Polynomial Treedepth Bounds in Linear Colorings

Jedrzej Hodor

Jeremy Kun, Michael P. O'Brien, Marcin Pilipczuk, Blair D. Sullivan, 2020

11 March 2021

Basic definitions

For a graph G and its coloring ϕ, we define:

- Let H be a connected subgraph of G. If there exists $v \in H$ such that no other vertex $u \in H$ has a color $\phi(v)$, then we say that H has a center and, we call v the center.

Basic definitions

For a graph G and its coloring ϕ, we define:

- Let H be a connected subgraph of G. If there exists $v \in H$ such that no other vertex $u \in H$ has a color $\phi(v)$, then we say that H has a center and, we call v the center.
- If every connected subgraph of G has a center, then ϕ is a centered coloring.

Basic definitions

For a graph G and its coloring ϕ, we define:

- Let H be a connected subgraph of G. If there exists $v \in H$ such that no other vertex $u \in H$ has a color $\phi(v)$, then we say that H has a center and, we call v the center.
- If every connected subgraph of G has a center, then ϕ is a centered coloring.
- If every path in G has a center, then ϕ is a linear coloring.

Basic definitions

For a graph G and its coloring ϕ, we define:

- Let H be a connected subgraph of G. If there exists $v \in H$ such that no other vertex $u \in H$ has a color $\phi(v)$, then we say that H has a center and, we call v the center.
- If every connected subgraph of G has a center, then ϕ is a centered coloring.
- If every path in G has a center, then ϕ is a linear coloring.
- cen (G) and $\operatorname{lin}(G)$

Basic definitions

For a graph G and its coloring ϕ, we define:

- Let H be a connected subgraph of G. If there exists $v \in H$ such that no other vertex $u \in H$ has a color $\phi(v)$, then we say that H has a center and, we call v the center.
- If every connected subgraph of G has a center, then ϕ is a centered coloring.
- If every path in G has a center, then ϕ is a linear coloring.
- $\operatorname{cen}(G)$ and $\operatorname{lin}(G)$

$$
\operatorname{lin}(G) \leqslant \operatorname{cen}(G)
$$

Basic definitions

For a graph G and its coloring ϕ, we define:

- Let H be a connected subgraph of G. If there exists $v \in H$ such that no other vertex $u \in H$ has a color $\phi(v)$, then we say that H has a center and, we call v the center.
- If every connected subgraph of G has a center, then ϕ is a centered coloring.
- If every path in G has a center, then ϕ is a linear coloring.
- $\operatorname{cen}(G)$ and $\operatorname{lin}(G)$

$$
\begin{gathered}
\operatorname{lin}(G) \leqslant \operatorname{cen}(G) \\
\operatorname{cen}(G) \leqslant \operatorname{lin}^{54}(G) \cdot \ldots
\end{gathered}
$$

Basic definitions

For a graph G and its coloring ϕ, we define:

- Let H be a connected subgraph of G. If there exists $v \in H$ such that no other vertex $u \in H$ has a color $\phi(v)$, then we say that H has a center and, we call v the center.
- If every connected subgraph of G has a center, then ϕ is a centered coloring.
- If every path in G has a center, then ϕ is a linear coloring.
- $\operatorname{cen}(G)$ and $\operatorname{lin}(G)$

$$
\begin{gathered}
\operatorname{lin}(G) \leqslant \operatorname{cen}(G) \\
\operatorname{cen}(G) \leqslant \operatorname{lin}^{54}(G) \cdot \ldots \\
\operatorname{cen}(G) \leqslant 2 \cdot \operatorname{lin}(G)
\end{gathered}
$$

Plan

(1) Linear and centered colorings, treedepth and the problem statement.
(2) When are they the same?
(3) The lower bound.
(9) Interval graphs and path width.
(5) Trees.
(0) General case.
(1) Hardness of the LINEAR COLORING RECOGNITION problem.

