Orienting Fully Dynamic Graphs with Worst-Case Time Bounds

Krzysztof Potępa

Theoretical Computer Science
May 6, 2021

Sources

- Orienting Fully Dynamic Graphs with Worst-Case Time Bounds (2013) Tsvi Kopelowitz, Robert Krauthgamer, Ely Porat, Shay Solomon

Low out-degree orientations

c-orientation

Orientation of graph edges such that out-degree of every vertex is at most c.
We want c to be small.

Low out-degree orientations

c-orientation

Orientation of graph edges such that out-degree of every vertex is at most c.
We want c to be small.

Motivation

Low out-degree orientations enable efficient algorithms for many graph problems:

- adjacency queries in $O(\log \log c)$ using linear memory
- shortest-path queries
- maximal matchings (under inclusion)
- and many more

Arboricity

Arboricity

$$
\alpha(G)=\max _{U \subseteq V(G)}\left\lceil\frac{|E(U)|}{|U|-1}\right\rceil
$$

Arboricity

Arboricity

$$
\alpha(G)=\max _{U \subseteq V(G)}\left\lceil\frac{|E(U)|}{|U|-1}\right\rceil
$$

Nash-Williams Theorem

Graph $G=(V, E)$ has arboricity $\alpha(G)$ iff $\alpha(G)$ is the smallest number of sets $E_{1}, \ldots, E_{\alpha(G)}$ that E can be partitioned into, such that each subgraph $\left(V, E_{i}\right)$ is a forest.

Arboricity

Arboricity

$$
\alpha(G)=\max _{U \subseteq V(G)}\left\lceil\frac{|E(U)|}{|U|-1}\right\rceil
$$

Nash-Williams Theorem

Graph $G=(V, E)$ has arboricity $\alpha(G)$ iff $\alpha(G)$ is the smallest number of sets $E_{1}, \ldots, E_{\alpha(G)}$ that E can be partitioned into, such that each subgraph $\left(V, E_{i}\right)$ is a forest.

Classes of graphs with α bounded by constant

- planar graphs
- excluded-minor families

Arboricity vs low out-degree orientations

Let $P(G)=$ smallest c such that G has c-orientation.

Arboricity vs low out-degree orientations

Let $P(G)=$ smallest c such that G has c-orientation.

Lemma

$\alpha(G)-1 \leq P(G) \leq \alpha(G)$

Arboricity vs low out-degree orientations

Let $P(G)=$ smallest c such that G has c-orientation.

Lemma

$\alpha(G)-1 \leq P(G) \leq \alpha(G)$

- $P(G) \leq \alpha(G)$: split G into $\alpha(G)$ forests and orient each separately

Arboricity vs low out-degree orientations

Let $P(G)=$ smallest c such that G has c-orientation.

Lemma

$\alpha(G)-1 \leq P(G) \leq \alpha(G)$

- $P(G) \leq \alpha(G)$: split G into $\alpha(G)$ forests and orient each separately
- $\alpha(G)-1 \leq P(G)$

Let $U \subseteq V$ be s.t. $\left\lceil\frac{|E(U)|}{|U|-1}\right\rceil=\alpha(G)$, hence $\frac{|E(U)|}{|U|-1}>\alpha(G)-1$.

Arboricity vs low out-degree orientations

Let $P(G)=$ smallest c such that G has c-orientation.

Lemma

$\alpha(G)-1 \leq P(G) \leq \alpha(G)$

- $P(G) \leq \alpha(G)$: split G into $\alpha(G)$ forests and orient each separately
- $\alpha(G)-1 \leq P(G)$

Let $U \subseteq V$ be s.t. $\left\lceil\frac{|E(U)|}{|U|-1}\right\rceil=\alpha(G)$, hence $\frac{|E(U)|}{|U|-1}>\alpha(G)-1$.

$$
P(G) \geq \frac{|E(U)|}{|U|}
$$

Arboricity vs low out-degree orientations

Let $P(G)=$ smallest c such that G has c-orientation.

