Bollobás-Eldridge-Catlin Conjecture

Rafał Burczyński

Institute of Theoretical Computer Science Jagiellonian University

January 28, 2021

Let G_1 and G_2 be graphs with *n* vertices. We say that G_1 and G_2 pack if they are both edge-disjoint subgraphs of a *n*-vertex complete graph.

Let G_1 and G_2 be graphs with *n* vertices. We say that G_1 and G_2 pack if they are both edge-disjoint subgraphs of a *n*-vertex complete graph.

Let G_1 and G_2 be graphs with *n* vertices. We say that G_1 and G_2 pack if they are both edge-disjoint subgraphs of a *n*-vertex complete graph.

Since H is a subgraph of G if and only if H packs with \overline{G} , every graph property involving one graph being a subgraph of another can be expressed in terms of packing, e.g.:

Since H is a subgraph of G if and only if H packs with \overline{G} , every graph property involving one graph being a subgraph of another can be expressed in terms of packing, e.g.:

• G is Hamiltonian if and only if \overline{G} packs with a cycle C_n ,

Since H is a subgraph of G if and only if H packs with \overline{G} , every graph property involving one graph being a subgraph of another can be expressed in terms of packing, e.g.:

- G is Hamiltonian if and only if \overline{G} packs with a cycle C_n ,
- G contains a clique (resp. independent set) of size k if and only if \overline{G} (resp. G) packs with $K_k \oplus I_{n-k}$,

Since H is a subgraph of G if and only if H packs with \overline{G} , every graph property involving one graph being a subgraph of another can be expressed in terms of packing, e.g.:

- G is Hamiltonian if and only if \overline{G} packs with a cycle C_n ,
- G contains a clique (resp. independent set) of size k if and only if \overline{G} (resp. G) packs with $K_k \oplus I_{n-k}$,
- G is k-partite with part sizes l_1, \ldots, l_k $(l_1 + \ldots + l_k = n)$ if and only if G packs with $K_{l_1} \oplus \ldots \oplus K_{l_k}$.

Packing - example

Theorem (Ore)

If in n-vertex graph G for every pair of non-adjacent vertices u, v we have $\delta(u) + \delta(v) \ge n$, then G is Hamiltonian.

Packing - example

Theorem (Ore)

If in n-vertex graph G for every pair of non-adjacent vertices u, v we have $\delta(u) + \delta(v) \ge n$, then G is Hamiltonian.

In terms of packing:

If in *n*-vertex graph G for every pair of non-adjacent vertices u, v we have $\delta(u) + \delta(v) \le n - 2$, then G packs with a cycle C_n .

Conjecture 1 (Bollobás, Eldridge (1978), Catlin (1974)) If $(\Delta(G_1) + 1)(\Delta(G_2) + 1) < n + 1,$

then G_1 and G_2 pack.

Conjecture 1 (Bollobás, Eldridge (1978), Catlin (1974)) If $(\Delta(G_1) + 1)(\Delta(G_2) + 1) < n + 1,$

then G_1 and G_2 pack.

Equivalently:

For any $k \leq n$ and any n-vertex graph G_1 , if

$$\delta(\overline{G_1}) > \frac{kn-1}{k+1},$$

then $\overline{G_1}$ has as subgraphs all n-vertex graphs G_2 such that $\Delta(G_2) \leq k$.

Hajnal–Szemerédi Theorem

Theorem 1 (Hajnal, Szemerédi)

Every n-vertex graph G satisfying $\Delta(G) < k$ is k-colorable with every color occuring either $\lfloor \frac{n}{k} \rfloor$ or $\lceil \frac{n}{k} \rceil$ times.

Hajnal–Szemerédi Theorem

Theorem 1 (Hajnal, Szemerédi)

Every n-vertex graph G satisfying $\Delta(G) < k$ is k-colorable with every color occuring either $\lfloor \frac{n}{k} \rfloor$ or $\lceil \frac{n}{k} \rceil$ times.

Corollary

Conjecture 1 implies Theorem 1 (when $k \mid n$).

Hajnal–Szemerédi Theorem

Theorem 1 (Hajnal, Szemerédi)

Every n-vertex graph G satisfying $\Delta(G) < k$ is k-colorable with every color occuring either $\lfloor \frac{n}{k} \rfloor$ or $\lceil \frac{n}{k} \rceil$ times.

Corollary

Conjecture 1 implies Theorem 1 (when $k \mid n$).