Treedepth

$\operatorname{td}(G)=$ minimal depth of an elimination tree

Treedepth vs Centered coloring

$$
\operatorname{td}(G)=\operatorname{cen}(G)
$$

Centered $=$ Linear

Paths, cycles

Centered $=$ Linear

Paths, cycles

Cographs

Centered $=$ Linear

Paths, cycles

Cographs

Centered $=$ Linear

Paths, cycles

Cographs

Hereditary Hamiltonian path, for example: $\alpha(G)=2$

Lower bound

- $\operatorname{lin}\left(R_{i}\right)=i$ (induction)
- $\operatorname{cen}\left(R_{i}\right) \sim 2 i\left(\operatorname{cen}\left(R_{i}\right)=i+\operatorname{cen}\left(R_{p}\right)\right)$

R_{i}

Lower bound

- $\operatorname{lin}\left(R_{i}\right)=i$ (induction)
- $\operatorname{cen}\left(R_{i}\right) \sim 2 i\left(\operatorname{cen}\left(R_{i}\right)=i+\operatorname{cen}\left(R_{p}\right)\right)$

Lower bound

- $\operatorname{lin}\left(R_{i}\right)=i$ (induction)
- $\operatorname{cen}\left(R_{i}\right) \sim 2 i\left(\operatorname{cen}\left(R_{i}\right)=i+\operatorname{cen}\left(R_{p}\right)\right)$

Lower bound

- $\operatorname{lin}\left(R_{i}\right)=i$ (induction)
- $\operatorname{cen}\left(R_{i}\right) \sim 2 i\left(\operatorname{cen}\left(R_{i}\right)=i+\operatorname{cen}\left(R_{p}\right)\right)$

Interval graphs

- $\operatorname{cen}(G) \leqslant \operatorname{lin}^{3}(G)$

Interval graphs

- $\operatorname{cen}(G) \leqslant \operatorname{lin}^{3}(G)$
- $k:=\operatorname{lin}(G)$, fix optimal linear coloring ϕ

Interval graphs

- $\operatorname{cen}(G) \leqslant \operatorname{lin}^{3}(G)$
- $k:=\operatorname{lin}(G)$, fix optimal linear coloring ϕ
- $\omega(G) \leqslant k$

Interval graphs

- $\operatorname{cen}(G) \leqslant \operatorname{lin}^{3}(G)$
- $k:=\operatorname{lin}(G)$, fix optimal linear coloring ϕ
- $\omega(G) \leqslant k$

Interval graphs

- $\operatorname{cen}(G) \leqslant \operatorname{lin}^{3}(G)$
- $k:=\operatorname{lin}(G)$, fix optimal linear coloring ϕ
- $\omega(G) \leqslant k$

Interval graphs

- $\operatorname{cen}(G) \leqslant \operatorname{lin}^{3}(G)$
- $k:=\operatorname{lin}(G)$, fix optimal linear coloring ϕ
- $\omega(G) \leqslant k$

Interval graphs

- $\operatorname{cen}(G) \leqslant \operatorname{lin}^{3}(G)$
- $k:=\operatorname{lin}(G)$, fix optimal linear coloring ϕ
- $\omega(G) \leqslant k$

Interval graphs

- $\operatorname{cen}(G) \leqslant \operatorname{lin}^{3}(G)$
- $k:=\operatorname{lin}(G)$, fix optimal linear coloring ϕ
- $\omega(G) \leqslant k$

Interval graphs

- $\operatorname{cen}(G) \leqslant \operatorname{lin}^{3}(G)$
- $k:=\operatorname{lin}(G)$, fix optimal linear coloring ϕ
- $\omega(G) \leqslant k$
- ϕ uses $k-1$ colors on each cc of G^{\prime} (apex)
- Take ψ centered on G^{\prime} with $f(k-1)$ colors (induction)

Interval graphs

- $\operatorname{cen}(G) \leqslant \operatorname{lin}^{3}(G)$
- $k:=\operatorname{lin}(G)$, fix optimal linear coloring ϕ
- $\omega(G) \leqslant k$
- ϕ uses $k-1$ colors on each cc of G^{\prime} (apex)
- Take ψ centered on G^{\prime} with $f(k-1)$ colors (induction)
- $f(k)=f(k-1)+k^{2} \Rightarrow f(k) \sim k^{3}$

Interval graphs

- $\operatorname{cen}(G) \leqslant \operatorname{lin}^{3}(G)$
- $k:=\operatorname{lin}(G)$, fix optimal linear coloring ϕ
- $\omega(G) \leqslant k$
- ϕ uses $k-1$ colors on each cc of G^{\prime} (apex)
- Take ψ centered on G^{\prime} with $f(k-1)$ colors (induction)
- $f(k)=f(k-1)+k^{2} \Rightarrow f(k) \sim k^{3}$

