Orienting Fully Dynamic Graphs with Worst-Case Time Bounds

Krzysztof Potepa

Theoretical Computer Science

May 6, 2021

Krzysztof Potepa (TCS) Orienting Fully Dynamic Graphs May 6, 2021 1/20

Sources

@ Orienting Fully Dynamic Graphs with Worst-Case Time Bounds (2013)
Tsvi Kopelowitz, Robert Krauthgamer, Ely Porat, Shay Solomon

Krzysztof Potepa (TCS) Orienting Fully Dynamic Graphs May 6, 2021 2/20

https://arxiv.org/abs/1312.1382v1

Low out-degree orientations

c-orientation

Orientation of graph edges such that out-degree of every vertex is at most c.

We want ¢ to be small.

Krzysztof Potepa (TCS) Orienting Fully Dynamic Graphs May 6, 2021 3/20

Low out-degree orientations

c-orientation

Orientation of graph edges such that out-degree of every vertex is at most c.

We want ¢ to be small.

Motivation

Low out-degree orientations enable efficient algorithms for many graph problems:
adjacency queries in O(log log c) using linear memory

shortest-path queries

maximal matchings (under inclusion)

and many more

Krzysztof Potepa (TCS) Orienting Fully Dynamic Graphs May 6, 2021 3/20

Krzysztof Potepa (TCS) Orienting Fully Dynamic Graphs May 6, 2021 4/20

Nash-Williams Theorem

Graph G = (V, E) has arboricity a(G) iff a(G) is the smallest number of sets £y, ..., E,(¢)
that E can be partitioned into, such that each subgraph (V, E;) is a forest.

Krzysztof Potepa (TCS) Orienting Fully Dynamic Graphs May 6, 2021 4/20

a(G) = max [IE(U)IW

vcv(e) | |U] -1

Nash-Williams Theorem

Graph G = (V, E) has arboricity a(G) iff a(G) is the smallest number of sets £y, ..., E,(¢)
that E can be partitioned into, such that each subgraph (V, E;) is a forest.

Classes of graphs with o bounded by constant

@ planar graphs

@ excluded-minor families

Krzysztof Potepa (TCS) Orienting Fully Dynamic Graphs May 6, 2021 4/20

Arboricity vs low out-degree orientations

Let P(G) = smallest ¢ such that G has c-orientation.

Krzysztof Potepa (TCS) Orienting Fully Dynamic Graphs May 6, 2021 5/20

Arboricity vs low out-degree orientations

Let P(G) = smallest ¢ such that G has c-orientation.

Krzysztof Potepa (TCS) Orienting Fully Dynamic Graphs May 6, 2021 5/20

Arboricity vs low out-degree orientations

Let P(G) = smallest ¢ such that G has c-orientation.

e P(G) < a(G): split G into a(G) forests and orient each separately

Krzysztof Potepa (TCS Orienting Fully Dynamic Graphs May 6, 2021 5/20
3% ep

Arboricity vs low out-degree orientations

Let P(G) = smallest ¢ such that G has c-orientation.

a(G) —1 < P(G) < a(G)

e P(G) < a(G): split G into a(G) forests and orient each separately

e a(G)—-1< P(G)

Let U C V bes.t. PE(U)W = «a(G), hence ||6(|g)1| > a(G) — 1.

Krzysztof Potepa (TCS Orienting Fully Dynamic Graphs May 6, 2021 5/20
3% ep

Arboricity vs low out-degree orientations

Let P(G) = smallest ¢ such that G has c-orientation.

a(G) —1 < P(G) < a(G)

e P(G) < a(G): split G into a(G) forests and orient each separately

e a(G)—-1< P(G)

Let U C V bes.t. PE(U)W = «a(G), hence ||6(|g)1| > a(G) — 1.

E(U)|

P(G) > | 0]

Krzysztof Potepa (TCS Orienting Fully Dynamic Graphs May 6, 2021 5/20
3% ep

Arboricity vs low out-degree orientations

Let P(G) = smallest ¢ such that G has c-orientation.

a(G) —1 < P(G) < a(G)

e P(G) < a(G): split G into a(G) forests and orient each separately

e a(G)—-1< P(G)

Let U C V bes.t. PE(U)W = «a(G), hence ||6(|g)1| > a(G) — 1.

