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Algorithmic Game Theory background

Sealed-bid auction

1. Each bidder i privately communicates a bid bi to the seller - in a sealed
envelope, if you like.

2. The seller decides who gets the item (if anyone).
3. The seller decides on a selling price.

First-price auction

Second-price auction

Kamil Kropiewnicki Combinatorial Optimization Seminar 25.02.2021 3 / 20



Algorithmic Game Theory background

Sealed-bid auction

1. Each bidder i privately communicates a bid bi to the seller - in a sealed
envelope, if you like.

2. The seller decides who gets the item (if anyone).
3. The seller decides on a selling price.

First-price auction

Second-price auction

Kamil Kropiewnicki Combinatorial Optimization Seminar 25.02.2021 3 / 20



Algorithmic Game Theory background

Sealed-bid auction

1. Each bidder i privately communicates a bid bi to the seller - in a sealed
envelope, if you like.

2. The seller decides who gets the item (if anyone).
3. The seller decides on a selling price.

First-price auction

Second-price auction

Kamil Kropiewnicki Combinatorial Optimization Seminar 25.02.2021 3 / 20



Algorithmic Game Theory background

Sealed-bid auction

1. Each bidder i privately communicates a bid bi to the seller - in a sealed
envelope, if you like.

2. The seller decides who gets the item (if anyone).
3. The seller decides on a selling price.

First-price auction

Second-price auction

Kamil Kropiewnicki Combinatorial Optimization Seminar 25.02.2021 3 / 20



Algorithmic Game Theory background

Single-parameter environment

Sponsored Search Auctions
CTR - click-through rate:
The CTR αj of a slot j represents the probability that the end user
clicks on this slot. Ordering the slots from top to bottom, we make
the reasonable assumption that α1 ≥ α2 ≥ . . . ≥ αm.

Maximizing expected revenue:

E
v∼σ

[
∑
i

pi (v)] = E
v∼σ

[
∑
i

ϕi (v)xi (v)]

Reserve price (in an example below, ri ≥ ϕ−1i (0))
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Applying the mentioned approach to the real world setting

The previous approach utilizes ϕi (v) that depends on σi . How to
discover σi then?

Associate a set of features (contextual information) with each
auction, such as:

I publisher data (e.g. ad site and ad size)
I user data (e.g.device type and various geographic information)
I time (e.g. date and hour)
I . . .

Use some kind of function f : F → Σ, where
F - a family of sets of features
Σ - set of probability distributions

Problem with this solution

f is an intermediate step that is potentially error-prone and
computationally expensive.
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Motivation

A form of auction commonly used in practice by Ad Exchanges is a
second-price auction with reserve price.

In real time bidding (RTB) for display ads, a user visiting a webpage
instantaneously triggers an auction held by an Ad Exchange, wherein
the winner of the auction earns the ad slot and pays the publisher a
certain price.

Digital advertising is a tremendously fast growing industry: the
worldwide digital advertising expenditure was $283 billion in 2018,
and it is estimated to further grow to $517 billion in 2023.
(For comparison, according to Google Answer Box, GDP in Poland in
2018 was $587 billion).
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The paper

Contextual Reserve Price Optimization in Auctions via
Mixed-Integer Programming

Joey Huchette Haihao Lu Hossein Esfandiari
Rice University University of Chicago Google Research

Vahab Mirrokni
Google Research

34th Conference on Neural Information Processing Systems
(NeurIPS 2020), Vancouver, Canada
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Reserve Price Optimization problem

Reserve Price Optimization problem

max
β∈X
R(β) :=

1

n

n∑
i=1

r(wi · β; b
(1)
i ; b

(2)
i )

b
(1)
i ; b

(2)
i - the (nonnegative) highest and second highest bidding price

of impression i

wi ∈ Rd is the contextual feature vector of impression i

X = [L,U] ⊂ Rd is a bounded hypercube which serves as a feasible
region for the model parameters β
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Reward function

r(v ; b(1); b(2)) :=


b(2) v ≤ b(2)

v b(2) < v ≤ b(1)

0 v > b(1)
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Main results

1. Hardness:
There is no algorithm that solves this optimization problem in
polynomial time unless ETH fails.
Reduction to k-densest subgraph problem.

2. Mixed-Integer Programming (MIP) formulation:
MIP that exactly models the underlying discontinuous reward
function.
Linear Programming (LP) relaxation that yields feasible solutions.

3. Computational validation:
Both on syntetic and real data. Experiments show that MIP
formulation is state-of-the-art.
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Hardness - Reduction to k-densest subgraph problem

k-densest subgraph problem

Take a graph G = (VG ,EG ), k ∈ N. The goal is to find a subgraph

H = (VH ,EH) ⊆ G with |VE | = k that maximizes |EH |
|VH | .

It is known that it is impossible to give a polynomial 1
8 -approximation

algorithm for the k-densest subgraph problem unless ETH fails.

Goal: show that, for any G and k, we can construct such Reserve
Price Optimization problem that if it were possible to solve it in
polynomial time, this would imply it is possible to find a
1
8 -approximate solution to a k-densest subgraph problem for G .
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Hardness - proof

Have G , k as an input. Set X = [0, 1]d . We have two types of impressions:

|VG |2 impressions (w1, k, 0), where w1 =< 1, 1, . . . , 1 >.

