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Packing

Let G1 and G2 be graphs with n vertices. We say that G1 and
G2 pack if they are both edge-disjoint subgraphs of a n-vertex
complete graph.
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Packing

Since H is a subgraph of G if and only if H packs with G, every
graph property involving one graph being a subgraph of another
can be expressed in terms of packing, e.g.:

I G is Hamiltonian if and only if G packs with a cycle Cn,

I G contains a clique (resp. independent set) of size k if and
only if G (resp. G) packs with Kk ⊕ In−k,

I G is k-partite with part sizes l1, . . . , lk (l1 + . . .+ lk = n) if
and only if G packs with Kl1 ⊕ . . .⊕Klk .
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Packing — example

Theorem (Ore)

If in n-vertex graph G for every pair of non-adjacent vertices
u, v we have δ(u) + δ(v) ≥ n, then G is Hamiltonian.

In terms of packing:

If in n-vertex graph G for every pair of non-adjacent vertices
u, v we have δ(u) + δ(v) ≤ n− 2, then G packs with a cycle Cn.
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Conjecture 1 (Bollobás, Eldridge (1978), Catlin (1974))

If
(∆(G1) + 1)(∆(G2) + 1) < n+ 1,

then G1 and G2 pack.

Equivalently:

For any k ≤ n and any n-vertex graph G1, if

δ(G1) >
kn− 1

k + 1
,

then G1 has as subgraphs all n-vertex graphs G2 such that
∆(G2) ≤ k.
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Hajnal–Szemerédi Theorem

Theorem 1 (Hajnal, Szemerédi)

Every n-vertex graph G satisfying ∆(G) < k is k-colorable with
every color occuring either bnk c or d

n
k e times.

Corollary

Conjecture 1 implies Theorem 1 (when k | n).

Proof.

For given k and G set H to be a sum of k disjoint cliques of size
n
k . Since (∆(G) + 1)(∆(H) + 1) ≤ k · nk = n, we get that G and
H pack — but every ,,packed” clique in H corresponds to an
independent set in G and we get desired result.
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Case of ∆(G1) ≤ 1

Theorem

Conjecture 1 holds for ∆(G1) ≤ 1.

Let’s consider G2’s complementary G2. We have δ(G2) >
n−1
2

— determining whether G1 and G2 pack is equivalent to finding
a matching of size |E(G1)| ≤ bn/2c in G2.

Let’s arbitrarily split G2 into groups of bn/2c and dn/2e
vertices. Then as long as the process increases the number of
edges between groups, swap two vertices v1, v2 with minimal
number of edges to the other group.
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Case of ∆(G1) ≤ 1 cont.

v1

v2

e1,1

e2,1 e2,2

e1,2. . . . . .

. . .. . .

bn/2c

dn/2e

We have e1,2 + e2,1 ≥ e1,1 + e2,2, therefore
e1,2 + e2,1 ≥ 1

2(e1,1 + e1,2 + e2,1 + e2,2) >
1
2(2 · n−12 ) = n−1

2 .

Let R denote the set of red vertices. Now we apply Hall’s
theorem: let’s take A ⊆ R. If |A| ≤ e1,2, then the condition is
satisfied trivially. If |A| > e1,2, then every blue v must have an
edge leading to A (by pigeonhole principle: δ(v,R) + |A| > n−1

2 )
and the condition holds as well, so we can match every red
vertex.
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Case of ∆(G1) ≤ 2

Theorem 2 (Catlin (1976))

If ∆(G1) ≤ 2 and ∆(G2) ≤ n
3 −max(9, 32n

1/3) then G1 and G2

pack.

Theorem 3 (Aigner, Brandt (1993))

Conjecture 1 holds for ∆(G1) ≤ 2.
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Case of ∆(G1) ≤ 3

Theorem 4 (Csaba, Shokoufandeh, Szemerédi (2003))

There exists an n0 such that for all n ≥ n0 the following
statement holds: Let H be a graph on n vertices with ∆(H) ≤ 3.
If G is any n-vertex graph such that

δ(G) ≥ 3n− 1

4
,

then G contains H as a spanning subgraph.
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Sauer-Spencer theorem

Theorem 5 (Sauer, Spencer (1978))

G1 and G2 pack if any of the following holds:

1. |E(G1)|, |E(G2)| ≤ n− 2,

2. |E(G1)| · |E(G2)| <
(
n
2

)
,

3. ∆(G1) ·∆(G2) <
n
2 .

These conditions cannot be weakened for even n:

I For (1) and (2) we cannot pack a star (n− 1 edges) and a
perfect matching (n/2 edges).
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Sauer-Spencer theorem cont.

I For (3), we cannot pack a perfect matching (∆(G1) = 1)
and:

I for odd n
2 : a Kn/2,n/2,

I for even n
2 : a Kn/2+1 and n

2 − 1 isolated vertices.
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Sauer-Spencer theorem cont.

Theorem 6 (Kaul, Kostochka (2007))

Let ∆(G1) ·∆(G2) ≤ n
2 . Then G1 and G2 do not pack if and

only if one of them is a perfect matching and the other either:

I is a Kn/2,n/2 (with n
2 odd), or

I contains Kn/2+1.

Finally, another variation on the constant:

Theorem 7 (Kaul, Kostochka, Yu (2008))

Let ∆(G1),∆(G2) ≥ 300. Then if
(∆(G1) + 1)(∆(G2) + 1) ≤ 0.6n+ 1, then G1 and G2 pack.
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Line graph

For a graph G, let L(G) denote a line graph of G, i.e. a graph of
adjacencies between edges of G.

G L(G)

Let
Θ(G) = max{δ(u) + δ(v) : uv ∈ E(G)}.

Note that Θ(G) = ∆(L(G)) + 2.
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Theorem 8 (Kostochka, Yu (2007))

If Θ(G1)∆(G2) ≤ n, then G1 and G2 pack, unless either of the
following is true:

I G1 is a perfect matching and G2 either is Kn/2,n/2 with n
2

odd or contains Kn/2+1,

I G2 is a perfect matching, and G1 either is Kr,n−r with r
odd or contains Kn/2+1.
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