Bollobás-Eldridge-Catlin Conjecture

Rafał Burczyński
Institute of Theoretical Computer Science Jagiellonian University

January 28, 2021

Packing

Packing

Let G_{1} and G_{2} be graphs with n vertices. We say that G_{1} and G_{2} pack if they are both edge-disjoint subgraphs of a n-vertex complete graph.

Packing

Let G_{1} and G_{2} be graphs with n vertices. We say that G_{1} and G_{2} pack if they are both edge-disjoint subgraphs of a n-vertex complete graph.

Packing

Let G_{1} and G_{2} be graphs with n vertices. We say that G_{1} and G_{2} pack if they are both edge-disjoint subgraphs of a n-vertex complete graph.

Packing

Since H is a subgraph of G if and only if H packs with \bar{G}, every graph property involving one graph being a subgraph of another can be expressed in terms of packing, e.g.:

Packing

Since H is a subgraph of G if and only if H packs with \bar{G}, every graph property involving one graph being a subgraph of another can be expressed in terms of packing, e.g.:

- G is Hamiltonian if and only if \bar{G} packs with a cycle C_{n},

Packing

Since H is a subgraph of G if and only if H packs with \bar{G}, every graph property involving one graph being a subgraph of another can be expressed in terms of packing, e.g.:

- G is Hamiltonian if and only if \bar{G} packs with a cycle C_{n},
- G contains a clique (resp. independent set) of size k if and only if \bar{G} (resp. G) packs with $K_{k} \oplus I_{n-k}$,

Packing

Since H is a subgraph of G if and only if H packs with \bar{G}, every graph property involving one graph being a subgraph of another can be expressed in terms of packing, e.g.:

- G is Hamiltonian if and only if \bar{G} packs with a cycle C_{n},
- G contains a clique (resp. independent set) of size k if and only if \bar{G} (resp. G) packs with $K_{k} \oplus I_{n-k}$,
- G is k-partite with part sizes $l_{1}, \ldots, l_{k}\left(l_{1}+\ldots+l_{k}=n\right)$ if and only if G packs with $K_{l_{1}} \oplus \ldots \oplus K_{l_{k}}$.

Packing - example

Theorem (Ore)
If in n-vertex graph G for every pair of non-adjacent vertices u, v we have $\delta(u)+\delta(v) \geq n$, then G is Hamiltonian.

Packing - example

Theorem (Ore)

If in n-vertex graph G for every pair of non-adjacent vertices u, v we have $\delta(u)+\delta(v) \geq n$, then G is Hamiltonian.

In terms of packing:
If in n-vertex graph G for every pair of non-adjacent vertices u, v we have $\delta(u)+\delta(v) \leq n-2$, then G packs with a cycle C_{n}.

Conjecture 1 (Bollobás, Eldridge (1978), Catlin (1974))
If

$$
\left(\Delta\left(G_{1}\right)+1\right)\left(\Delta\left(G_{2}\right)+1\right)<n+1
$$

then G_{1} and G_{2} pack.

Conjecture 1 (Bollobás, Eldridge (1978), Catlin (1974))

If

$$
\left(\Delta\left(G_{1}\right)+1\right)\left(\Delta\left(G_{2}\right)+1\right)<n+1,
$$

then G_{1} and G_{2} pack.
Equivalently:
For any $k \leq n$ and any n-vertex graph G_{1}, if

$$
\delta\left(\overline{G_{1}}\right)>\frac{k n-1}{k+1},
$$

then $\overline{G_{1}}$ has as subgraphs all n-vertex graphs G_{2} such that $\Delta\left(G_{2}\right) \leq k$.

Hajnal-Szemerédi Theorem

Theorem 1 (Hajnal, Szemerédi)

Every n-vertex graph G satisfying $\Delta(G)<k$ is k-colorable with every color occuring either $\left\lfloor\frac{n}{k}\right\rfloor$ or $\left\lceil\frac{n}{k}\right\rceil$ times.

Hajnal-Szemerédi Theorem

Theorem 1 (Hajnal, Szemerédi)

Every n-vertex graph G satisfying $\Delta(G)<k$ is k-colorable with every color occuring either $\left\lfloor\frac{n}{k}\right\rfloor$ or $\left\lceil\frac{n}{k}\right\rceil$ times.

Corollary

Conjecture 1 implies Theorem 1 (when $k \mid n$).

Hajnal-Szemerédi Theorem

Theorem 1 (Hajnal, Szemerédi)

Every n-vertex graph G satisfying $\Delta(G)<k$ is k-colorable with every color occuring either $\left\lfloor\frac{n}{k}\right\rfloor$ or $\left\lceil\frac{n}{k}\right\rceil$ times.

Corollary

Conjecture 1 implies Theorem 1 (when $k \mid n$).

Proof.

For given k and G set H to be a sum of k disjoint cliques of size $\frac{n}{k}$. Since $(\Delta(G)+1)(\Delta(H)+1) \leq k \cdot \frac{n}{k}=n$, we get that G and H pack - but every ,,packed" clique in H corresponds to an independent set in G and we get desired result.