P(G) > |E|(UU’)’ > |U|‘U“1 (a(G) = 1)

Krzysztof Potepa (TCS Orienting Fully Dynamic Graphs May 6, 2021 5/20
3% ep

Arboricity vs low out-degree orientations

Let P(G) = smallest ¢ such that G has c-orientation.

a(G) —1 < P(G) < a(G)

e P(G) < a(G): split G into a(G) forests and orient each separately

e a(G)—-1< P(G)

Let U C V bes.t. PE(U)W = «a(G), hence ||6(|g)1| > a(G) — 1.

P(G) > |E|(UU’)’ > |U|‘U“1 (a(G) = 1)

[Ul-P(G) > (JU[= 1) - (a(G) = 1)
[Ul- (P(G) = ((G) =2)) > 1

Krzysztof Potepa (TCS Orienting Fully Dynamic Graphs May 6, 2021 5/20
y:! ep

Orienting fully dynamic graphs

Problem

Maintain A-orientation of graph G under operations:
@ insert edge
@ remove edge

Graph G has arboricity bounded by « at any time.

Krzysztof Potepa (TCS) Orienting Fully Dynamic Graphs May 6, 2021 6 /20

Orienting fully dynamic graphs

Problem

Maintain A-orientation of graph G under operations:
@ insert edge
@ remove edge

Graph G has arboricity bounded by « at any time.

In the following, we assume that « is constant.

Bound on A Edge insertion Edge removal
Brodal, Fagerberg (1999) 4oy amortized O(1) amortized O(log n)
. 4o amortized O(logn) | worst-case O(1)
Kowalik (2007) O(log n) amortized O(1) worst-case O(1)
Kopelowitz et al. (2013) O(log n) worst-case O(log n) | worst-case O(log n)

Krzysztof Potepa (TCS) Orienting Fully Dynamic Graphs May 6, 2021 6 /20

Invariants for bounding the out-degrees

Valid edge

Edge u — v is valid iff dout(u) < doue(v) + 1, else it is violated.

2

Krzysztof Potepa (TCS) Orienting Fully Dynamic Graphs May 6, 2021 7/20

Invariants for bounding the out-degrees

Let n =|V(G)|. Let 8 > 1 be an arbitrary parameter and let v = 3 - a.

For each vertex w, at least min(doy:(w),y) outgoing edges are valid.

Krzysztof Potepa (TCS) Orienting Fully Dynamic Graphs May 6, 2021 8/20

Invariants for bounding the out-degrees

Let n =|V(G)|. Let 8 > 1 be an arbitrary parameter and let v = 3 - a.

For each vertex w, at least min(doy:(w),y) outgoing edges are valid.

If the invariant holds, then A <~ + |_Iog5 n-|.

Krzysztof Potepa (TCS) Orienting Fully Dynamic Graphs May 6, 2021 8/20

Invariants for bounding the out-degrees

Let n =|V(G)|. Let 8 > 1 be an arbitrary parameter and let v = 3 - a.

For each vertex w, at least min(doy:(w),y) outgoing edges are valid.

If the invariant holds, then A <~ + |_Iog5 n-|.

@ Suppose we have vertex s with do,e(s) > v + ﬂogﬁ nl.

Krzysztof Potepa (TCS) Orienting Fully Dynamic Graphs May 6, 2021 8/20

Invariants for bounding the out-degrees

Let n =|V(G)|. Let 8 > 1 be an arbitrary parameter and let v = 3 - a.

For each vertex w, at least min(doy:(w),y) outgoing edges are valid.

If the invariant holds, then A <~ + |_Iog5 n-|.

@ Suppose we have vertex s with do,e(s) > v + ﬂogﬁ nl.

@ Let V; = vertices reachable from s using at most i valid edges

Krzysztof Potepa (TCS) Orienting Fully Dynamic Graphs May 6, 2021 8/20

Invariants for bounding the out-degrees

Let n =|V(G)|. Let 8 > 1 be an arbitrary parameter and let v = 3 - a.