∀e=(u,v)∈EG
: exists one impression (we , 2, 1.5), where we has 1 on

indices corresponding to v and u and 0 otherwise.

Let H = (VH ,EH) be a k-densest subgraph of G . Define βH as a
vector with 1 on indices correspondng to v ∈ VH and 0 otherwise.
R(βH) is a lower bound of the optimum solution.

R(βH) = 1
n (k |VG |2 + 2|EH |+ 1.5|EG\H |) =

1
n (k |VG |2 + 1.5|EG |+ 0.5|EH |)
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Hardness - proof

Let βOPT =< β1, β2, . . . , β|VG | > be the vector that maximizes R(β).

∑
v βv ≤ k (otherwise we wouldn’t get anything from impressions of

the first type, which would lead to βH being a superior solution)

Let V β := {v ∈ VG : βv ≥ 0.5};Gβ = (V β,Eβ)

R(βOPT ) ≤ 1
n (k |VG |2 + 1.5|EG |+ 0.5|Eβ|)

R(βH) ≤ R(βOPT ) =⇒ |EH | ≤ |Eβ|
V β := {v ∈ VG : βv ≥ 0.5} ∧

∑
v βv ≤ k =⇒ |V β| ≤ 2k

Given a graph with 2k vertices, one can easily cover the edges with 8

subgraphs of size k . One of these subgraphs has at least |E
β |
8 edges. Since

|Eβ| ≥ |EH |, we found 1
8 -approximate solution to the k-densest subgraph

problem.
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Mixed-Integer Programming formulation

We want to model: maxβ∈X R(β) := 1
n

∑n
i=1 r(wi · β; b

(1)
i ; b

(2)
i ).

Let gr(r(·; b(1); b(2));D) := {(v , y) : v ∈ D, y = r(v ; b(1); b(2))}

max
β,v ,y

1

n

n∑
i=1

yi (1a)

s.t. vi = wi · β ∀i ∈ ‖n‖ (1b)

(vi , yi ) ∈ cl(gr(r(·; b(1); b(2)); [li , ui ]) ∀i ∈ ‖n‖ (1c)

β ∈ X (1d)
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Mixed-Integer Programming formulation

A valid MIP formulation for the constraint

(vi , yi ) ∈ cl(gr(r(·; b(1); b(2)); [li , ui ])

is:

y ≤ b(2)z1 + b(1)z2, y ≥ b(2)(z1 + z2) (2a)

y ≤ v + (b(2) − l)z1 − b(1)z3, y ≥ v − uz3 (2b)

l ≤ v ≤ u (2c)

z1 + z2 + z3 = 1, z ∈ [0, 1]3 (2d)

z ∈ Z3 (2e)
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Linear programming relaxation

Linear programming relaxation (LP) is the formulation of MIP with
integrality constraint (in our case: z ∈ Z3) omitted.

Optimal reward for LP upper bounds the reward for any feasible
solution for the original problem of Reserve Price Optimization
problem.

LP is solvable in polynomial time

Tightness: All extreme points of this LP relaxation are integral. We
call such MIP ideal.

If n = 1, the LP relaxation LP is exact, and so exactly represents the
convex hull of feasible points for MIP. Unfortunately, the composition
of ideal formulations will, in general, fail to be ideal. In fact, the
optimal reward from LP can be arbitrarily bad as n grows.
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The feasible region

In the optimization problem we look for maxβ∈X . How to choose X?

The feasible region

We cannot bound the magnitude of the components of an optimal solution
solely as a function of n, d , and the magnitude of the data.

Proof:
Parametrize the sequence of instances by i . For each i , define

w i ,1 = (
√

1− i−2, i−1),w i ,2 = (−
√

1− i−2, i−1), b
(1)
i = 1, b

(2)
i = 0. Note

that ‖w i ,1‖2 = ‖w i ,2‖2 = 1, and so all the problem data is bounded by
magnitude by one. The unique optimal solution is βi ,∗ = (0, i)
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Computational study
Authors compared 7 methods:

1. CP: maxv
1
n

∑n
i=1 r(v ; b

(1)
i ; b

(2)
i ) - the optimal constant reserve price

policy.

2. LP

3. MIP: MIP terminated after a time limit

4. MIP-R: MIP terminated at the root node (solver-specific)

5. DC: The difference-of-convex algorithm of Mohri and Medina (a
previous state-of-the-art)

6. GA: Gradient ascent

7. UB: 1
n

∑n
i=1 b

(1)
i - optimum (upperbound)

The metric used is “gap closed” of the improvement of MIP over DC:

MIP − DC

UB − DC

GA has very poor performance, which is unsuprising given the Figure (1).
However, Neural Networks are trained using gradient-based algorithms -
which indicate that they might fail in such a setting.
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My thoughts: what I liked

Paper that expands a topic covered on classes.
A different approach to the problem compared to the one from
Algorithmic Game Theory.

Paper from Machine Learning conference that resembles what we are
used to.
Mathematical approach rather than purely empirical.

Difficulty: it’s inspiring that problems that are both long studied and
of great importance still have easy approaches/solutions to discover.
(Especially given the fact that the paper got accepted to NeurIPS)
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