o... .. e B0 1 of P to its right. Similarly consider
A B C %l a line hy (resp., hy ) with exactly

a1 ©ay ¥ 2/5-n points of P above it (resp., be-

...... .- e Ta
;2,1 D E ' F ho low it).Let {g1,...,qs4} be points of
: intersection of these lines.
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Axis-parallel rectangles

Theorem (Theorem 4.3)

R 2
£3 Sg

Vladyslav Rachek Small weak epsilon-nets

Observe that @ = {q1,...,qa} is 3 -net
for P. Let Q1 = {q1,93}, Q2 = {92, 94}
We'll show that at least one of @, (>

is a 2-point %—net for P. Assume to the
contrary that neither is.
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Axis-parallel rectangles

Theorem (Theorem 4.3)

R 2
€3 Sg

2 :
t a2 ' a3 h1
...... S
A B . C =
q1 ' qq
..... R

So @ is not %—net for P. That means,
there exist a rectangle containing more
than % points and avoiding g1, q3. Ob-
serve that such rectangle should contain
either g> or g4. Assume wlog it con-
tains g4. Symmetrically, there must exist
a rectangle proving that @, is not a weak
%—net, and suppose it contains q;

2n 27T
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Axis-parallel rectangles

Theorem (Theorem 4.3)

R o 2
£3 < 5-
o1 n W Symmetrically, there must exist a rectan-
i L 5 72 gle proving that @, is not a weak 2-net,
5 : : and suppose it contains q;
t a2’ Kk h1
------ by
A. B C =
q1 q4 T
...... o ..
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Axis-parallel rectangles

Theorem (Theorem 4.3)

2
Let A,...,F - amount of points in-
V1l p B« VU2 . . .
i v side corresponding rectangles, induced
= : : by lines hy, ho, v1, v» (not inside colored
t q2' ' q3 h1
...... - ------&-----.--. rectangles). Now we have:
A B C =z on
_____ SRS D IO A+B+D+E>€
2 DB F 20
: B+C+E+F>"—
Z 5
2n TC 2
5 5 A+B+C:£,D+E+F:?n
~B+E>",
5
a contradiction, which ends the proof.
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Axis-parallel rectangles - general lemma

Theorem (Lemma 4.2)
For all positive integers k, i I,J and ¢ < k +1,

E 6
k2420i42(k4+1—0)j = £5R+(k+1 —0)eR

Using this lemma, we can obtain the following bounds:

1 1 1 2 1 1 2
R R R R R R
e L —,e5 < zye5 < —ef < —,eg < ¢ <— < —
1—273—3?5—4a7—978—5 6 16—15
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Remark 1 - disks on the plane

Theorem (Theorem 5.1)

It is interesting to note that some bounds on the size of weak e-nets follow
rather directly from classical results. We illustrate this fact for the
collection D of all disks in the plane. ¥ < 3.

Let P be a set of n points in the plane. We need to show that there exists
a set @ of four points such that every disk d for which |d N P| > 7 must
intersect @. Consider the collection D C D of all disks d that contain more
than n/2 points of P. Obviously every pair of disks of D must have a
non-empty intersection. By the result of [6], there exists a set Q of four
points that stab all disks in D . This completes the proof.
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Remark 2 - results

Convex sets Half-planes Disks Rectangles

LB UB LB [0]:3 LB UB LB [0]:3
Eq 1 1 1 1
£ 2/3 2/3 2/3 12
£2 5/9 5/8 1/2 1/2 5/8 2/5
E3 5/12 712 (1] 1/4 712 1/3
E4 1/5 47 [} 1/5 172 1/5 516
5 1/6 1/2 0 1/6 1/4

[t's been shown that 5? < :+L3 forall 1 </ <5. It's open whether it holds
for all i.

One hypothesis is that it's true, for nets chosen from grid similar as
appeared in previous proofs.
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