Lemma

$\alpha(G)-1 \leq P(G) \leq \alpha(G)$

- $P(G) \leq \alpha(G)$: split G into $\alpha(G)$ forests and orient each separately
- $\alpha(G)-1 \leq P(G)$

Let $U \subseteq V$ be s.t. $\left\lceil\frac{|E(U)|}{|U|-1}\right\rceil=\alpha(G)$, hence $\frac{|E(U)|}{|U|-1}>\alpha(G)-1$.

$$
P(G) \geq \frac{|E(U)|}{|U|}>\frac{|U|-1}{|U|} \cdot(\alpha(G)-1)
$$

Arboricity vs low out-degree orientations

Let $P(G)=$ smallest c such that G has c-orientation.

Lemma

$\alpha(G)-1 \leq P(G) \leq \alpha(G)$

- $P(G) \leq \alpha(G)$: split G into $\alpha(G)$ forests and orient each separately
- $\alpha(G)-1 \leq P(G)$

Let $U \subseteq V$ be s.t. $\left\lceil\frac{|E(U)|}{|U|-1}\right\rceil=\alpha(G)$, hence $\frac{|E(U)|}{|U|-1}>\alpha(G)-1$.

$$
\begin{gathered}
P(G) \geq \frac{|E(U)|}{|U|}>\frac{|U|-1}{|U|} \cdot(\alpha(G)-1) \\
|U| \cdot P(G)>(|U|-1) \cdot(\alpha(G)-1) \\
|U| \cdot(P(G)-(\alpha(G)-2))>1
\end{gathered}
$$

Orienting fully dynamic graphs

Problem

Maintain Δ-orientation of graph G under operations:

- insert edge
- remove edge

Graph G has arboricity bounded by α at any time.

Orienting fully dynamic graphs

Problem

Maintain Δ-orientation of graph G under operations:

- insert edge
- remove edge

Graph G has arboricity bounded by α at any time.
In the following, we assume that α is constant.

	Bound on Δ	Edge insertion	Edge removal
Brodal, Fagerberg (1999)	4α	amortized $O(1)$	amortized $O(\log n)$
Kowalik (2007)	4α	amortized $O(\log n)$	worst-case $O(1)$
	$O(\log n)$	amortized $O(1)$	worst-case $O(1)$
Kopelowitz et al. (2013)	$O(\log n)$	worst-case $O(\log n)$	worst-case $O(\log n)$

Invariants for bounding the out-degrees

Valid edge

Edge $u \rightarrow v$ is valid iff $d_{\text {out }}(u) \leq d_{\text {out }}(v)+1$, else it is violated.

Invariants for bounding the out-degrees

Let $n=|V(G)|$. Let $\beta>1$ be an arbitrary parameter and let $\gamma=\beta \cdot \alpha$.

Invariant

For each vertex w, at least $\min \left(d_{\text {out }}(w), \gamma\right)$ outgoing edges are valid.

Invariants for bounding the out-degrees

Let $n=|V(G)|$. Let $\beta>1$ be an arbitrary parameter and let $\gamma=\beta \cdot \alpha$.

Invariant

For each vertex w, at least $\min \left(d_{\text {out }}(w), \gamma\right)$ outgoing edges are valid.

Theorem

If the invariant holds, then $\Delta \leq \gamma+\left\lceil\log _{\beta} n\right\rceil$.

Invariants for bounding the out-degrees

Let $n=|V(G)|$. Let $\beta>1$ be an arbitrary parameter and let $\gamma=\beta \cdot \alpha$.

Invariant

For each vertex w, at least $\min \left(d_{\text {out }}(w), \gamma\right)$ outgoing edges are valid.

Theorem

If the invariant holds, then $\Delta \leq \gamma+\left\lceil\log _{\beta} n\right\rceil$.

- Suppose we have vertex s with $d_{\text {out }}(s)>\gamma+\left\lceil\log _{\beta} n\right\rceil$.

Invariants for bounding the out-degrees

Let $n=|V(G)|$. Let $\beta>1$ be an arbitrary parameter and let $\gamma=\beta \cdot \alpha$.

Invariant

For each vertex w, at least $\min \left(d_{\text {out }}(w), \gamma\right)$ outgoing edges are valid.

Theorem

If the invariant holds, then $\Delta \leq \gamma+\left\lceil\log _{\beta} n\right\rceil$.

