An Introduction to the Discharging Method via Graph Coloring

Vladyslav Rachek, Ruslan Yevdokymov

May 13th, 2021

Vladyslav Rachek, Ruslan Yevdokymov An Introduction to the Discharging Meth

May 13th, 2021 1/26

Presentation overview

- Introduction what is the discharging method about
 - ► Example: a class of graphs in which χ'(G) = Δ(G)
- Structure and coloring of sparse graphs
 - Remark: optimal value for discharging arguments
 - Acyclic 6-choosability
 - Star colorability and Timmons' theorem
- Discharging on plane graphs
 - Acyclic 6-colorability for plane graphs
 - Four color theorem
- List Coloring
- Edge-coloring and List Edge-coloring

Introduction

In the simplest version of discharging involves just reallocation of vertex degrees in the context of a global bound on the average degree. We view each vertex as having an initial "charge" equal to its degree. To show that average degree less than *b* forces the presence of a desired local structure, we show that the absence of such a structure allows charge to be moved (via "discharging rules") so that the final charge at each vertex is at least *b*. This violates the hypothesis, and hence the desired structure must occur.

Definitions

Configuration

A configuration in a graph G can be any structure in G (often in specified sort of subgraph). A configuration is reducible for a graph property Q if it cannot occur in a minimal graph not having property Q. Let d(v) denote the degree of v in G, and $\overline{d}(G)$ denote the average of the vertex degrees in G.

Degree charging is the assignment to each vertex v of an "initial charge" equal to d(v)

Example (a silly one)

 K_3 is a reducible configuration for graph property $\chi(G) = 2$

To put it simple, a word *reducible* means that if G does not have a certain property Q, we can remove a configuration from G and the obtained graph will still not have Q.

Definitions cd.

Vertices

A *j*-vertex, j^+ -vertex or j^- -vertex is a vertex with degree equal to *j*, at least *j* or at most *j*, respectively. A *j*-neighbor of *v* is a *j*-vertex that is a neighbor of *v*.

Weight of an edge

The weight of a subgraph H of a graph G is $\sum_{v \in V(H)} d_G(v)$; we sum the degrees in the full graph G

Maximum average degree

$$mad(G) = max_{H \subset G} \overline{d}(H)$$
. Note that $\overline{d}(G) \leq mad(G)$

Example

Lemma 1.3

If $\overline{d}(G) < 3$ then G has a 1⁻-vertex or a 2-vertex with a 5⁻-neighbor

Lemma 1.4

An edge with weight as most k + 1 is a reducible configuration for the property of being k-edge-colorable. That is, if G has edge of weight at most k + 1 then:

• G is k-edge-colorable, OR

• G is not k-edge-colorable, but we can remove an edge e and the resulting graph $G' \subset G$ will also **not be** k-edge-colorable

Theorem 1.6

If mad(G) < 3 and $\Delta(G) \ge 6$, the $\chi'(G) = \Delta(G)$. We will prove that for $k \ge 6$ if mad(G) < 3 and $\Delta(G) \le k$ then $\chi'(G) \le k$.

Sparse graphs

Remark – best bound on mad(G)

Let's try to formulate lemma 1 more generally: If $\overline{d}(G) < b$ then G has a 1⁻-vertex or a 2-vertex with a j^{-} -neighbor. We must make $b \leq 3$, othwerise a 3-regular graph would be a counterexample Let's say each 2-vertex takes ρ from each neighbor. We want final charge to be equal at least b to have a proof by contradiction. We can have it iff. 2-vertices obtain enough charge, and vertices with degree larger than j do not lose too much. So we need $2 + 2\rho \geq b$ and $d - d\rho \geq b$ when $d \geq j + 1$. To find largest b that works, set $2 + 2\rho = (j + 1)(1 - \rho)$ yielding $b = 2 + 2\rho = 2\frac{j+1}{j+3}$, which gives lemma 1 for j = 5

Acyclic colorings

Definition

An *acyclic coloring* of a graph is a proper coloring such that the union of any two color classes induces an acyclic subgraph; equivalently, no cycle is 2-colored.

Theorem 2

If mad(G) < 3 then G is acyclically 6-choosable

Note about structure

Lemma 1(aka. "structure theorem")

If $\overline{d}(G) < 3$ then G has a 1⁻-vertex or a 2-vertex with a 5⁻-neighbor

What if $\overline{d}(G)$ exceeds 3?

If a structure theorem with hypothesis $\overline{d}(G)$ is sharp, then when $\overline{d}(G)$ exceeds 3, we must add other configurations to obtain a structure theorem

What we strenghten the bound on $\overline{d}(G)$?

We can impose more sparseness. For example, if $\overline{d}(G) < \frac{12}{5}$ then G has two adjacent 2-vertices if it has no 1⁻-vertex.