Interval graphs

- $\operatorname{cen}(G) \leqslant \operatorname{lin}^{3}(G)$
- $k:=\operatorname{lin}(G)$, fix optimal linear coloring ϕ
- $\omega(G) \leqslant k$
- ϕ uses $k-1$ colors on each cc of G^{\prime} (apex)
- Take ψ centered on G^{\prime} with $f(k-1)$ colors (induction)
- $f(k)=f(k-1)+k^{2} \Rightarrow f(k) \sim k^{3}$

Interval graphs

- $\operatorname{cen}(G) \leqslant \operatorname{lin}^{3}(G)$
- $k:=\operatorname{lin}(G)$, fix optimal linear coloring ϕ
- $\omega(G) \leqslant k$
- ϕ uses $k-1$ colors on each cc of G^{\prime} (apex)
- Take ψ centered on G^{\prime} with $f(k-1)$ colors (induction)
- $f(k)=f(k-1)+k^{2} \Rightarrow f(k) \sim k^{3}$

Interval graphs

- $\operatorname{cen}(G) \leqslant \operatorname{lin}^{3}(G)$
- $k:=\operatorname{lin}(G)$, fix optimal linear coloring ϕ
- $\omega(G) \leqslant k$
- ϕ uses $k-1$ colors on each cc of G^{\prime} (apex)
- Take ψ centered on G^{\prime} with $f(k-1)$ colors (induction)
- $f(k)=f(k-1)+k^{2} \Rightarrow f(k) \sim k^{3}$

Path width

Path width

Path width

- $\mathrm{pw}(G)=$ minimal width of a path decomposition

Path width

- $\operatorname{pw}(G)=$ minimal width of a path decomposition
- $\operatorname{pw}\left(T_{n}\right) \geqslant n$

Path width

- $\operatorname{pw}(G)=$ minimal width of a path decomposition
- $\operatorname{pw}\left(T_{n}\right) \geqslant n$
- $\operatorname{pw}(G) \geqslant n \Rightarrow F$ is a minor of G for every $|F|=n+1$

Path width

- $\operatorname{pw}(G)=$ minimal width of a path decomposition
- $\operatorname{pw}\left(T_{n}\right) \geqslant n$
- $\operatorname{pw}(G) \geqslant n \Rightarrow F$ is a minor of G for every $|F|=n+1$
- $\operatorname{cen}(G) \leqslant \operatorname{pw}^{2}(G) \cdot \operatorname{lin}(G)$

Trees

- $\operatorname{cen}(T) \leqslant \log (\Delta) \cdot \operatorname{lin}(T)$

Trees

- $\operatorname{cen}(T) \leqslant \log (\Delta) \cdot \operatorname{lin}(T)$
- $\operatorname{cen}(T) \geqslant \log (3) \cdot \operatorname{lin}(T)$ for binary trees

Trees

- $\operatorname{cen}(T) \leqslant \log (\Delta) \cdot \operatorname{lin}(T)$
- $\operatorname{cen}(T) \geqslant \log (3) \cdot \operatorname{lin}(T)$ for binary trees
- What about an upper bound for large degree trees?

Trees

- $\operatorname{cen}(T) \leqslant \log (\Delta) \cdot \operatorname{lin}(T)$
- $\operatorname{cen}(T) \geqslant \log (3) \cdot \operatorname{lin}(T)$ for binary trees
- What about an upper bound for large degree trees?
- $\operatorname{td}(T)=d \Rightarrow$ there exists $C \subset T$ subcubic tree with $\operatorname{td}(C) \geqslant \frac{\log \varphi}{\log 3} \cdot d$ (Czerwiński, Nadara, Pilipczuk)

Trees

- $\operatorname{cen}(T) \leqslant \log (\Delta) \cdot \operatorname{lin}(T)$
- $\operatorname{cen}(T) \geqslant \log (3) \cdot \operatorname{lin}(T)$ for binary trees
- What about an upper bound for large degree trees?
- $\operatorname{td}(T)=d \Rightarrow$ there exists $C \subset T$ subcubic tree with $\operatorname{td}(C) \geqslant \frac{\log \varphi}{\log 3} \cdot d$ (Czerwiński, Nadara, Pilipczuk)
- $\operatorname{cen}(T)=\operatorname{td}(T) \leqslant \frac{\log 3}{\log \varphi} \operatorname{td}(C) \leqslant \frac{\log ^{2} 3}{\log \varphi} \cdot \operatorname{lin}(C)$

