Orienting Fully Dynamic Graphs with Worst-Case Time Bounds

Krzysztof Potępa

Theoretical Computer Science

May 6, 2021

• Orienting Fully Dynamic Graphs with Worst-Case Time Bounds (2013) Tsvi Kopelowitz, Robert Krauthgamer, Ely Porat, Shay Solomon

c-orientation

Orientation of graph edges such that out-degree of every vertex is at most c.

We want *c* to be small.

c-orientation

Orientation of graph edges such that out-degree of every vertex is at most c.

We want c to be small.

Motivation

Low out-degree orientations enable efficient algorithms for many graph problems:

- adjacency queries in $O(\log \log c)$ using linear memory
- shortest-path queries
- maximal matchings (under inclusion)
- and many more

Arboricity

$$\alpha(G) = \max_{U \subseteq V(G)} \left\lceil \frac{|E(U)|}{|U| - 1} \right\rceil$$

Arboricity

$$\alpha(G) = \max_{U \subseteq V(G)} \left\lceil \frac{|E(U)|}{|U| - 1} \right\rceil$$

Nash-Williams Theorem

Graph G = (V, E) has arboricity $\alpha(G)$ iff $\alpha(G)$ is the smallest number of sets $E_1, ..., E_{\alpha(G)}$ that E can be partitioned into, such that each subgraph (V, E_i) is a forest.

Arboricity

$$\alpha(G) = \max_{U \subseteq V(G)} \left\lceil \frac{|E(U)|}{|U| - 1} \right\rceil$$

Nash-Williams Theorem

Graph G = (V, E) has arboricity $\alpha(G)$ iff $\alpha(G)$ is the smallest number of sets $E_1, ..., E_{\alpha(G)}$ that E can be partitioned into, such that each subgraph (V, E_i) is a forest.

Classes of graphs with α bounded by constant

- planar graphs
- excluded-minor families

Let P(G) = smallest c such that G has c-orientation.

Let P(G) = smallest c such that G has c-orientation.

Lemma

 $\alpha(G) - 1 \le P(G) \le \alpha(G)$

Let P(G) = smallest c such that G has c-orientation.

Lemma

 $\alpha(G) - 1 \le P(G) \le \alpha(G)$

Let P(G) = smallest c such that G has c-orientation.

Lemma

 $\alpha(G) - 1 \leq P(G) \leq \alpha(G)$

•
$$\alpha(G) - 1 \leq P(G)$$

Let $U \subseteq V$ be s.t. $\left\lceil \frac{|E(U)|}{|U|-1} \right\rceil = \alpha(G)$, hence $\frac{|E(U)|}{|U|-1} > \alpha(G) - 1$.

Let P(G) = smallest c such that G has c-orientation.

Lemma

 $\alpha(G) - 1 \le P(G) \le \alpha(G)$

•
$$\alpha(G) - 1 \le P(G)$$

Let $U \subseteq V$ be s.t. $\left\lceil \frac{|E(U)|}{|U|-1} \right\rceil = \alpha(G)$, hence $\frac{|E(U)|}{|U|-1} > \alpha(G) - 1$.
 $P(G) \ge \frac{|E(U)|}{|U|}$

Let P(G) = smallest c such that G has c-orientation.

Lemma

 $\alpha(G) - 1 \leq P(G) \leq \alpha(G)$

•
$$\alpha(G) - 1 \le P(G)$$

Let $U \subseteq V$ be s.t. $\left\lceil \frac{|E(U)|}{|U|-1} \right\rceil = \alpha(G)$, hence $\frac{|E(U)|}{|U|-1} > \alpha(G) - 1$.
 $P(G) \ge \frac{|E(U)|}{|U|} > \frac{|U|-1}{|U|} \cdot (\alpha(G) - 1)$

Let P(G) = smallest c such that G has c-orientation.

Lemma

 $\alpha(G) - 1 \leq P(G) \leq \alpha(G)$

•
$$\alpha(G) - 1 \leq P(G)$$

Let $U \subseteq V$ be s.t. $\left\lceil \frac{|E(U)|}{|U|-1} \right\rceil = \alpha(G)$, hence $\frac{|E(U)|}{|U|-1} > \alpha(G) - 1$.
 $P(G) \geq \frac{|E(U)|}{|U|} > \frac{|U|-1}{|U|} \cdot (\alpha(G) - 1)$
 $|U| \cdot P(G) > (|U|-1) \cdot (\alpha(G) - 1)$
 $|U| \cdot (P(G) - (\alpha(G) - 2)) > 1$

Problem

Maintain Δ -orientation of graph *G* under operations:

- ${\scriptstyle \bullet}$ insert edge
- remove edge

Graph G has arboricity bounded by α at any time.

