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Basic definitions

For a graph G and its coloring ¢, we define:

@ Let H be a connected subgraph of G. If there exists v € H such that
no other vertex u € H has a color ¢(v), then we say that H has a
center and, we call v the center.

@ If every connected subgraph of G has a center, then ¢ is a centered
coloring.

@ If every path in G has a center, then ¢ is a linear coloring.
e cen(G) and lin(G)

lin(G) < cen(G)
cen(G) < lin**(G) -
cen(G) < 2-lin(G)



Plan

@ Linear and centered colorings, treedepth and the problem statement.
@ When are they the same?

© The lower bound.

@ Interval graphs and path width.

© Trees.

O General case.

@ Hardness of the LINEAR COLORING RECOGNITION problem.



Treedepth

td(G) = minimal depth of an elimination tree
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Paths, cycles
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Hereditary Hamiltonian path, for example: a(G) =
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Path width

@ pw(G) = minimal width of a path decomposition

o pw(T,)>n

@ pw(G) > n= F is a minor of G for every |F| =n+1
e cen(G) < pw?(G) - lin(G)
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Trees
e cen(T) < log(A)-lin(T)
e cen(T) > log(3) - lin(T) for binary trees
@ What about an upper bound for large degree trees?
e td(T) = d = there exists C C T subcubic tree with td(C) > 1€¢ . ¢
(Czerwinski, Nadara, Pilipczuk)

o cen(T) = td(T) < {2td(C) < '%&2 - 1in(C)
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The general case

Kawarabayashi, Rossman theorem (2018, upgraded by C,N,P)

If td(G) = C - k3, then one of the following:
@ G contains 2¥ - path
@ G contains k - binary tree (as a subdivision)
Q tw(G) > k
We want: cen(G) < lin®*(G)
Q@ k<lin(G)
Q@ k <lin(G) - log(3)
© More complicated...



Wrap up

The grid theorem (2019 - Chuzhoy, Tan)

If tw(G) > n°, then G contains B, as a minor.



Wrap up

The grid theorem (2019 - Chuzhoy, Tan)
If tw(G) > n°, then G contains B, as a minor.
Technical lemma from the paper:

If G contains B, as a minor, then lin?(G) > n



Wrap up

The grid theorem (2019 - Chuzhoy, Tan)
If tw(G) > n°, then G contains B, as a minor.
Technical lemma from the paper:

If G contains B, as a minor, then lin?(G) > n
Wrap up:

td = n®* = tw > n'® = B, = lin® > n?

cen(G) = td(G) < lin®*(G)



LINEAR COLORING RECOGNITION

o NON-CENTERED PATH - is there a path without center in G wrt ¢?



LINEAR COLORING RECOGNITION

o NON-CENTERED PATH - is there a path without center in G wrt ¢7
@ Reduction from CNF-SAT = NP-complete




LINEAR COLORING RECOGNITION

o NON-CENTERED PATH - is there a path without center in G wrt ¢7
@ Reduction from CNF-SAT = NP-complete
o LINEAR RECOGNITION RECOGNITION is coNP-complete




