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Basic definitions

For a graph G and its coloring φ, we define:

Let H be a connected subgraph of G . If there exists v ∈ H such that
no other vertex u ∈ H has a color φ(v), then we say that H has a
center and, we call v the center.

If every connected subgraph of G has a center, then φ is a centered
coloring.

If every path in G has a center, then φ is a linear coloring.
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Basic definitions

For a graph G and its coloring φ, we define:

Let H be a connected subgraph of G . If there exists v ∈ H such that
no other vertex u ∈ H has a color φ(v), then we say that H has a
center and, we call v the center.

If every connected subgraph of G has a center, then φ is a centered
coloring.

If every path in G has a center, then φ is a linear coloring.
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cen(G ) ¬ 2 · lin(G )



Plan

1 Linear and centered colorings, treedepth and the problem statement.
2 When are they the same?
3 The lower bound.
4 Interval graphs and path width.
5 Trees.
6 General case.
7 Hardness of the LINEAR COLORING RECOGNITION problem.



Treedepth

td(G ) = minimal depth of an elimination tree
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Centered = Linear
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Centered = Linear

Paths, cycles

Cographs

Hereditary Hamiltonian path, for example: α(G ) = 2



Lower bound

lin(Ri ) = i (induction)

cen(Ri ) ∼ 2i (cen(Ri ) = i + cen(Rp))
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Interval graphs

cen(G ) ¬ lin3(G )

k := lin(G ), fix optimal linear coloring φ

ω(G ) ¬ k

φ uses k − 1 colors on each cc of G ′ (apex)

Take ψ centered on G ′ with f (k − 1) colors (induction)

f (k) = f (k − 1) + k2 ⇒ f (k) ∼ k3
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Path width

pw(G ) = minimal width of a path decomposition

pw(Tn) ­ n

pw(G ) ­ n⇒ F is a minor of G for every |F | = n + 1
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Trees

cen(T ) ¬ log(∆) · lin(T )

cen(T ) ­ log(3) · lin(T ) for binary trees

What about an upper bound for large degree trees?

td(T ) = d ⇒ there exists C ⊂ T subcubic tree with td(C ) ­ logϕ
log 3 · d

(Czerwiński, Nadara, Pilipczuk)

cen(T ) = td(T ) ¬ log 3
logϕtd(C ) ¬ log2 3

logϕ · lin(C )
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The general case

Kawarabayashi, Rossman theorem (2018, upgraded by C,N,P)

If td(G ) = C · k3, then one of the following:
1 G contains 2k - path
2 G contains k - binary tree (as a subdivision)
3 tw(G ) ­ k

1 k ¬ lin(G )

2 k ¬ lin(G ) · log(3)

3 More complicated...
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Wrap up

The grid theorem (2019 - Chuzhoy, Tan)

If tw(G ) ­ n9, then G contains �n as a minor.

Technical lemma from the paper:

If G contains �n as a minor, then lin2(G ) ­ n

Wrap up:

td = n54 ⇒ tw ­ n18 ⇒ �n2 ⇒ lin2 ­ n2

cen(G ) = td(G ) ¬ lin54(G )
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NON-CENTERED PATH - is there a path without center in G wrt φ?

Reduction from CNF-SAT ⇒ NP-complete

LINEAR RECOGNITION RECOGNITION is coNP-complete
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