Proof.

For given k and G set H to be a sum of k disjoint cliques of size $\frac{n}{k}$. Since $(\Delta(G) + 1)(\Delta(H) + 1) \leq k \cdot \frac{n}{k} = n$, we get that G and H pack — but every ,,packed" clique in H corresponds to an independent set in G and we get desired result.

Case of $\Delta(G_1) \leq 1$

Theorem

Conjecture 1 holds for $\Delta(G_1) \leq 1$.

Case of $\Delta(G_1) \leq 1$

Theorem

Conjecture 1 holds for $\Delta(G_1) \leq 1$.

Let's consider G_2 's complementary $\overline{G_2}$. We have $\delta(\overline{G_2}) > \frac{n-1}{2}$ — determining whether G_1 and G_2 pack is equivalent to finding a matching of size $|E(G_1)| \leq \lfloor n/2 \rfloor$ in $\overline{G_2}$.

Case of $\Delta(G_1) \leq 1$

Theorem

Conjecture 1 holds for $\Delta(G_1) \leq 1$.

Let's consider G_2 's complementary $\overline{G_2}$. We have $\delta(\overline{G_2}) > \frac{n-1}{2}$ — determining whether G_1 and G_2 pack is equivalent to finding a matching of size $|E(G_1)| \leq \lfloor n/2 \rfloor$ in $\overline{G_2}$.

Let's arbitrarily split $\overline{G_2}$ into groups of $\lfloor n/2 \rfloor$ and $\lceil n/2 \rceil$ vertices. Then as long as the process increases the number of edges between groups, swap two vertices v_1, v_2 with minimal number of edges to the other group.

Case of $\Delta(G_1) \leq 1$ cont.

Case of $\Delta(G_1) \leq 1$ cont.

We have $e_{1,2} + e_{2,1} \ge e_{1,1} + e_{2,2}$, therefore $e_{1,2} + e_{2,1} \ge \frac{1}{2}(e_{1,1} + e_{1,2} + e_{2,1} + e_{2,2}) > \frac{1}{2}(2 \cdot \frac{n-1}{2}) = \frac{n-1}{2}.$

Case of $\Delta(G_1) \leq 1$ cont.

We have $e_{1,2} + e_{2,1} \ge e_{1,1} + e_{2,2}$, therefore $e_{1,2} + e_{2,1} \ge \frac{1}{2}(e_{1,1} + e_{1,2} + e_{2,1} + e_{2,2}) > \frac{1}{2}(2 \cdot \frac{n-1}{2}) = \frac{n-1}{2}.$

Let R denote the set of red vertices. Now we apply Hall's theorem: let's take $A \subseteq R$. If $|A| \leq e_{1,2}$, then the condition is satisfied trivially. If $|A| > e_{1,2}$, then every blue v must have an edge leading to A (by pigeonhole principle: $\delta(v, R) + |A| > \frac{n-1}{2}$) and the condition holds as well, so we can match every red vertex.

Case of $\Delta(G_1) \leq 2$

Theorem 2 (Catlin (1976))

If $\Delta(G_1) \leq 2$ and $\Delta(G_2) \leq \frac{n}{3} - \max(9, \frac{3}{2}n^{1/3})$ then G_1 and G_2 pack.

Theorem 2 (Catlin (1976))

If $\Delta(G_1) \le 2$ and $\Delta(G_2) \le \frac{n}{3} - \max(9, \frac{3}{2}n^{1/3})$ then G_1 and G_2 pack.

Theorem 3 (Aigner, Brandt (1993))

Conjecture 1 holds for $\Delta(G_1) \leq 2$.

Case of $\Delta(G_1) \leq 3$

Theorem 4 (Csaba, Shokoufandeh, Szemerédi (2003))

There exists an n_0 such that for all $n \ge n_0$ the following statement holds: Let H be a graph on n vertices with $\Delta(H) \le 3$. If G is any n-vertex graph such that

$$\delta(G) \ge \frac{3n-1}{4},$$

then G contains H as a spanning subgraph.

Sauer-Spencer theorem

Theorem 5 (Sauer, Spencer (1978))

 G_1 and G_2 pack if any of the following holds:

1.
$$|E(G_1)|, |E(G_2)| \le n - 2$$
,

- 2. $|E(G_1)| \cdot |E(G_2)| < \binom{n}{2}$,
- 3. $\Delta(G_1) \cdot \Delta(G_2) < \frac{n}{2}$.