For each vertex w, at least min(doy:(w),y) outgoing edges are valid.

If the invariant holds, then A <~ + |_Iog5 n-|.

@ Suppose we have vertex s with do,e(s) > v + ﬂogﬁ nl.
@ Let V; = vertices reachable from s using at most i valid edges

o For every i € {1,..., [logg n|} and w € V; we have:

dout(W) > doyt(s) — i > v+ ﬂogﬁ nw —i >y

Krzysztof Potepa (TCS) Orienting Fully Dynamic Graphs May 6, 2021 8/20

Invariants for bounding the out-degrees

We prove by induction on i that |V;| > 8 for all i € {1, ..., [logs n|}.

Krzysztof Potepa (TCS) Orienting Fully Dynamic Graphs May 6, 2021 9/20

Invariants for bounding the out-degrees

We prove by induction on i that |V;| > 8 for all i € {1, ..., [logs n|}.
e Fori=1wehave: |Vi| =1+ |Noye(s)| >y +1>~v>3

Krzysztof Potepa (TCS) Orienting Fully Dynamic Graphs May 6, 2021 9/20

Invariants for bounding the out-degrees

We prove by induction on i that |V;| > 8 for all i € {1, ..., [logs n|}.
e Fori=1wehave: |Vi| =1+ |Noye(s)| >y +1>~v>3
e Suppose now that |V;_ 1| > 371,

Krzysztof Potepa (TCS) Orienting Fully Dynamic Graphs May 6, 2021 9/20

Invariants for bounding the out-degrees

We prove by induction on i that |V;| > 8 for all i € {1, ..., [logs n|}.
e Fori=1wehave: |Vi| =1+ |Noye(s)| >y +1>~v>3
e Suppose now that |V;_ 1| > 371,

[E(Vi)| = [Vil

Krzysztof Potepa (TCS) Orienting Fully Dynamic Graphs May 6, 2021 9/20

Invariants for bounding the out-degrees

We prove by induction on i that |V;| > 8 for all i € {1, ..., [logs n|}.
e Fori=1wehave: |Vi| =1+ |Noye(s)| >y +1>~v>3
e Suppose now that |V;_ 1| > 371,

|[E(Vi)| > 7| Vi a>

Krzysztof Potepa (TCS) Orienting Fully Dynamic Graphs May 6, 2021 9/20

Invariants for bounding the out-degrees

We prove by induction on i that |V;| > 8 for all i € {1, ..., [logs n|}.
e Fori=1wehave: |Vi| =1+ |Noye(s)| >y +1>~v>3
e Suppose now that |V;_ 1| > 371,

|[E(Vi)| > 7| Vi a>

V-1 v| Vi1l
(6%

Krzysztof Potepa (TCS) Orienting Fully Dynamic Graphs May 6, 2021 9/20

Invariants for bounding the out-degrees

We prove by induction on i that |V;| > 8 for all i € {1, ..., [logs n|}.
e Fori=1wehave: |Vi| =1+ |Noye(s)| >y +1>~v>3
e Suppose now that |V;_ 1| > 371,

[E(V)
Vil -1

|[E(Vi)| > 7| Vi a>

~| Vi .
vil-12 Wy gy s

Krzysztof Potepa (TCS) Orienting Fully Dynamic Graphs May 6, 2021 9/20

Invariants for bounding the out-degrees

We prove by induction on i that |V;| > 8 for all i € {1, ..., [logs n|}.
e Fori=1wehave: |Vi| =1+ |Noye(s)| >y +1>~v>3
e Suppose now that |V;_ 1| > 371,

[E(V)
Vil -1

|E(V)| > 7| Vil o>
~| Vi .
vil-12 Wy gy s

We have ‘V[> ﬁ[bgﬁ] > n, contradiction.

logg n-|

Krzysztof Potepa (TCS) Orienting Fully Dynamic Graphs May 6, 2021 9/20

Simple algorithm

For each vertex w, at least min(doyu:(w),y) outgoing edges are valid.

