
Orienting Fully Dynamic Graphs with Worst-Case Time Bounds

Krzysztof Potępa

Theoretical Computer Science

May 6, 2021

Krzysztof Potępa (TCS) Orienting Fully Dynamic Graphs May 6, 2021 1 / 20



Sources

Orienting Fully Dynamic Graphs with Worst-Case Time Bounds (2013)
Tsvi Kopelowitz, Robert Krauthgamer, Ely Porat, Shay Solomon

Krzysztof Potępa (TCS) Orienting Fully Dynamic Graphs May 6, 2021 2 / 20

https://arxiv.org/abs/1312.1382v1


Low out-degree orientations

c-orientation
Orientation of graph edges such that out-degree of every vertex is at most c .

We want c to be small.

Motivation
Low out-degree orientations enable efficient algorithms for many graph problems:

adjacency queries in O(log log c) using linear memory
shortest-path queries
maximal matchings (under inclusion)
and many more
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Arboricity

Arboricity

α(G ) = max
U⊆V (G)

⌈
|E (U)|
|U| − 1

⌉

Nash-Williams Theorem
Graph G = (V ,E ) has arboricity α(G ) iff α(G ) is the smallest number of sets E1, ...,Eα(G)

that E can be partitioned into, such that each subgraph (V ,Ei ) is a forest.

Classes of graphs with α bounded by constant
planar graphs
excluded-minor families
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Arboricity vs low out-degree orientations

Let P(G ) = smallest c such that G has c-orientation.

Lemma
α(G )− 1 ≤ P(G ) ≤ α(G )

P(G ) ≤ α(G ): split G into α(G ) forests and orient each separately

α(G )− 1 ≤ P(G )

Let U ⊆ V be s.t.
⌈
|E(U)|
|U|−1

⌉
= α(G ), hence |E(U)|

|U|−1 > α(G )− 1.

P(G ) ≥ |E (U)|
|U|

>
|U| − 1
|U|

· (α(G )− 1)

|U| · P(G ) > (|U| − 1) · (α(G )− 1)

|U| · (P(G )− (α(G )− 2)) > 1
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Orienting fully dynamic graphs

Problem
Maintain ∆-orientation of graph G under operations:

insert edge
remove edge

Graph G has arboricity bounded by α at any time.

In the following, we assume that α is constant.

Bound on ∆ Edge insertion Edge removal
Brodal, Fagerberg (1999) 4α amortized O(1) amortized O(log n)

Kowalik (2007)
4α amortized O(log n) worst-case O(1)

O(log n) amortized O(1) worst-case O(1)

Kopelowitz et al. (2013) O(log n) worst-case O(log n) worst-case O(log n)
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Invariants for bounding the out-degrees

Valid edge
Edge u → v is valid iff dout(u) ≤ dout(v) + 1, else it is violated.

1

1

3

2

0

2

2

2
3
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Invariants for bounding the out-degrees

Let n = |V (G )|. Let β > 1 be an arbitrary parameter and let γ = β · α.

Invariant
For each vertex w , at least min(dout(w), γ) outgoing edges are valid.

Theorem
If the invariant holds, then ∆ ≤ γ +

⌈
logβ n

⌉
.

Suppose we have vertex s with dout(s) > γ +
⌈
logβ n

⌉
.

Let Vi = vertices reachable from s using at most i valid edges
For every i ∈ {1, ...,

⌈
logβ n

⌉
} and w ∈ Vi we have:

dout(w) ≥ dout(s)− i > γ +
⌈
logβ n

⌉
− i ≥ γ
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Invariants for bounding the out-degrees

We prove by induction on i that |Vi | > βi for all i ∈ {1, ...,
⌈
logβ n

⌉
}.

For i = 1 we have: |V1| = 1 + |Nout(s)| ≥ γ + 1 > γ ≥ β
Suppose now that |Vi−1| > βi−1.

|E (Vi )| ≥ γ|Vi−1| α ≥ |E (Vi )|
|Vi | − 1

|Vi | − 1 ≥ γ|Vi−1|
α

≥ β|Vi−1| > βi

We have
∣∣∣Vdlogβ ne

∣∣∣ > βdlogβ ne ≥ n, contradiction.
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Simple algorithm

Invariant
For each vertex w , at least min(dout(w), γ) outgoing edges are valid.

Theorem
If the invariant holds, then ∆ ≤ γ +

⌈
logβ n

⌉
.