The general case

Kawarabayashi, Rossman theorem (2018, upgraded by C,N,P)
If $\operatorname{td}(G)=C \cdot k^{3}$, then one of the following:
(1) G contains 2^{k} - path
(2) G contains k - binary tree (as a subdivision)
(3) $\operatorname{tw}(G) \geqslant k$

The general case

Kawarabayashi, Rossman theorem (2018, upgraded by C,N,P)
If $\operatorname{td}(G)=C \cdot k^{3}$, then one of the following:
(1) G contains 2^{k} - path
(2) G contains k - binary tree (as a subdivision)
(3) $\operatorname{tw}(G) \geqslant k$

We want: $\operatorname{cen}(G) \leqslant \operatorname{lin}^{54}(G)$

The general case

Kawarabayashi, Rossman theorem (2018, upgraded by C,N,P)
If $\operatorname{td}(G)=C \cdot k^{3}$, then one of the following:
(1) G contains 2^{k} - path
(2) G contains k - binary tree (as a subdivision)
(3) $\operatorname{tw}(G) \geqslant k$

We want: $\operatorname{cen}(G) \leqslant \operatorname{lin}^{54}(G)$
(1) $k \leqslant \operatorname{lin}(G)$

The general case

Kawarabayashi, Rossman theorem (2018, upgraded by C,N,P)
If $\operatorname{td}(G)=C \cdot k^{3}$, then one of the following:
(1) G contains 2^{k} - path
(2) G contains k - binary tree (as a subdivision)
(3) $\operatorname{tw}(G) \geqslant k$

We want: $\operatorname{cen}(G) \leqslant \operatorname{lin}^{54}(G)$
(1) $k \leqslant \operatorname{lin}(G)$
(2) $k \leqslant \operatorname{lin}(G) \cdot \log (3)$

The general case

Kawarabayashi, Rossman theorem (2018, upgraded by C,N,P)
If $\operatorname{td}(G)=C \cdot k^{3}$, then one of the following:
(1) G contains 2^{k} - path
(2) G contains k - binary tree (as a subdivision)
(3) $\operatorname{tw}(G) \geqslant k$

We want: $\operatorname{cen}(G) \leqslant \operatorname{lin}^{54}(G)$
(1) $k \leqslant \operatorname{lin}(G)$
(2) $k \leqslant \operatorname{lin}(G) \cdot \log (3)$
(3) More complicated...

Wrap up

The grid theorem (2019 - Chuzhoy, Tan)
If $\operatorname{tw}(G) \geqslant n^{9}$, then G contains \boxplus_{n} as a minor.

Wrap up

The grid theorem (2019 - Chuzhoy, Tan)
If $\operatorname{tw}(G) \geqslant n^{9}$, then G contains \boxplus_{n} as a minor.

Technical lemma from the paper:
If G contains \boxplus_{n} as a minor, then $\operatorname{lin}^{2}(G) \geqslant n$

Wrap up

The grid theorem (2019 - Chuzhoy, Tan)
If $\operatorname{tw}(G) \geqslant n^{9}$, then G contains \boxplus_{n} as a minor.
Technical lemma from the paper:
If G contains \boxplus_{n} as a minor, then $\operatorname{lin}^{2}(G) \geqslant n$
Wrap up:

$$
\operatorname{td}=n^{54} \Rightarrow \mathrm{tw} \geqslant n^{18} \Rightarrow \boxplus_{n^{2}} \Rightarrow \operatorname{lin}^{2} \geqslant n^{2}
$$

$$
\operatorname{cen}(G)=\operatorname{td}(G) \leqslant \operatorname{lin}^{54}(G)
$$

LINEAR COLORING RECOGNITION

- NON-CENTERED PATH - is there a path without center in G wrt ϕ ?

LINEAR COLORING RECOGNITION

- NON-CENTERED PATH - is there a path without center in G wrt ϕ ?
- Reduction from CNF-SAT $\Rightarrow N P$-complete

LINEAR COLORING RECOGNITION

- NON-CENTERED PATH - is there a path without center in G wrt ϕ ?
- Reduction from CNF-SAT \Rightarrow NP-complete
- LINEAR RECOGNITION RECOGNITION is coNP-complete