If the invariant holds, then A <~ + [logs n].

Krzysztof Potepa (TCS) Orienting Fully Dynamic Graphs May 6, 2021 10/20

Simple algorithm

Strong invariant
For each vertex w, all outgoing edges are valid.

If the strong invariant holds, then A <'infg-; {8 - a(G) + [logg n]}.

Krzysztof Potepa (TCS) Orienting Fully Dynamic Graphs May 6, 2021 10/20

Simple algorithm

Strong invariant
For each vertex w, all outgoing edges are valid.

If the strong invariant holds, then A <'infg-; {8 - a(G) + [logg n]}.

Algorithm 1
We maintain the strong invariant for dynamic graph G and support:

e edge insertion in worst-case O(A?) time
@ edge removal in worst-case O(A) time

Both operations reorient at most A + 1 edges.

Krzysztof Potepa (TCS) Orienting Fully Dynamic Graphs May 6, 2021 10/20

Edge insertion

Krzysztof Potepa (TCS) Orienting Fully Dynamic Graphs May 6, 2021 11 /20

Edge insertion

Krzysztof Potepa (TCS) Orienting Fully Dynamic Graphs May 6, 2021 11 /20

Edge insertion

Krzysztof Potepa (TCS) Orienting Fully Dynamic Graphs May 6, 2021 11 /20

Edge insertion

Krzysztof Potepa (TCS) Orienting Fully Dynamic Graphs May 6, 2021 11 /20

Edge insertion

Krzysztof Potepa (TCS) Orienting Fully Dynamic Graphs May 6, 2021 11 /20

Edge insertion

Krzysztof Potepa (TCS) Orienting Fully Dynamic Graphs May 6, 2021 11 /20

Edge insertion

Krzysztof Potepa (TCS) Orienting Fully Dynamic Graphs May 6, 2021 11 /20

Edge insertion

Krzysztof Potepa (TCS) Orienting Fully Dynamic Graphs May 6, 2021 11 /20

2, - 2

Krzysztof Potepa (TCS) Orienting Fully Dynamic Graphs May 6, 2021 11 /20

2, - 2

Krzysztof Potepa (TCS) Orienting Fully Dynamic Graphs May 6, 2021 11 /20

Edge insertion

Krzysztof Potepa (TCS) Orienting Fully Dynamic Graphs May 6, 2021 11 /20

2. L2

Insert u — v such that dyue(t) < doue(v)
@ Add edge u — v to graph

@ Find violated edge u — v/ among A out-edges of u

@ If such edge exists, remove u — v/ and insert v/ — u recursively

Krzysztof Potepa (TCS) Orienting Fully Dynamic Graphs May 6, 2021 11/20

Insert u — v such that dy,e(t) < doue(v)
O Add edge u — v to graph

@ Find violated edge u — v/ among A out-edges of u

© |If such edge exists, remove u — v/ and insert v/ — u recursively

Number of recursive calls

@ dout(u) = dout(v') + 1 (degree "decreases" by 1 in each recursion)

@ A recursive calls excluding the initial one

Krzysztof Potepa (TCS) Orienting Fully Dynamic Graphs May 6, 2021 11 /20

Insert u — v such that dy,e(t) < doue(v)

O Add edge u — v to graph

@ Find violated edge u — v/ among A out-edges of u

© |If such edge exists, remove u — v/ and insert v/ — u recursively

Number of recursive calls

@ dout(u) = dout(v') + 1 (degree "decreases" by 1 in each recursion)

@ A recursive calls excluding the initial one

Edge insertion time: O(A?)