Problem

Maintain Δ -orientation of graph *G* under operations:

- insert edge
- remove edge

Graph G has arboricity bounded by α at any time.

In the following, we assume that α is constant.

	Bound on Δ	Edge insertion	Edge removal
Brodal, Fagerberg (1999)	4α	amortized $O(1)$	amortized O(log n)
Kowalik (2007)	4α	amortized $O(\log n)$	worst-case $O(1)$
	$O(\log n)$	amortized $O(1)$	worst-case $O(1)$
Kopelowitz et al. (2013)	$O(\log n)$	worst-case $O(\log n)$	worst-case $O(\log n)$

Valid edge

Edge $u \to v$ is valid iff $d_{out}(u) \le d_{out}(v) + 1$, else it is violated.

Invariant

For each vertex w, at least $\min(d_{out}(w), \gamma)$ outgoing edges are valid.

Invariant

For each vertex w, at least $\min(d_{out}(w), \gamma)$ outgoing edges are valid.

Theorem

If the invariant holds, then $\Delta \leq \gamma + \lceil \log_{\beta} n \rceil$.

Invariant

For each vertex w, at least $\min(d_{out}(w), \gamma)$ outgoing edges are valid.

Theorem

If the invariant holds, then $\Delta \leq \gamma + \lceil \log_{\beta} n \rceil$.

• Suppose we have vertex s with $d_{out}(s) > \gamma + \lceil \log_{\beta} n \rceil$.

Invariant

For each vertex w, at least $\min(d_{out}(w), \gamma)$ outgoing edges are valid.

Theorem

If the invariant holds, then $\Delta \leq \gamma + \lceil \log_{\beta} n \rceil$.

- Suppose we have vertex s with $d_{out}(s) > \gamma + \lceil \log_{\beta} n \rceil$.
- Let V_i = vertices reachable from *s* using at most *i* valid edges

Invariant

For each vertex w, at least $\min(d_{out}(w), \gamma)$ outgoing edges are valid.

Theorem

If the invariant holds, then $\Delta \leq \gamma + \lceil \log_{\beta} n \rceil$.

- Suppose we have vertex s with $d_{out}(s) > \gamma + \lceil \log_{\beta} n \rceil$.
- Let V_i = vertices reachable from *s* using at most *i* valid edges
- For every $i \in \{1, ..., \lceil \log_{\beta} n \rceil\}$ and $w \in V_i$ we have:

$$d_{out}(w) \ge d_{out}(s) - i > \gamma + \left\lceil \log_{\beta} n \right\rceil - i \ge \gamma$$

• For i = 1 we have: $|V_1| = 1 + |N_{out}(s)| \ge \gamma + 1 > \gamma \ge \beta$

- For i = 1 we have: $|V_1| = 1 + |N_{out}(s)| \ge \gamma + 1 > \gamma \ge \beta$
- Suppose now that $|V_{i-1}| > \beta^{i-1}$.

- For i = 1 we have: $|V_1| = 1 + |N_{out}(s)| \ge \gamma + 1 > \gamma \ge \beta$
- Suppose now that $|V_{i-1}| > \beta^{i-1}$.

 $|E(V_i)| \geq \gamma |V_{i-1}|$

- For i = 1 we have: $|V_1| = 1 + |N_{out}(s)| \ge \gamma + 1 > \gamma \ge \beta$
- Suppose now that $|V_{i-1}| > \beta^{i-1}$.

$$|E(V_i)| \ge \gamma |V_{i-1}|$$
 $\alpha \ge \frac{|E(V_i)|}{|V_i| - 1}$

- For i = 1 we have: $|V_1| = 1 + |N_{out}(s)| \ge \gamma + 1 > \gamma \ge \beta$
- Suppose now that $|V_{i-1}| > \beta^{i-1}$.

$$|E(V_i)| \ge \gamma |V_{i-1}| \qquad \alpha \ge \frac{|E(V_i)|}{|V_i| - 1}$$
$$|V_i| - 1 \ge \frac{\gamma |V_{i-1}|}{\alpha}$$