Algorithm 1
We maintain the strong invariant for dynamic graph G and support:

edge insertion in worst-case O(∆2) time
edge removal in worst-case O(∆) time

Both operations reorient at most ∆ + 1 edges.
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Edge insertion

1

1

1

0

2

22

3

2

Insert u → v such that dout(u) ≤ dout(v)

1 Add edge u → v to graph
2 Find violated edge u → v ′ among ∆ out-edges of u
3 If such edge exists, remove u → v ′ and insert v ′ → u recursively
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Edge removal
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Remove u → v
1 Remove u → v from graph
2 Find violated edge v ′ → u among in-edges of u (how?)
3 If such edge exists, add u → v ′ and remove v ′ → u recursively
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Edge removal

Remove u → v
1 Remove u → v from graph
2 Find violated edge v ′ → u among in-edges of u (how?)
3 If such edge exists, add u → v ′ and remove v ′ → u recursively

Number of recursive calls
dout(v

′) = dout(u) + 1 (degree "increases" by 1 in each recursion)
∆ recursive calls excluding the initial one

How to find the violated edge quickly?
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Finding violated incoming edge

Data structure
Let k0 be a parameter.
Maintain set of elements X , each with associated integer key, under operations:

get element with maximum key in O(1)

insert element with key 0 ≤ k ≤ k0 in O(1)

remove element in O(1)

increment/decrement key of given element in O(1)

increment/decrement parameter k0 in O(k0)

Data structure uses O(n + k0) memory, where n is the number of elements.

Incoming edges
For each vertex w , maintain data structure Hw over all incoming edges.
Key of edge u → w is dout(w). Parameter k0 is dout(w) + 1.
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Simple algorithm

Insert u → v such that dout(u) ≤ dout(v)

1 Add edge u → v to graph
2 Find violated edge u → v ′ by iterating over ∆ out-edges of u
3 If such edge exists, remove u → v ′ and insert v ′ → u recursively

Remove u → v
1 Remove u → v from graph
2 Find violated edge v ′ → u using data structure Hu

3 If such edge exists, add u → v ′ and remove v ′ → u recursively

Edge insertion time: O(∆2)
Edge removal time: O(∆)
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Improving runtime

Let n = |V (G )|. Let β > 1 be an arbitrary parameter and let γ = β · α.

i -valid edge
Edge u → v is i -valid iff dout(u) ≤ dout(v) + i , else it is i -violated.

Spectrum-validity for vertex w

Vertex w is spectrum-valid if its set of outgoing edges Ew can be partitioned into q = d|Ew |/γe
sets E 1

w , ...,E
q
w such that:

|E i
w | = γ for each i ∈ {1, ..., q − 1}

all edges in E i
w are i-valid

w

E1
w E2

w E3
w E4

w
= γ = γ = γ

≤ γ
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Improving runtime

Intermediate invariant
Every vertex is spectrum-valid.

Algorithm 2
We maintain the intermediate invariant for dynamic graph G and support:

edge insertion in worst-case O(γ∆) time
edge removal in worst-case O(∆) time

Both operations reorient at most ∆ + 1 edges.
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Improving runtime

For each vertex w , we keep list Lw of outgoing vertices such that the first γ vertices are 1-valid,
the next γ vertices 2-valid and so on.

w

E1
w E2

w E3
w E4

w
= γ = γ = γ

≤ γ
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Edge insertion

u

E1
u E2

u E3
u E4

u
= γ = γ = γ

≤ γ

v

Insert u → v such that dout(u) ≤ dout(v)

1 Add edge u → v to graph

2 Find violated edge u → v ′ among last γ − 1 edges of Lw
3 If such edge exists, replace u → v ′ with u → v in Lw , and remove u → v ′ and insert

v ′ → u recursively
4 Else move last γ − 1 edges of Lw to the front and add u → v to the front
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Edge removal

u

E1
u E2

u E3
u E4

u
= γ = γ = γ

≤ γ

Remove u → v

1 Remove u → v from graph and the list Lw
2 Find violated edge v ′ → u using data structure Hu

3 If such edge exists, add u → v ′ in place of u → v in Lw , add u → v ′ to graph and remove
v ′ → u recursively
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Edge removal
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2 Find violated edge v ′ → u using data structure Hu

3 If such edge exists, add u → v ′ in place of u → v in Lw , add u → v ′ to graph and remove
v ′ → u recursively
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Summary

Final algorithm
We maintain ∆-orientation of graph G with arboricity bounded by α, where:

∆ ≤ infβ>1
{
βα +

⌈
logβ n

⌉}
edge insertion works in worst-case O(βα∆) time
edge removal works in worst-case O(∆) time

Both operations reorient at most ∆ + 1 edges.

For constant arboricity, if we set β = 2, then bounds translate to O(log n).

Krzysztof Potępa (TCS) Orienting Fully Dynamic Graphs May 6, 2021 20 / 20



Summary

Final algorithm
We maintain ∆-orientation of graph G with arboricity bounded by α, where:

∆ ≤ infβ>1
{
βα +

⌈
logβ n

⌉}
edge insertion works in worst-case O(βα∆) time
edge removal works in worst-case O(∆) time

Both operations reorient at most ∆ + 1 edges.

For constant arboricity, if we set β = 2, then bounds translate to O(log n).

Krzysztof Potępa (TCS) Orienting Fully Dynamic Graphs May 6, 2021 20 / 20