Krzysztof Potepa (TCS) Orienting Fully Dynamic Graphs May 6, 2021 11 /20

Edge removal

Krzysztof Potepa (TCS) Orienting Fully Dynamic Graphs May 6, 2021 12 /20

Edge removal

Krzysztof Potepa (TCS) Orienting Fully Dynamic Graphs May 6, 2021 12 /20

Edge removal

Krzysztof Potepa (TCS) Orienting Fully Dynamic Graphs May 6, 2021 12 /20

Edge removal

Krzysztof Potepa (TCS) Orienting Fully Dynamic Graphs May 6, 2021 12 /20

Edge removal

Krzysztof Potepa (TCS) Orienting Fully Dynamic Graphs May 6, 2021 12 /20

Edge removal

Krzysztof Potepa (TCS) Orienting Fully Dynamic Graphs May 6, 2021 12 /20

Edge removal

Krzysztof Potepa (TCS) Orienting Fully Dynamic Graphs May 6, 2021 12 /20

Edge removal

Krzysztof Potepa (TCS) Orienting Fully Dynamic Graphs May 6, 2021 12 /20

Edge removal

Krzysztof Potepa (TCS) Orienting Fully Dynamic Graphs May 6, 2021 12 /20

Edge removal

2 .2

Krzysztof Potepa (TCS) Orienting Fully Dynamic Graphs May 6, 2021 12 /20

Edge removal

2. .2

Remove u — v

© Remove u — v from graph
@ Find violated edge v/ — u among in-edges of u (how?)
© If such edge exists, add u — v/ and remove v/ — u recursively

Krzysztof Potepa (TCS) Orienting Fully Dynamic Graphs May 6, 2021 12 /20

Edge removal

Remove u — v

© Remove u — v from graph

@ Find violated edge v/ — u among in-edges of u (how?)
© If such edge exists, add u — v/ and remove v/ — u recursively

Number of recursive calls

o doyt(v') = dout(u) + 1 (degree "increases" by 1 in each recursion)

@ A recursive calls excluding the initial one

Krzysztof Potepa (TCS) Orienting Fully Dynamic Graphs May 6, 2021 12 /20

Edge removal

Remove u — v

© Remove u — v from graph

@ Find violated edge v/ — u among in-edges of u (how?)

© If such edge exists, add u — v/ and remove v/ — u recursively

Number of recursive calls

o doyt(v') = dout(u) + 1 (degree "increases" by 1 in each recursion)

@ A recursive calls excluding the initial one

How to find the violated edge quickly?

 —

Krzysztof Potepa (TCS) Orienting Fully Dynamic Graphs May 6, 2021 12 /20

Finding violated incoming edge

Data structure

Let ko be a parameter.
Maintain set of elements X, each with associated integer key, under operations:
@ get element with maximum key in O(1)
@ insert element with key 0 < k < kg in O(1)
@ remove element in O(1)
@ increment/decrement key of given element in O(1)
@ increment/decrement parameter ko in O(ko)

Data structure uses O(n + kp) memory, where n is the number of elements.

Krzysztof Potepa (TCS) Orienting Fully Dynamic Graphs May 6, 2021 13 /20

Finding violated incoming edge

Data structure

Let ko be a parameter.
Maintain set of elements X, each with associated integer key, under operations:

@ get element with maximum key in O(1)
@ insert element with key 0 < k < kg in O(1)

@ remove element in O(1)

increment/decrement key of given element in O(1)

increment/decrement parameter kg in O(ko)

Data structure uses O(n + ko) memory, where n is the number of elements.

Incoming edges

For each vertex w, maintain data structure H,, over all incoming edges.
Key of edge u — w is doys(w). Parameter ko is doue(w) + 1.

Krzysztof Potepa (TCS) Orienting Fully Dynamic Graphs May 6, 2021 13 /20

Simple algorithm

Insert u — v such that dyu:(t) < doue(v)
O Add edge u — v to graph

@ Find violated edge u — v/ by iterating over A out-edges of u

© If such edge exists, remove u — v/ and insert v/ — u recursively

Remove u — v

@ Remove u — v from graph
@ Find violated edge v/ — u using data structure H,,

© If such edge exists, add u — v/ and remove v/ — u recursively

Krzysztof Potepa (TCS) Orienting Fully Dynamic Graphs May 6, 2021 14 /20

Simple algorithm

Insert u — v such that dyu:(t) < doue(v)
O Add edge u — v to graph
@ Find violated edge u — v/ by iterating over A out-edges of u

© If such edge exists, remove u — v/ and insert v/ — u recursively

Remove u — v

@ Remove u — v from graph
@ Find violated edge v/ — u using data structure H,,
© If such edge exists, add u — v/ and remove v/ — u recursively

Edge insertion time: O(A?)
Edge removal time: O(A)

Krzysztof Potepa (TCS) Orienting Fully Dynamic Graphs May 6, 2021 14 /20

Improving runtime

Let n=|V(G)|. Let B > 1 be an arbitrary parameter and let v = 3 - .