- Suppose we have vertex s with $d_{\text {out }}(s)>\gamma+\left\lceil\log _{\beta} n\right\rceil$.
- Let $V_{i}=$ vertices reachable from s using at most i valid edges

Invariants for bounding the out-degrees

Let $n=|V(G)|$. Let $\beta>1$ be an arbitrary parameter and let $\gamma=\beta \cdot \alpha$.

Invariant

For each vertex w, at least $\min \left(d_{\text {out }}(w), \gamma\right)$ outgoing edges are valid.

Theorem

If the invariant holds, then $\Delta \leq \gamma+\left\lceil\log _{\beta} n\right\rceil$.

- Suppose we have vertex s with $d_{\text {out }}(s)>\gamma+\left\lceil\log _{\beta} n\right\rceil$.
- Let $V_{i}=$ vertices reachable from s using at most i valid edges
- For every $i \in\left\{1, \ldots,\left\lceil\log _{\beta} n\right\rceil\right\}$ and $w \in V_{i}$ we have:

$$
d_{\text {out }}(w) \geq d_{\text {out }}(s)-i>\gamma+\left\lceil\log _{\beta} n\right\rceil-i \geq \gamma
$$

Invariants for bounding the out-degrees

We prove by induction on i that $\left|V_{i}\right|>\beta^{i}$ for all $i \in\left\{1, \ldots,\left\lceil\log _{\beta} n\right\rceil\right\}$.

Invariants for bounding the out-degrees

We prove by induction on i that $\left|V_{i}\right|>\beta^{i}$ for all $i \in\left\{1, \ldots,\left\lceil\log _{\beta} n\right\rceil\right\}$.

- For $i=1$ we have: $\left|V_{1}\right|=1+\left|N_{\text {out }}(s)\right| \geq \gamma+1>\gamma \geq \beta$

Invariants for bounding the out-degrees

We prove by induction on i that $\left|V_{i}\right|>\beta^{i}$ for all $i \in\left\{1, \ldots,\left\lceil\log _{\beta} n\right\rceil\right\}$.

- For $i=1$ we have: $\left|V_{1}\right|=1+\left|N_{\text {out }}(s)\right| \geq \gamma+1>\gamma \geq \beta$
- Suppose now that $\left|V_{i-1}\right|>\beta^{i-1}$.

Invariants for bounding the out-degrees

We prove by induction on i that $\left|V_{i}\right|>\beta^{i}$ for all $i \in\left\{1, \ldots,\left\lceil\log _{\beta} n\right\rceil\right\}$.

- For $i=1$ we have: $\left|V_{1}\right|=1+\left|N_{\text {out }}(s)\right| \geq \gamma+1>\gamma \geq \beta$
- Suppose now that $\left|V_{i-1}\right|>\beta^{i-1}$.

$$
\left|E\left(V_{i}\right)\right| \geq \gamma\left|V_{i-1}\right|
$$

Invariants for bounding the out-degrees

We prove by induction on i that $\left|V_{i}\right|>\beta^{i}$ for all $i \in\left\{1, \ldots,\left\lceil\log _{\beta} n\right\rceil\right\}$.

- For $i=1$ we have: $\left|V_{1}\right|=1+\left|N_{\text {out }}(s)\right| \geq \gamma+1>\gamma \geq \beta$
- Suppose now that $\left|V_{i-1}\right|>\beta^{i-1}$.

$$
\left|E\left(V_{i}\right)\right| \geq \gamma\left|V_{i-1}\right| \quad \alpha \geq \frac{\left|E\left(V_{i}\right)\right|}{\left|V_{i}\right|-1}
$$

Invariants for bounding the out-degrees

We prove by induction on i that $\left|V_{i}\right|>\beta^{i}$ for all $i \in\left\{1, \ldots,\left\lceil\log _{\beta} n\right\rceil\right\}$.

- For $i=1$ we have: $\left|V_{1}\right|=1+\left|N_{\text {out }}(s)\right| \geq \gamma+1>\gamma \geq \beta$
- Suppose now that $\left|V_{i-1}\right|>\beta^{i-1}$.

$$
\begin{aligned}
& \left|E\left(V_{i}\right)\right| \geq \gamma\left|V_{i-1}\right| \quad \alpha \geq \frac{\left|E\left(V_{i}\right)\right|}{\left|V_{i}\right|-1} \\
& \left|V_{i}\right|-1 \geq \frac{\gamma\left|V_{i-1}\right|}{\alpha}
\end{aligned}
$$

Invariants for bounding the out-degrees

We prove by induction on i that $\left|V_{i}\right|>\beta^{i}$ for all $i \in\left\{1, \ldots,\left\lceil\log _{\beta} n\right\rceil\right\}$.