- For i=1 we have: $|V_1|=1+|N_{out}(s)|\geq \gamma+1>\gamma\geq \beta$
- Suppose now that $|V_{i-1}| > \beta^{i-1}$.

$$\begin{aligned} |\mathsf{E}(\mathsf{V}_i)| &\geq \gamma |\mathsf{V}_{i-1}| \qquad \alpha \geq \frac{|\mathsf{E}(\mathsf{V}_i)|}{|\mathsf{V}_i| - 1} \\ |\mathsf{V}_i| - 1 &\geq \frac{\gamma |\mathsf{V}_{i-1}|}{\alpha} \geq \beta |\mathsf{V}_{i-1}| > \beta^i \end{aligned}$$

- For i = 1 we have: $|V_1| = 1 + |N_{out}(s)| \ge \gamma + 1 > \gamma \ge \beta$
- Suppose now that $|V_{i-1}| > \beta^{i-1}$.

$$|E(V_i)| \ge \gamma |V_{i-1}| \qquad \alpha \ge \frac{|E(V_i)|}{|V_i| - 1}$$
$$|V_i| - 1 \ge \frac{\gamma |V_{i-1}|}{\alpha} \ge \beta |V_{i-1}| > \beta^i$$

We have $\left| V_{\left\lceil \log_{\beta} n \right\rceil} \right| > \beta^{\left\lceil \log_{\beta} n \right\rceil} \ge n$, contradiction.

Invariant

For each vertex w, at least $\min(d_{out}(w), \gamma)$ outgoing edges are valid.

Theorem

If the invariant holds, then $\Delta \leq \gamma + \lceil \log_{\beta} n \rceil$.

Strong invariant

For each vertex w, all outgoing edges are valid.

Theorem

If the strong invariant holds, then $\Delta \leq \inf_{\beta>1} \{\beta \cdot \alpha(G) + \lceil \log_{\beta} n \rceil\}$.

Strong invariant

For each vertex w, all outgoing edges are valid.

Theorem

If the strong invariant holds, then $\Delta \leq \inf_{\beta>1} \{\beta \cdot \alpha(G) + \lceil \log_{\beta} n \rceil\}.$

Algorithm 1

We maintain the strong invariant for dynamic graph G and support:

- edge insertion in worst-case $O(\Delta^2)$ time
- edge removal in worst-case $O(\Delta)$ time

Both operations reorient at most $\Delta + 1$ edges.

Edge insertion

Edge insertion

Edge insertion

Insert $u \to v$ such that $\overline{d_{out}(u)} \leq d_{out}(v)$

- **2** Find violated edge $u \rightarrow v'$ among Δ out-edges of u
- **③** If such edge exists, remove $u \rightarrow v'$ and insert $v' \rightarrow u$ recursively

Krzysztof Potępa (TCS)

Insert $u \to v$ such that $d_{out}(u) \leq d_{out}(v)$

- Add edge $u \rightarrow v$ to graph
- $\textbf{2} \quad \mathsf{Find violated edge } u \to v' \mathsf{ among } \Delta \mathsf{ out-edges of } u$
- $\textbf{ o If such edge exists, remove } u \rightarrow v' \text{ and insert } v' \rightarrow u \text{ recursively} }$

Number of recursive calls

- $d_{out}(u) = d_{out}(v') + 1$ (degree "decreases" by 1 in each recursion)
- $\bullet~\Delta$ recursive calls excluding the initial one

Insert $u \to v$ such that $d_{out}(u) \leq d_{out}(v)$

- Add edge $u \rightarrow v$ to graph
- $\textbf{2} \quad \mathsf{Find violated edge } u \to v' \mathsf{ among } \Delta \mathsf{ out-edges of } u$
- $\textbf{ o If such edge exists, remove } u \rightarrow v' \text{ and insert } v' \rightarrow u \text{ recursively} }$

Number of recursive calls

- $d_{out}(u) = d_{out}(v') + 1$ (degree "decreases" by 1 in each recursion)
- $\bullet~\Delta$ recursive calls excluding the initial one

Edge insertion time: $O(\Delta^2)$

Remove $u \rightarrow v$

- **1** Remove $u \rightarrow v$ from graph
- **2** Find violated edge $v' \rightarrow u$ among in-edges of u (how?)
- **③** If such edge exists, add $u \rightarrow v'$ and remove $v' \rightarrow u$ recursively