Krzysztof Potepa (TCS Orienting Fully Dynamic Graphs May 6, 2021 15 /20
3%

Improving runtime

Let n=|V(G)|. Let B > 1 be an arbitrary parameter and let v = 3 - .

i-valid edge

Edge u — v is i-valid iff doyt(v) < doue(v) + i, else it is i-violated.

Krzysztof Potepa (TCS) Orienting Fully Dynamic Graphs May 6, 2021 15 /20

Improving runtime

Let n =|V/(G)|. Let 8 > 1 be an arbitrary parameter and let v = 3 - a.

i-valid edge
Edge u — v is i-valid iff doyt(v) < doue(v) + i, else it is i-violated.

Spectrum-validity for vertex w

Vertex w is spectrum-valid if its set of outgoing edges E,, can be partitioned into g = [|E,|/7]
sets EL ..., EJ such that:

o |El| = foreachie{L,..,q—1}

o all edges in E!, are i-valid

Krzysztof Potepa (TCS) Orienting Fully Dynamic Graphs May 6, 2021 15 /20

Improving runtime

Intermediate invariant

Every vertex is spectrum-valid.

Krzysztof Potepa (TCS) Orienting Fully Dynamic Graphs May 6, 2021 16 /20

Improving runtime

Intermediate invariant
Every vertex is spectrum-valid.

Algorithm 2
We maintain the intermediate invariant for dynamic graph G and support:

@ edge insertion in worst-case O(yA) time
@ edge removal in worst-case O(A) time
Both operations reorient at most A + 1 edges.

Krzysztof Potepa (TCS) Orienting Fully Dynamic Graphs May 6, 2021 16 /20

Improving runtime

For each vertex w, we keep list L,, of outgoing vertices such that the first vertices are 1-valid,
the next ~ vertices 2-valid and so on.

w

Krzysztof Potepa (TCS) Orienting Fully Dynamic Graphs May 6, 2021 17 /20

u (%

Insert u — v such that dy,:(t) < doue(v)
@ Add edge u — v to graph

o’

Krzysztof Potepa (TCS) Orienting Fully Dynamic Graphs May 6, 2021 18 /20

u v
_771
______ e A A B NN N =SSt
BT BT ECUTTOTET

Insert u — v such that dy,:(t) < doue(v)
@ Add edge u — v to graph

o’

Krzysztof Potepa (TCS) Orienting Fully Dynamic Graphs May 6, 2021 18 /20

u v
=y-1
N~ <5
| == -z - [B -T// = - --I 1 - T - —‘----I 1 -----_-,ZI\
| [o ! o '
1 1 I 1 / 1
I_______-________’yl L--_____________’YI .. L---'YI [, "
1 = 2 = 3 L= 4 |

Insert u — v such that dy,:(t) < doue(v)
@ Add edge u — v to graph

@ Find violated edge u — v/ among last v — 1 edges of L,

o’

Krzysztof Potepa (TCS) Orienting Fully Dynamic Graphs May 6, 2021 18 /20

u v
=y-1
| == -z - [B -T// = - --I [T - —:----I |----S-,ZI:
! 1 ! 1 ! I 1 |‘
! 1 ! 1 ! I 1 |‘
.. -1 .. -1 .. [— ["
B BT BOUTOET

Insert u — v such that dy,:(t) < doue(v)
@ Add edge u — v to graph

@ Find violated edge u — v/ among last v — 1 edges of L,

© If such edge exists, replace u — v/ with u — v in L,,, and remove u — v/ and insert
v/ — u recursively

o’