- For $i=1$ we have: $\left|V_{1}\right|=1+\left|N_{\text {out }}(s)\right| \geq \gamma+1>\gamma \geq \beta$
- Suppose now that $\left|V_{i-1}\right|>\beta^{i-1}$.

$$
\begin{gathered}
\left|E\left(V_{i}\right)\right| \geq \gamma\left|V_{i-1}\right| \quad \alpha \geq \frac{\left|E\left(V_{i}\right)\right|}{\left|V_{i}\right|-1} \\
\left|V_{i}\right|-1 \geq \frac{\gamma\left|V_{i-1}\right|}{\alpha} \geq \beta\left|V_{i-1}\right|>\beta^{i}
\end{gathered}
$$

Invariants for bounding the out-degrees

We prove by induction on i that $\left|V_{i}\right|>\beta^{i}$ for all $i \in\left\{1, \ldots,\left\lceil\log _{\beta} n\right\rceil\right\}$.

- For $i=1$ we have: $\left|V_{1}\right|=1+\left|N_{\text {out }}(s)\right| \geq \gamma+1>\gamma \geq \beta$
- Suppose now that $\left|V_{i-1}\right|>\beta^{i-1}$.

$$
\begin{gathered}
\left|E\left(V_{i}\right)\right| \geq \gamma\left|V_{i-1}\right| \quad \alpha \geq \frac{\left|E\left(V_{i}\right)\right|}{\left|V_{i}\right|-1} \\
\left|V_{i}\right|-1 \geq \frac{\gamma\left|V_{i-1}\right|}{\alpha} \geq \beta\left|V_{i-1}\right|>\beta^{i}
\end{gathered}
$$

We have $\left|V_{\left\lceil\log _{\beta} n\right\rceil}\right|>\beta^{\left\lceil\log _{\beta} n\right\rceil} \geq n$, contradiction.

Simple algorithm

Invariant

For each vertex w, at least $\min \left(d_{\text {out }}(w), \gamma\right)$ outgoing edges are valid.

Theorem

If the invariant holds, then $\Delta \leq \gamma+\left\lceil\log _{\beta} n\right\rceil$.

Simple algorithm

Strong invariant

For each vertex w, all outgoing edges are valid.

Theorem

If the strong invariant holds, then $\Delta \leq \inf _{\beta>1}\left\{\beta \cdot \alpha(G)+\left\lceil\log _{\beta} n\right\rceil\right\}$.

Simple algorithm

Strong invariant

For each vertex w, all outgoing edges are valid.

Theorem

If the strong invariant holds, then $\Delta \leq \inf _{\beta>1}\left\{\beta \cdot \alpha(G)+\left\lceil\log _{\beta} n\right\rceil\right\}$.

Algorithm 1

We maintain the strong invariant for dynamic graph G and support:

- edge insertion in worst-case $O\left(\Delta^{2}\right)$ time
- edge removal in worst-case $O(\Delta)$ time

Both operations reorient at most $\Delta+1$ edges.

Edge insertion

Insert $u \rightarrow v$ such that $d_{\text {out }}(u) \leq d_{\text {out }}(v)$
(1) Add edge $u \rightarrow v$ to graph
(2) Find violated edge $u \rightarrow v^{\prime}$ among Δ out-edges of u
(3) If such edge exists, remove $u \rightarrow v^{\prime}$ and insert $v^{\prime} \rightarrow u$ recursively

Edge insertion

Insert $u \rightarrow v$ such that $d_{\text {out }}(u) \leq d_{\text {out }}(v)$
(1) Add edge $u \rightarrow v$ to graph
(2) Find violated edge $u \rightarrow v^{\prime}$ among Δ out-edges of u
(3) If such edge exists, remove $u \rightarrow v^{\prime}$ and insert $v^{\prime} \rightarrow u$ recursively

Number of recursive calls

- $d_{\text {out }}(u)=d_{\text {out }}\left(v^{\prime}\right)+1$ (degree "decreases" by 1 in each recursion)
- Δ recursive calls excluding the initial one

