Machine learning in Combinatorial Optimization

Artur Kasymov January 21, 2021

Machine learning in Combinatorial Optimization January 21, 2021

A combinatorial optimization problem A is a quadruple (I, f, m, g), where:

- *I* is a set of instances;
- given an instance $x \in I$, f(x) is the finite set of feasible solutions;
- given an instance x and a feasible solution y of x, m(x, y) denotes the measure of y, which is
 usually a positive real.
- g is the goal function, and is either min or max.

The goal is then to find for some instance x an <u>optimal solution</u>, that is, a feasible solution y with $m(x, y) = g\{m(x, y')|y' \in f(x)\}$

Without loss of generality, any CO problem can be formulated as a constrained min-optimization program.

Machine Learning

"Field of study that gives computers the ability to learn without being explicitly programmed." Machine learning definition by Arthur Samuel.

Machine learning approaches:

- Supervised learning
- Unsupervised learning
- Reinforcement learning

Machine learning in Combinatorial Optimization

January 21, 2021

Supervised vs Unsupervised learning

Supervised learning

a set of input (features) / target pairs is provided and the task is to find a function that for every input has a predicted output as close as possible to the provided target.

Unsupervised learning

one does not have targets for the task one wants to solve, but rather tries to capture some characteristics of the joint distribution of the observed random variables.

Input data Prediction Its an 0 apple! Annotations Mode These are apples unsupervised learning Input data Mode

supervised learning

Reinforcement learning

an agent interacts with an environment through a Markov decision process (MDP) in order to maximize the notion of cumulative reward.

Discrete-time Markov chain

a sequence of random variables $X_1, X_2, X_3, ...$ with the Markov property: $Pr(X_{n+1} = x | X_1 = x_1, X_2 = x_2, ..., X_n = x_n) = Pr(X_{n+1} = x | X_n = x_n)$

Heuristics

Heuristic

is any approach to problem solving or self-discovery that employs a practical method that is not guaranteed to be optimal, perfect, or rational, but is nevertheless sufficient for reaching an immediate, short-term goal or approximation. Where finding an optimal solution is impossible or impractical, heuristic methods can be used to speed up the process of finding a satisfactory solution.

Minimum Vertex Cover (MVC)

Minimum Vertex Cover

Given a graph G, find a subset of nodes $S \subseteq V$ such that every edge is covered, i.e. $(u, v) \in E \Leftrightarrow u \in S$ or $v \in S$, and |S| is minimized.

MVCApprox iteratively selects an uncovered edge and adds both of its endpoints.

MVCApprox-Greedy, that greedily picks the uncovered edge with maximum sum of degrees of its endpoints.

Instance	OPT	S2V-DQN	MVCApprox	MVCApprox-Greedy
full MemeTracker graph	473	474	666	578
Approx. ratio	1	1.002	1.408	1.222

Maximum Cut

Given a graph *G*, find a subset of nodes $S \subseteq V$ such that the weight of the cut-set $\sum_{(u,v)\in C} w(u,v)$ is maximized, where cut-set $C \subseteq E$ is the set of edges with one end in *S* and the other end in $V \setminus S$.

MaxcutApprox, which maintains the cut set $(S, V \setminus S)$ and moves a node from one side to the other side of the cut if that operation results in cut weight improvement. To make MaxcutApprox stronger, we greedily move the node that results in the largest improvement in cut weight.

Instance	OPT	S2V-DQN	MaxcutApprox	SDP
G54100	110	108	80	54
G54200	112	108	90	58
G54300	106	104	86	60
G54400	114	108	96	56
G54500	112	112	94	56
G54600	110	110	88	66
G54700	112	108	88	60
G54800	108	108	76	54
G54900	110	108	88	68
G5410000	112	108	80	54
Approx. ratio	1	1.02	1.28	1.90

Travelling Salesman Problem (TSP)

Travelling Salesman Problem

asks the following question: "Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the origin city?"