Case of $\Delta\left(G_{1}\right) \leq 1$

Theorem

Conjecture 1 holds for $\Delta\left(G_{1}\right) \leq 1$.

Case of $\Delta\left(G_{1}\right) \leq 1$

Theorem

Conjecture 1 holds for $\Delta\left(G_{1}\right) \leq 1$.
Let's consider G_{2} 's complementary $\overline{G_{2}}$. We have $\delta\left(\overline{G_{2}}\right)>\frac{n-1}{2}$ - determining whether G_{1} and G_{2} pack is equivalent to finding a matching of size $\left|E\left(G_{1}\right)\right| \leq\lfloor n / 2\rfloor$ in $\overline{G_{2}}$.

Case of $\Delta\left(G_{1}\right) \leq 1$

Theorem

Conjecture 1 holds for $\Delta\left(G_{1}\right) \leq 1$.
Let's consider G_{2} 's complementary $\overline{G_{2}}$. We have $\delta\left(\overline{G_{2}}\right)>\frac{n-1}{2}$ - determining whether G_{1} and G_{2} pack is equivalent to finding a matching of size $\left|E\left(G_{1}\right)\right| \leq\lfloor n / 2\rfloor$ in $\overline{G_{2}}$.
Let's arbitrarily split $\overline{G_{2}}$ into groups of $\lfloor n / 2\rfloor$ and $\lceil n / 2\rceil$ vertices. Then as long as the process increases the number of edges between groups, swap two vertices v_{1}, v_{2} with minimal number of edges to the other group.

Case of $\Delta\left(G_{1}\right) \leq 1$ cont.

Case of $\Delta\left(G_{1}\right) \leq 1$ cont.

We have $e_{1,2}+e_{2,1} \geq e_{1,1}+e_{2,2}$, therefore $e_{1,2}+e_{2,1} \geq \frac{1}{2}\left(e_{1,1}+e_{1,2}+e_{2,1}+e_{2,2}\right)>\frac{1}{2}\left(2 \cdot \frac{n-1}{2}\right)=\frac{n-1}{2}$.

Case of $\Delta\left(G_{1}\right) \leq 1$ cont.

We have $e_{1,2}+e_{2,1} \geq e_{1,1}+e_{2,2}$, therefore $e_{1,2}+e_{2,1} \geq \frac{1}{2}\left(e_{1,1}+e_{1,2}+e_{2,1}+e_{2,2}\right)>\frac{1}{2}\left(2 \cdot \frac{n-1}{2}\right)=\frac{n-1}{2}$.
Let R denote the set of red vertices. Now we apply Hall's theorem: let's take $A \subseteq R$. If $|A| \leq e_{1,2}$, then the condition is satisfied trivially. If $|A|>e_{1,2}$, then every blue v must have an edge leading to A (by pigeonhole principle: $\delta(v, R)+|A|>\frac{n-1}{2}$) and the condition holds as well, so we can match every red vertex.

Case of $\Delta\left(G_{1}\right) \leq 2$

Case of $\Delta\left(G_{1}\right) \leq 2$

Theorem 2 (Catlin (1976))
If $\Delta\left(G_{1}\right) \leq 2$ and $\Delta\left(G_{2}\right) \leq \frac{n}{3}-\max \left(9, \frac{3}{2} n^{1 / 3}\right)$ then G_{1} and G_{2} pack.

Case of $\Delta\left(G_{1}\right) \leq 2$

Theorem 2 (Catlin (1976))
If $\Delta\left(G_{1}\right) \leq 2$ and $\Delta\left(G_{2}\right) \leq \frac{n}{3}-\max \left(9, \frac{3}{2} n^{1 / 3}\right)$ then G_{1} and G_{2} pack.

Theorem 3 (Aigner, Brandt (1993))
Conjecture 1 holds for $\Delta\left(G_{1}\right) \leq 2$.

Case of $\Delta\left(G_{1}\right) \leq 3$

Case of $\Delta\left(G_{1}\right) \leq 3$

Theorem 4 (Csaba, Shokoufandeh, Szemerédi (2003))

There exists an n_{0} such that for all $n \geq n_{0}$ the following statement holds: Let H be a graph on n vertices with $\Delta(H) \leq 3$. If G is any n-vertex graph such that

$$
\delta(G) \geq \frac{3 n-1}{4}
$$

then G contains H as a spanning subgraph.

Sauer-Spencer theorem

Theorem 5 (Sauer, Spencer (1978))

G_{1} and G_{2} pack if any of the following holds:

1. $\left|E\left(G_{1}\right)\right|,\left|E\left(G_{2}\right)\right| \leq n-2$,
2. $\left|E\left(G_{1}\right)\right| \cdot\left|E\left(G_{2}\right)\right|<\binom{n}{2}$,
3. $\Delta\left(G_{1}\right) \cdot \Delta\left(G_{2}\right)<\frac{n}{2}$.