Edge insertion

Insert $u \rightarrow v$ such that $d_{\text {out }}(u) \leq d_{\text {out }}(v)$
(1) Add edge $u \rightarrow v$ to graph
(2) Find violated edge $u \rightarrow v^{\prime}$ among Δ out-edges of u
(3) If such edge exists, remove $u \rightarrow v^{\prime}$ and insert $v^{\prime} \rightarrow u$ recursively

Number of recursive calls

- $d_{\text {out }}(u)=d_{\text {out }}\left(v^{\prime}\right)+1$ (degree "decreases" by 1 in each recursion)
- Δ recursive calls excluding the initial one

Edge insertion time: $O\left(\Delta^{2}\right)$

Edge removal

Remove $u \rightarrow v$
(1) Remove $u \rightarrow v$ from graph
(2) Find violated edge $v^{\prime} \rightarrow u$ among in-edges of u (how?)

- If such edge exists, add $u \rightarrow v^{\prime}$ and remove $v^{\prime} \rightarrow u$ recursively

Edge removal

Remove $u \rightarrow v$

(1) Remove $u \rightarrow v$ from graph
(2) Find violated edge $v^{\prime} \rightarrow u$ among in-edges of u (how?)
(3) If such edge exists, add $u \rightarrow v^{\prime}$ and remove $v^{\prime} \rightarrow u$ recursively

Number of recursive calls

- $d_{\text {out }}\left(v^{\prime}\right)=d_{\text {out }}(u)+1$ (degree "increases" by 1 in each recursion)
- Δ recursive calls excluding the initial one

Edge removal

Remove $u \rightarrow v$

(1) Remove $u \rightarrow v$ from graph
(2) Find violated edge $v^{\prime} \rightarrow u$ among in-edges of u (how?)
(3) If such edge exists, add $u \rightarrow v^{\prime}$ and remove $v^{\prime} \rightarrow u$ recursively

Number of recursive calls

- $d_{\text {out }}\left(v^{\prime}\right)=d_{\text {out }}(u)+1$ (degree "increases" by 1 in each recursion)
- Δ recursive calls excluding the initial one

How to find the violated edge quickly?

Finding violated incoming edge

Data structure

Let k_{0} be a parameter.
Maintain set of elements X, each with associated integer key, under operations:

- get element with maximum key in $O(1)$
- insert element with key $0 \leq k \leq k_{0}$ in $O(1)$
- remove element in $O(1)$
- increment/decrement key of given element in $O(1)$
- increment/decrement parameter k_{0} in $O\left(k_{0}\right)$

Data structure uses $O\left(n+k_{0}\right)$ memory, where n is the number of elements.

Finding violated incoming edge

Data structure

Let k_{0} be a parameter.
Maintain set of elements X, each with associated integer key, under operations:

- get element with maximum key in $O(1)$
- insert element with key $0 \leq k \leq k_{0}$ in $O(1)$
- remove element in $O(1)$
- increment/decrement key of given element in $O(1)$
- increment/decrement parameter k_{0} in $O\left(k_{0}\right)$

Data structure uses $O\left(n+k_{0}\right)$ memory, where n is the number of elements.

Incoming edges

For each vertex w, maintain data structure H_{w} over all incoming edges.
Key of edge $u \rightarrow w$ is $d_{\text {out }}(w)$. Parameter k_{0} is $d_{\text {out }}(w)+1$.

Simple algorithm

Insert $u \rightarrow v$ such that $d_{\text {out }}(u) \leq d_{\text {out }}(v)$
(1) Add edge $u \rightarrow v$ to graph
(2) Find violated edge $u \rightarrow v^{\prime}$ by iterating over Δ out-edges of u
(3) If such edge exists, remove $u \rightarrow v^{\prime}$ and insert $v^{\prime} \rightarrow u$ recursively

Remove $u \rightarrow v$

(1) Remove $u \rightarrow v$ from graph
(2) Find violated edge $v^{\prime} \rightarrow u$ using data structure H_{u}
(3) If such edge exists, add $u \rightarrow v^{\prime}$ and remove $v^{\prime} \rightarrow u$ recursively