Instance	OPT	S2V-DQN	Farthest	2-opt	Cheapest	Christofides	Closest	Nearest	MST
eil51	426	439	467	446	494	527	488	511	614
berlin52	7,542	7,542	8,307	7,788	9,013	8,822	9,004	8,980	10,402
st70	675	696	712	753	776	836	814	801	858
eil76	538	564	583	591	607	646	615	705	743
pr76	108,159	108,446	119,692	115,460	125,935	137,258	128,381	153,462	133,471
rat99	1,211	1,280	1,314	1,390	1,473	1,399	1,465	1,558	1,665
kroA100	21,282	21,897	23,356	22,876	24,309	26,578	25,787	26,854	30,516
kroB100	22,141	22,692	23,222	23,496	25,582	25,714	26,875	29,158	28,807
kroC100	20,749	21,074	21,699	23,445	25,264	24,582	25,640	26,327	27,636
kroD100	21,294	22,102	22,034	23,967	25,204	27,863	25,213	26,947	28,599
kroE100	22,068	22,913	23,516	22,800	25,900	27,452	27,313	27,585	30,979
rd100	7,910	8,159	8,944	8,757	8,980	10,002	9,485	9,938	10,467
cil101	629	659	673	702	693	728	720	817	847
lin105	14,379	15,023	15,193	15,536	16,930	16,568	18,592	20,356	21,167
pr107	44,303	45,113	45,905	47,058	52,816	49,192	52,765	48,521	55,956
pr124	59,030	61,623	65,945	64,765	65,316	64,591	68,178	69,297	82,761
bier127	118,282	121,576	129,495	128,103	141,354	135,134	145,516	129,333	153,658
ch130	6,110	6,270	6,498	6,470	7,279	7,367	7,434	7,578	8,280
pr136	96,772	99,474	105,361	110,531	109,586	116,069	105,778	120,769	142,438
pr144	58,537	59,436	61,974	60,321	73,032	74,684	73,613	61,652	77,704
ch150	6,528	6,985	7,210	7,232	7,995	7,641	7,914	8,191	9,203
kroA150	26,524	27,888	28,658	29,666	29,963	32,631	31,341	33,612	38,763
kroB150	26,130	27,209	27,404	29,517	31,589	33,260	31,616	32,825	35,289
pr152	73,682	75,283	75,396	77,206	88,531	82,118	86,915	85,699	90,292
u159	42,080	45,433	46,789	47,664	49,986	48,908	52,009	53,641	54,399
rat195	2,323	2,581	2,609	2,605	2,806	2,906	2,935	2,753	3,163
d198	15,780	16,453	16,138	16,596	17,632	19,002	17,975	18,805	19,339
kroA200	29,368	30,965	31,949	32,760	35,340	37,487	36,025	35,794	40,234
kroB200	29,437	31,692	31,522	33,107	35,412	34,490	36,532	36,976	40,615
ts225	126,643	136,302	140,626	138,101	160,014	145,283	151,887	152,493	188,008
tsp225	3,916	4.154	4,280	4,278	4,470	4,733	4,780	4,749	5,344
pr226	80,369	81,873	84,130	89,262	91.023	98,101	100,118	94.389	114.373
gil262	2.378	2,537	2.623	2.597	2,800	2,963	2,908	3.211	3,336
pr264	49,135	52,364	54,462	54,547	57,602	55,955	65,819	58,635	66,400
a280	2,579	2,867	3,001	2,914	3,128	3,125	2,953	3,302	3,492
pr299	48,191	51,895	51,903	54,914	58,127	58,660	59,740	61,243	65,617
lin318	42,029	45,375	45,918	45,263	49,440	51,484	52,353	54,019	60,939
linhp318	41,345	45,444	45,918	45,263	49,440	51,484	52,353	54,019	60,939
Approx. ratio	1	1.05	1.08	1.09	1.18	1.2	1.21	1.24	1.37

Machine learning in Combinatorial Optimization

ProblemStateMVCsubset of nodes selected so farMAXCUTsubset of nodes selected so farTSPpartial tour

Action add node to subset add node to subset grow tour by one node

Reward -1 change in cut weight change in tour cost

Termination

all edges are covered cut weight cannot be improved tour includes all nodes

Artur Kasymov

Machine learning in Combinatorial Optimization Ja

January 21, 2021

RL: Learning methods

Demonstration

the policy is trained to reproduce the action of an expert policy by minimizing some discrepancy in the action space.

Experience

When learning through the experience, no expert is involved; only maximizing the expected sum of future rewards (the return) matters.

$$Decision? \xrightarrow{\hat{\pi}_{ml}} action \xrightarrow{score} reward \qquad max return$$

End to end learning

train the ML model to output solutions directly from the input instance.

Machine learning in Combinatorial Optimization

January 21, 2021

Ways of use: Configure existing algorithm

Learning to configure algorithms

ML is applied to provide additional pieces of information to a CO algorithm.

Machine learning in Combinatorial Optimization

January 21, 2021

Ways of use: Alongside optimization algorithm

Alongside optimization algorithm

one can build CO algorithms that repeatedly call an ML model throughout their execution.

Machine learning in Combinatorial Optimization January

January 21, 2021

- Feasibility
- Modelling
- Scaling
- Data generation

Thank you!

Artur Kasymov

Machine learning in Combinatorial Optimization

January 21, 2021

Papers:

Machine Learning for Combinatorial Optimization: a Methodological Tour d'Horizon (<u>arxiv link</u>) Yoshua Bengio, Andrea Lodi, and Antoine Prouvost

Learning Combinatorial Optimization Algorithms over Graphs (<u>arxiv link</u>) Hanjun Dai, Elias B. Khalil, Yuyu Zhang, Bistra Dilkina, Le Song

Images:

https://blogs.oracle.com/datascience/types-of-machine-learning-and-top-10-algorithms-everyone-should-know-v2 https://www.researchgate.net/figure/Supervised-learning-and-unsupervised-learning-Supervised-learning-usesannotation fig1 329533120 https://memegenerator.net/img/instances/47200019/heuristic-its-french-for-a-hack.jpg https://en.wikipedia.org/wiki/Travelling salesman problem#/media/File:GLPK solution of a travelling salesman problem.svg https://en.wikipedia.org/wiki/Maximum_cut#/media/File:Max-cut.svg https://mathworld.wolfram.com/images/eps-gif/VertexCover 1000.gif