Sauer-Spencer theorem

Theorem 5 (Sauer, Spencer (1978))

 G_1 and G_2 pack if any of the following holds:

1.
$$|E(G_1)|, |E(G_2)| \le n - 2$$
,

- 2. $|E(G_1)| \cdot |E(G_2)| < \binom{n}{2}$,
- 3. $\Delta(G_1) \cdot \Delta(G_2) < \frac{n}{2}$.

These conditions cannot be weakened for even n:

▶ For (1) and (2) we cannot pack a star (n - 1 edges) and a perfect matching (n/2 edges).

• For (3), we cannot pack a perfect matching $(\Delta(G_1) = 1)$ and:

• For (3), we cannot pack a perfect matching $(\Delta(G_1) = 1)$ and:

• For (3), we cannot pack a perfect matching $(\Delta(G_1) = 1)$ and:

Theorem 6 (Kaul, Kostochka (2007))

Let $\Delta(G_1) \cdot \Delta(G_2) \leq \frac{n}{2}$. Then G_1 and G_2 do not pack if and only if one of them is a perfect matching and the other either:

- ► is a $K_{n/2,n/2}$ (with $\frac{n}{2}$ odd), or
- contains $K_{n/2+1}$.

Theorem 6 (Kaul, Kostochka (2007))

Let $\Delta(G_1) \cdot \Delta(G_2) \leq \frac{n}{2}$. Then G_1 and G_2 do not pack if and only if one of them is a perfect matching and the other either:

• is a
$$K_{n/2,n/2}$$
 (with $\frac{n}{2}$ odd), or

• contains $K_{n/2+1}$.

Finally, another variation on the constant:

Theorem 7 (Kaul, Kostochka, Yu (2008))

Let $\Delta(G_1), \Delta(G_2) \ge 300$. Then if $(\Delta(G_1) + 1)(\Delta(G_2) + 1) \le 0.6n + 1$, then G_1 and G_2 pack.

Line graph

For a graph G, let L(G) denote a *line graph* of G, i.e. a graph of adjacencies between edges of G.

Line graph

For a graph G, let L(G) denote a *line graph* of G, i.e. a graph of adjacencies between edges of G.

Line graph

For a graph G, let L(G) denote a *line graph* of G, i.e. a graph of adjacencies between edges of G.

Let

$$\Theta(G) = \max\{\delta(u) + \delta(v) : uv \in E(G)\}.$$

Note that $\Theta(G) = \Delta(L(G)) + 2$.

Theorem 8 (Kostochka, Yu (2007))

If $\Theta(G_1)\Delta(G_2) \leq n$, then G_1 and G_2 pack, unless either of the following is true:

- G_1 is a perfect matching and G_2 either is $K_{n/2,n/2}$ with $\frac{n}{2}$ odd or contains $K_{n/2+1}$,
- G_2 is a perfect matching, and G_1 either is $K_{r,n-r}$ with r odd or contains $K_{n/2+1}$.

References I

M. Aigner and S. Brandt. Embedding arbitrary graphs of maximum degree two. Journal of the London Mathematical Society, s2-48(1):39-51, 1993.

B. Bollobás and S.E. Eldridge.
Packings of graphs and applications to computational complexity.
Journal of Combinatorial Theory, Series B, 25(2):105 –

124, 1978.

P. Catlin.

 $\label{eq:embedding} \mbox{ subgraphs and coloring graphs under extremal degree conditions.}$

PhD thesis, Ohio State University, 1976.

References II

- Bela Csaba, Ali Shokoufandeh, and Endre Szemerédi. Proof of a conjecture of bollobás and eldridge for graphs of maximum degree three. *Combinatorica*, 23:35–72, 10 2003.
- H. Kaul and A. Kostochka. Extremal graphs for a graph packing theorem of sauer and spencer.

Combinatorics, Probability and Computing, 16(3):409–416, 2007.

- H. Kaul, A. Kostochka, and Gexin Yu. On a graph packing conjecture by bollobás, eldridge and catlin. *Combinatorica*, 28:469–485, 07 2008.
- A. Kostochka and Gexin Yu. An ore-type analogue of the sauer-spencer theorem. *Graphs and Combinatorics*, 23:419–424, 08 2007.

References III

N. Sauer and J. Spencer.
Edge disjoint placement of graphs.
Journal of Combinatorial Theory, Series B, 25(3):295 – 302, 1978.