Simple algorithm

Insert $u \rightarrow v$ such that $d_{\text {out }}(u) \leq d_{\text {out }}(v)$
(1) Add edge $u \rightarrow v$ to graph
(2) Find violated edge $u \rightarrow v^{\prime}$ by iterating over Δ out-edges of u
(3) If such edge exists, remove $u \rightarrow v^{\prime}$ and insert $v^{\prime} \rightarrow u$ recursively

Remove $u \rightarrow v$

(1) Remove $u \rightarrow v$ from graph
(2) Find violated edge $v^{\prime} \rightarrow u$ using data structure H_{u}
(3) If such edge exists, add $u \rightarrow v^{\prime}$ and remove $v^{\prime} \rightarrow u$ recursively

Edge insertion time: $O\left(\Delta^{2}\right)$
Edge removal time: $O(\Delta)$

Improving runtime

Let $n=|V(G)|$. Let $\beta>1$ be an arbitrary parameter and let $\gamma=\beta \cdot \alpha$.

Improving runtime

Let $n=|V(G)|$. Let $\beta>1$ be an arbitrary parameter and let $\gamma=\beta \cdot \alpha$. i-valid edge
Edge $u \rightarrow v$ is i-valid iff $d_{\text {out }}(u) \leq d_{\text {out }}(v)+i$, else it is i-violated.

Improving runtime

Let $n=|V(G)|$. Let $\beta>1$ be an arbitrary parameter and let $\gamma=\beta \cdot \alpha$.

i-valid edge

Edge $u \rightarrow v$ is i-valid iff $d_{\text {out }}(u) \leq d_{\text {out }}(v)+i$, else it is i-violated.

Spectrum-validity for vertex w

Vertex w is spectrum-valid if its set of outgoing edges E_{w} can be partitioned into $q=\left\lceil\left|E_{w}\right| / \gamma\right\rceil$ sets $E_{w}^{1}, \ldots, E_{w}^{q}$ such that:

- $\left|E_{w}^{i}\right|=\gamma$ for each $i \in\{1, \ldots, q-1\}$
- all edges in E_{w}^{i} are i-valid

Improving runtime

Intermediate invariant

Every vertex is spectrum-valid.

Improving runtime

Intermediate invariant

Every vertex is spectrum-valid.

Algorithm 2

We maintain the intermediate invariant for dynamic graph G and support:

- edge insertion in worst-case $O(\gamma \Delta)$ time
- edge removal in worst-case $O(\Delta)$ time

Both operations reorient at most $\Delta+1$ edges.

Improving runtime

For each vertex w, we keep list L_{w} of outgoing vertices such that the first γ vertices are 1 -valid, the next γ vertices 2 -valid and so on.

Edge insertion

Insert $u \rightarrow v$ such that $d_{\text {out }}(u) \leq d_{\text {out }}(v)$
(1) Add edge $u \rightarrow v$ to graph

Edge insertion

Insert $u \rightarrow v$ such that $d_{\text {out }}(u) \leq d_{\text {out }}(v)$
(1) Add edge $u \rightarrow v$ to graph

Edge insertion

Insert $u \rightarrow v$ such that $d_{\text {out }}(u) \leq d_{\text {out }}(v)$
(1) Add edge $u \rightarrow v$ to graph
(2) Find violated edge $u \rightarrow v^{\prime}$ among last $\gamma-1$ edges of L_{w}

Edge insertion

Insert $u \rightarrow v$ such that $d_{\text {out }}(u) \leq d_{\text {out }}(v)$

(1) Add edge $u \rightarrow v$ to graph
(2) Find violated edge $u \rightarrow v^{\prime}$ among last $\gamma-1$ edges of L_{w}
(3) If such edge exists, replace $u \rightarrow v^{\prime}$ with $u \rightarrow v$ in L_{w}, and remove $u \rightarrow v^{\prime}$ and insert $v^{\prime} \rightarrow u$ recursively

Edge insertion

Insert $u \rightarrow v$ such that $d_{\text {out }}(u) \leq d_{\text {out }}(v)$

(1) Add edge $u \rightarrow v$ to graph
(2) Find violated edge $u \rightarrow v^{\prime}$ among last $\gamma-1$ edges of L_{w}
(3) If such edge exists, replace $u \rightarrow v^{\prime}$ with $u \rightarrow v$ in L_{w}, and remove $u \rightarrow v^{\prime}$ and insert $v^{\prime} \rightarrow u$ recursively