Remove $u \rightarrow v$

- **1** Remove $u \rightarrow v$ from graph
- **2** Find violated edge $v' \rightarrow u$ among in-edges of u (how?)
- **③** If such edge exists, add $u \rightarrow v'$ and remove $v' \rightarrow u$ recursively

Number of recursive calls

- $d_{out}(v') = d_{out}(u) + 1$ (degree "increases" by 1 in each recursion)
- $\bullet~\Delta$ recursive calls excluding the initial one

Remove $u \rightarrow v$

- **1** Remove $u \rightarrow v$ from graph
- ② Find violated edge $v' \rightarrow u$ among in-edges of u (how?)
- **③** If such edge exists, add $u \rightarrow v'$ and remove $v' \rightarrow u$ recursively

Number of recursive calls

- $d_{out}(v') = d_{out}(u) + 1$ (degree "increases" by 1 in each recursion)
- $\bullet~\Delta$ recursive calls excluding the initial one

How to find the violated edge quickly?

Data structure

Let k_0 be a parameter.

Maintain set of elements X, each with associated integer key, under operations:

- get element with maximum key in O(1)
- insert element with key $0 \le k \le k_0$ in O(1)
- remove element in O(1)
- increment/decrement key of given element in O(1)
- increment/decrement parameter k_0 in $O(k_0)$

Data structure uses $O(n + k_0)$ memory, where *n* is the number of elements.

Data structure

Let k_0 be a parameter.

Maintain set of elements X, each with associated integer key, under operations:

- get element with maximum key in O(1)
- insert element with key $0 \le k \le k_0$ in O(1)
- remove element in O(1)
- increment/decrement key of given element in O(1)
- increment/decrement parameter k_0 in $O(k_0)$

Data structure uses $O(n + k_0)$ memory, where *n* is the number of elements.

Incoming edges

For each vertex w, maintain data structure H_w over all incoming edges. Key of edge $u \to w$ is $d_{out}(w)$. Parameter k_0 is $d_{out}(w) + 1$.

Insert $u \to v$ such that $d_{out}(u) \leq d_{out}(v)$

- Add edge $u \rightarrow v$ to graph
- **2** Find violated edge $u \rightarrow v'$ by iterating over Δ out-edges of u
- **③** If such edge exists, remove $u \rightarrow v'$ and insert $v' \rightarrow u$ recursively

Remove $u \rightarrow v$

- **1** Remove $u \rightarrow v$ from graph
- ② Find violated edge $v' \rightarrow u$ using data structure H_u
- **③** If such edge exists, add $u \rightarrow v'$ and remove $v' \rightarrow u$ recursively

Insert $u \to v$ such that $d_{out}(u) \leq d_{out}(v)$

- Add edge $u \rightarrow v$ to graph
- **2** Find violated edge $u \rightarrow v'$ by iterating over Δ out-edges of u
- **③** If such edge exists, remove $u \rightarrow v'$ and insert $v' \rightarrow u$ recursively

Remove $u \rightarrow v$

- **1** Remove $u \rightarrow v$ from graph
- 2 Find violated edge $v' \rightarrow u$ using data structure H_u
- **③** If such edge exists, add $u \rightarrow v'$ and remove $v' \rightarrow u$ recursively

Edge insertion time: $O(\Delta^2)$ Edge removal time: $O(\Delta)$

Improving runtime

Let n = |V(G)|. Let $\beta > 1$ be an arbitrary parameter and let $\gamma = \beta \cdot \alpha$.

Improving runtime

Let n = |V(G)|. Let $\beta > 1$ be an arbitrary parameter and let $\gamma = \beta \cdot \alpha$.

i-valid edge

Edge $u \to v$ is *i*-valid iff $d_{out}(u) \le d_{out}(v) + i$, else it is *i*-violated.

Improving runtime

Let n = |V(G)|. Let $\beta > 1$ be an arbitrary parameter and let $\gamma = \beta \cdot \alpha$.

i-valid edge

Edge $u \to v$ is *i*-valid iff $d_{out}(u) \le d_{out}(v) + i$, else it is *i*-violated.

Spectrum-validity for vertex w

Vertex w is spectrum-valid if its set of outgoing edges E_w can be partitioned into $q = \lceil |E_w|/\gamma \rceil$ sets $E_w^1, ..., E_w^q$ such that:

- $|E_w^i| = \gamma$ for each $i \in \{1, ..., q-1\}$
- all edges in E_w^i are *i*-valid

Intermediate invariant

Every vertex is spectrum-valid.