Krzysztof Potepa (TCS) Orienting Fully Dynamic Graphs May 6, 2021 18 /20

Uu (%
:'\’,71
______ S e R A/ S N NN NS -
B B BUTEOUET

Insert u — v such that dy,:(t) < doue(v)
@ Add edge u — v to graph

@ Find violated edge u — v/ among last v — 1 edges of L,

© If such edge exists, replace u — v/ with u — v in L,,, and remove u — v/ and insert
v/ — u recursively

o’

Krzysztof Potepa (TCS) Orienting Fully Dynamic Graphs May 6, 2021 18 /20

u (%

Insert u — v such that dy,:(t) < doue(v)
@ Add edge u — v to graph

@ Find violated edge u — v/ among last v — 1 edges of L,

© If such edge exists, replace u — v/ with u — v in L,,, and remove u — v/ and insert
v/ — u recursively

o’

Krzysztof Potepa (TCS) Orienting Fully Dynamic Graphs May 6, 2021 18 /20

Insert u — v such that dy,:(t) < doue(v)
@ Add edge u — v to graph

@ Find violated edge u — v/ among last v — 1 edges of L,

© If such edge exists, replace u — v/ with u — v in L,,, and remove u — v/ and insert
v/ — u recursively

Q Else move last v — 1 edges of L, to the front and add u — v to the front

o’

Krzysztof Potepa (TCS) Orienting Fully Dynamic Graphs May 6, 2021 18 /20

Edge insertion

Insert u — v such that dyu:(t) < doue(v)
@ Add edge u — v to graph

@ Find violated edge u — v/ among last v — 1 edges of L,

@ If such edge exists, replace u — v/ with u — v in L,,, and remove u — v/ and insert
v/ — u recursively

@ Else move last v — 1 edges of L, to the front and add u — v to the front

Edge insertion time: O(yA) J

Krzysztof Potepa (TCS) Orienting Fully Dynamic Graphs May 6, 2021 18 /20

Edge removal

Remove u — v

Krzysztof Potepa (TCS) Orienting Fully Dynamic Graphs May 6, 2021 19 /20

Edge removal

Remove u — v

© Remove u — v from graph and the list L,

Krzysztof Potepa (TCS) Orienting Fully Dynamic Graphs May 6, 2021 19 /20

Edge removal

Remove u — v

© Remove u — v from graph and the list L,
@ Find violated edge v/ — u using data structure H,

Krzysztof Potepa (TCS) Orienting Fully Dynamic Graphs May 6, 2021 19 /20

Edge removal

Remove u — v

© Remove u — v from graph and the list L,
@ Find violated edge v/ — u using data structure H,

© If such edge exists, add u — v/ in place of u — v in L,, add u — v/ to graph and remove
v/ — u recursively

Krzysztof Potepa (TCS) Orienting Fully Dynamic Graphs May 6, 2021 19 /20

Edge removal

Remove u — v

© Remove u — v from graph and the list L,,
@ Find violated edge v/ — u using data structure H,

© If such edge exists, add u — v’ in place of u — v in L,, add u — v/ to graph and remove
v/ — u recursively

Edge removal time: O(A) |

Krzysztof Potepa (TCS) Orienting Fully Dynamic Graphs May 6, 2021 19 /20

Summary

We maintain A-orientation of graph G with arboricity bounded by «a;, where:
o A <infgsq {ﬂoz 4k [Iogﬂ n}}
@ edge insertion works in worst-case O(SaA) time
@ edge removal works in worst-case O(A) time

Both operations reorient at most A + 1 edges.

Krzysztof Potepa (TCS) Orienting Fully Dynamic Graphs May 6, 2021 20 /20

Summary

Final algorithm

We maintain A-orientation of graph G with arboricity bounded by «a;, where:
o A <infgsq {ﬂoz 4k [Iogﬂ n}}
@ edge insertion works in worst-case O(SaA) time
@ edge removal works in worst-case O(A) time

Both operations reorient at most A + 1 edges.

For constant arboricity, if we set 5 = 2, then bounds translate to O(log n).

Krzysztof Potepa (TCS) Orienting Fully Dynamic Graphs

May 6, 2021

20 /20