Edge insertion

Insert $u \rightarrow v$ such that $d_{\text {out }}(u) \leq d_{\text {out }}(v)$

(1) Add edge $u \rightarrow v$ to graph
(2) Find violated edge $u \rightarrow v^{\prime}$ among last $\gamma-1$ edges of L_{w}
(3) If such edge exists, replace $u \rightarrow v^{\prime}$ with $u \rightarrow v$ in L_{w}, and remove $u \rightarrow v^{\prime}$ and insert $v^{\prime} \rightarrow u$ recursively

Edge insertion

Insert $u \rightarrow v$ such that $d_{\text {out }}(u) \leq d_{\text {out }}(v)$
(1) Add edge $u \rightarrow v$ to graph
(2) Find violated edge $u \rightarrow v^{\prime}$ among last $\gamma-1$ edges of L_{w}
(3) If such edge exists, replace $u \rightarrow v^{\prime}$ with $u \rightarrow v$ in L_{w}, and remove $u \rightarrow v^{\prime}$ and insert $v^{\prime} \rightarrow u$ recursively
(9) Else move last $\gamma-1$ edges of L_{w} to the front and add $u \rightarrow v$ to the front

Edge insertion

Insert $u \rightarrow v$ such that $d_{\text {out }}(u) \leq d_{\text {out }}(v)$
(1) Add edge $u \rightarrow v$ to graph
(2) Find violated edge $u \rightarrow v^{\prime}$ among last $\gamma-1$ edges of L_{w}
(3) If such edge exists, replace $u \rightarrow v^{\prime}$ with $u \rightarrow v$ in L_{w}, and remove $u \rightarrow v^{\prime}$ and insert $v^{\prime} \rightarrow u$ recursively
(4) Else move last $\gamma-1$ edges of L_{w} to the front and add $u \rightarrow v$ to the front

Edge insertion time: $O(\gamma \Delta)$

Edge removal

Remove $u \rightarrow v$

Edge removal

Remove $u \rightarrow v$
(1) Remove $u \rightarrow v$ from graph and the list L_{w}

Edge removal

Remove $u \rightarrow v$

(1) Remove $u \rightarrow v$ from graph and the list L_{w}
(2) Find violated edge $v^{\prime} \rightarrow u$ using data structure H_{u}

Edge removal

Remove $u \rightarrow v$

(1) Remove $u \rightarrow v$ from graph and the list L_{w}
(2) Find violated edge $v^{\prime} \rightarrow u$ using data structure H_{u}
(3) If such edge exists, add $u \rightarrow v^{\prime}$ in place of $u \rightarrow v$ in L_{w}, add $u \rightarrow v^{\prime}$ to graph and remove $v^{\prime} \rightarrow u$ recursively

Edge removal

Remove $u \rightarrow v$
(1) Remove $u \rightarrow v$ from graph and the list L_{w}
(2) Find violated edge $v^{\prime} \rightarrow u$ using data structure H_{u}
(3) If such edge exists, add $u \rightarrow v^{\prime}$ in place of $u \rightarrow v$ in L_{w}, add $u \rightarrow v^{\prime}$ to graph and remove $v^{\prime} \rightarrow u$ recursively

Edge removal time: $O(\Delta)$

Summary

Final algorithm

We maintain Δ-orientation of graph G with arboricity bounded by α, where:

- $\Delta \leq \inf _{\beta>1}\left\{\beta \alpha+\left\lceil\log _{\beta} n\right\rceil\right\}$
- edge insertion works in worst-case $O(\beta \alpha \Delta)$ time
- edge removal works in worst-case $O(\Delta)$ time

Both operations reorient at most $\Delta+1$ edges.

Summary

Final algorithm

We maintain Δ-orientation of graph G with arboricity bounded by α, where:

- $\Delta \leq \inf _{\beta>1}\left\{\beta \alpha+\left\lceil\log _{\beta} \eta\right\rceil\right\}$
- edge insertion works in worst-case $O(\beta \alpha \Delta)$ time
- edge removal works in worst-case $O(\Delta)$ time

Both operations reorient at most $\Delta+1$ edges.
For constant arboricity, if we set $\beta=2$, then bounds translate to $O(\log n)$.