Intermediate invariant

Every vertex is spectrum-valid.

Algorithm 2

We maintain the intermediate invariant for dynamic graph G and support:

- edge insertion in worst-case $O(\gamma \Delta)$ time
- edge removal in worst-case $O(\Delta)$ time

Both operations reorient at most $\Delta + 1$ edges.

For each vertex w, we keep list L_w of outgoing vertices such that the first γ vertices are 1-valid, the next γ vertices 2-valid and so on.

Insert $u \to v$ such that $d_{out}(u) \leq d_{out}(v)$

• Add edge $u \rightarrow v$ to graph

Insert $u \to v$ such that $d_{out}(u) \leq d_{out}(v)$

• Add edge $u \rightarrow v$ to graph

- 2 Find violated edge $u \rightarrow v'$ among last $\gamma 1$ edges of L_w

- **1** Add edge $u \rightarrow v$ to graph
- 2 Find violated edge $u \rightarrow v'$ among last $\gamma 1$ edges of L_w
- If such edge exists, replace u → v' with u → v in L_w , and remove u → v' and insert v' → u recursively

- **1** Add edge $u \rightarrow v$ to graph
- 2 Find violated edge $u \rightarrow v'$ among last $\gamma 1$ edges of L_w
- If such edge exists, replace u → v' with u → v in L_w , and remove u → v' and insert v' → u recursively

- **1** Add edge $u \rightarrow v$ to graph
- 2 Find violated edge $u \rightarrow v'$ among last $\gamma 1$ edges of L_w
- If such edge exists, replace u → v' with u → v in L_w , and remove u → v' and insert v' → u recursively

- Add edge $u \rightarrow v$ to graph
- 2 Find violated edge $u \rightarrow v'$ among last $\gamma 1$ edges of L_w
- If such edge exists, replace u → v' with u → v in L_w , and remove u → v' and insert v' → u recursively
- **③** Else move last $\gamma 1$ edges of L_w to the front and add $u \rightarrow v$ to the front

- Add edge $u \rightarrow v$ to graph
- 2 Find violated edge u
 ightarrow v' among last $\gamma 1$ edges of L_w
- If such edge exists, replace u → v' with u → v in L_w, and remove u → v' and insert v' → u recursively
- **③** Else move last $\gamma 1$ edges of L_w to the front and add $u \rightarrow v$ to the front

Edge insertion time: $O(\gamma \Delta)$

() Remove $u \rightarrow v$ from graph and the list L_w

- **Q** Remove $u \rightarrow v$ from graph and the list L_w
- **2** Find violated edge $v' \rightarrow u$ using data structure H_u

- **Q** Remove $u \rightarrow v$ from graph and the list L_w
- **2** Find violated edge $v' \rightarrow u$ using data structure H_u
- If such edge exists, add $u \rightarrow v'$ in place of $u \rightarrow v$ in L_w , add $u \rightarrow v'$ to graph and remove $v' \rightarrow u$ recursively

- **1** Remove $u \rightarrow v$ from graph and the list L_w
- 2 Find violated edge $v' \rightarrow u$ using data structure H_u
- If such edge exists, add $u \rightarrow v'$ in place of $u \rightarrow v$ in L_w , add $u \rightarrow v'$ to graph and remove $v' \rightarrow u$ recursively

Edge removal time: $O(\Delta)$

Final algorithm

We maintain Δ -orientation of graph G with arboricity bounded by α , where:

- $\Delta \leq \inf_{\beta > 1} \left\{ \beta \alpha + \left\lceil \log_{\beta} n \right\rceil \right\}$
- edge insertion works in worst-case ${\cal O}(etalpha\Delta)$ time
- edge removal works in worst-case $O(\Delta)$ time

Both operations reorient at most $\Delta + 1$ edges.

Final algorithm

We maintain Δ -orientation of graph G with arboricity bounded by α , where:

- $\Delta \leq \inf_{\beta > 1} \left\{ \beta \alpha + \left\lceil \log_{\beta} n \right\rceil \right\}$
- edge insertion works in worst-case $O(\beta \alpha \Delta)$ time
- edge removal works in worst-case $O(\Delta)$ time

Both operations reorient at most $\Delta + 1$ edges.

For constant arboricity, if we set $\beta = 2$, then bounds translate to $O(\log n)$.