Sauer-Spencer theorem

Theorem 5 (Sauer, Spencer (1978))

G_{1} and G_{2} pack if any of the following holds:

1. $\left|E\left(G_{1}\right)\right|,\left|E\left(G_{2}\right)\right| \leq n-2$,
2. $\left|E\left(G_{1}\right)\right| \cdot\left|E\left(G_{2}\right)\right|<\binom{n}{2}$,
3. $\Delta\left(G_{1}\right) \cdot \Delta\left(G_{2}\right)<\frac{n}{2}$.

These conditions cannot be weakened for even n :

- For (1) and (2) we cannot pack a star ($n-1$ edges) and a perfect matching ($n / 2$ edges).

Sauer-Spencer theorem cont.

- For (3), we cannot pack a perfect matching $\left(\Delta\left(G_{1}\right)=1\right)$ and:

Sauer-Spencer theorem cont.

- For (3), we cannot pack a perfect matching $\left(\Delta\left(G_{1}\right)=1\right)$ and:
- for odd $\frac{n}{2}$: a $K_{n / 2, n / 2}$,

Sauer-Spencer theorem cont.

- For (3), we cannot pack a perfect matching $\left(\Delta\left(G_{1}\right)=1\right)$ and:
- for odd $\frac{n}{2}$: a $K_{n / 2, n / 2}$,

- for even $\frac{n}{2}$: a $K_{n / 2+1}$ and $\frac{n}{2}-1$ isolated vertices.

Sauer-Spencer theorem cont.

Theorem 6 (Kaul, Kostochka (2007))
Let $\Delta\left(G_{1}\right) \cdot \Delta\left(G_{2}\right) \leq \frac{n}{2}$. Then G_{1} and G_{2} do not pack if and only if one of them is a perfect matching and the other either:

- is a $K_{n / 2, n / 2}$ (with $\frac{n}{2}$ odd), or
- contains $K_{n / 2+1}$.

Sauer-Spencer theorem cont.

Theorem 6 (Kaul, Kostochka (2007))
Let $\Delta\left(G_{1}\right) \cdot \Delta\left(G_{2}\right) \leq \frac{n}{2}$. Then G_{1} and G_{2} do not pack if and only if one of them is a perfect matching and the other either:

- is a $K_{n / 2, n / 2}$ (with $\frac{n}{2}$ odd), or
- contains $K_{n / 2+1}$.

Finally, another variation on the constant:

Theorem 7 (Kaul, Kostochka, Yu (2008))

Let $\Delta\left(G_{1}\right), \Delta\left(G_{2}\right) \geq 300$. Then if
$\left(\Delta\left(G_{1}\right)+1\right)\left(\Delta\left(G_{2}\right)+1\right) \leq 0.6 n+1$, then G_{1} and G_{2} pack.

Line graph

For a graph G, let $L(G)$ denote a line graph of G, i.e. a graph of adjacencies between edges of G.

Line graph

For a graph G, let $L(G)$ denote a line graph of G, i.e. a graph of adjacencies between edges of G.

G

$L(G)$

Line graph

For a graph G, let $L(G)$ denote a line graph of G, i.e. a graph of adjacencies between edges of G.

G

$L(G)$

Let

$$
\Theta(G)=\max \{\delta(u)+\delta(v): u v \in E(G)\}
$$

Note that $\Theta(G)=\Delta(L(G))+2$.

Theorem 8 (Kostochka, Yu (2007))

If $\Theta\left(G_{1}\right) \Delta\left(G_{2}\right) \leq n$, then G_{1} and G_{2} pack, unless either of the following is true:

- G_{1} is a perfect matching and G_{2} either is $K_{n / 2, n / 2}$ with $\frac{n}{2}$ odd or contains $K_{n / 2+1}$,
- G_{2} is a perfect matching, and G_{1} either is $K_{r, n-r}$ with r odd or contains $K_{n / 2+1}$.

References I

㞒 M. Aigner and S. Brandt.
Embedding arbitrary graphs of maximum degree two.
Journal of the London Mathematical Society, s2-48(1):39-51, 1993.

R B. Bollobás and S.E. Eldridge.
Packings of graphs and applications to computational complexity.
Journal of Combinatorial Theory, Series B, 25(2):105124, 1978.

E P. Catlin.
Embedding subgraphs and coloring graphs under extremal degree conditions.
PhD thesis, Ohio State University, 1976.

References II

Bela Csaba, Ali Shokoufandeh, and Endre Szemerédi.
Proof of a conjecture of bollobás and eldridge for graphs of maximum degree three.
Combinatorica, 23:35-72, 102003.
EH. Kaul and A. Kostochka.
Extremal graphs for a graph packing theorem of sauer and spencer.
Combinatorics, Probability and Computing, 16(3):409-416, 2007.
H. Kaul, A. Kostochka, and Gexin Yu.

On a graph packing conjecture by bollobás, eldridge and catlin.
Combinatorica, 28:469-485, 072008.
围 A. Kostochka and Gexin Yu.
An ore-type analogue of the sauer-spencer theorem.
Graphs and Combinatorics, 23:419-424, 082007.

References III

N. Sauer and J. Spencer.Edge disjoint placement of graphs.
Journal of Combinatorial Theory, Series B, 25(3):295 302, 1978.