$\ell ext{-Threads}$

An *l*-thread definition

An ℓ -thread in a graph G is a trail of length $\ell + 1$ in G whose ℓ internal vertices have degree 2 in the full graph G.

Lemma 2.5

If $\overline{d}(G) < 2 + \frac{2}{3\ell - 1}$ and G has no 2-regular component, then G contains a 1⁻-vertex or an ℓ -thread

Proof

Let $p = \frac{1}{3\ell-1}$ so the hypothesis is $\overline{d}(G) < 2 + 2p$. Let's suppose that neither configuration occurs. Redistribute charge to leave each vertex with at least 2 + 2p. Since G has no 1⁻-vertex, $\delta(G) \ge 2$. Since G has no cycle, each 2-vertex lies in a unique maximal thread.

A star coloring is an acyclic coloring where the union of any two color classes induces a forest of stars; equivalently, no 4-vertex path is 2-colored. The star chromatic number s(G) (also written $\chi_s(G)$) is the minimum number of colors in such a coloring.

- Every star coloring is an acyclic coloring
- All trees are acyclically 2-colorable
- Trees of diameter at least 3 are not star 2-colorable

Star colorability cd.

I, F-partition definition

A set I of vertices is a 2-independent set if the distance between any two vertices of I exceeds 2. An I, F-partition of a graph G is a partition of V(G) into sets I and F such that I is a 2-independent set and G[F] is a forest.

Lemma 2.18

Every forest is star 3-colorable. Hence, if a graph G has an I, F-partition, then $s(G) \le 4$

Timmons' theorem

Lemma 2.18

Every forest is star 3-colorable. Hence, if a graph G has an I, F-partition, then $s(G) \le 4$

Timmons' thm (2008)

If $mad(G) < \frac{7}{3}$ then G has an I, F-partition

Proof.

- We can assume that no component is a cycle
- Without cycles, lemma B with t = 2 implies that G has a:
 - 1⁻-vertex
 - a 3-thread or
 - > a 3-vertex with at least five 2-vertices on its incident threads

Beyond Timmons' theorem

- Brandt et al. proved that mad(G) < 2.5 suffices.
- 2.5 is sharp as infinitely many examples with average degree 2.5 have no *I*, *F*-partition
- The optimal value of mad(G) implying star 4-colorability is not known.
- It was proved that s(G) ≤ 8 when mad(G) < 3 and that s(G) ≤ 6 when Δ(G) = 3 (the latter is sharp).
- No bound on s(G) can be implied by mad(G) < 4. There are examples for this which have average degree tending to 4
- What happens for bounds between 3 and 4 remains open.

Acyclic 6-choosability

Lemma 3.8

If G is a planar graph with girth at least 5 and $\delta(G) \ge 2$, then G has a 2-vertex with a 5-neighbor or a 5-face whose incident vertices are four 3^- vertices and a 5-vertex.

2-distance coloring

Lemma 4.1

Even cycles are 2-choosable.

Definition

Given a graph G, let G^2 be the graph obtained from G by adding edges to join vertices that are distance 2 apart in G.

Lemma 4.2

Fix $k \ge 4$. Among graphs G with $\Delta(G) \le k$, the following configurations are reducible for the property $\chi_{\ell}(G^2) \le k + 1$:

• a 1⁻-vertex

• a 2-thread joining a $(k-1)^-$ -vertex and a $(k-2)^-$ -vertex

• a cycle of length divisible by 4 composed of 3-threads whose endpoints have degree *k*.

2-distance coloring cd.

Theorem 4.3 If $\Delta(G) \leq 6$ and $mad(G) < \frac{5}{2}$, then $\chi_{\ell}(G^2) \leq 7$.

Theorem

If
$$\Delta(G) \geq 6$$
 and $mad(G) < 2 + \frac{4\Delta(G)-8}{5\Delta(G)+2}$, then $\chi_{\ell}(G^2) = \Delta(G^2) + 1$.

Injective coloring

Definition

A coloring where vertices at distance 2 have distinct colors but adjacent vertices need not is an **injective coloring**.

Definition

The **injective chromatic number**, written $\chi^i(G)$, is the minimum number of colors needed, and the **injective choice number**, $\chi^i_{\ell}(G)$, is the least ksuch that G has an injective L-coloring when L is any k-uniform list assignment.

Theorem 4.5

If
$$\Delta(G) \leq 3$$
 and $mad(G) < rac{36}{13}$, then $\chi^i_\ell(G) \leq 5$

List coloring on planar graphs

Lemma 4.8

Every normal plane map G has a 3-vertex with a 10⁻-neighbor, or a 4-vertex with a 7⁻-neighbor, or a 5-vertex with two 6⁻-neighbors.

Theorem 4.9

$$\text{if G is a planar graph, then $\chi_\ell(G^2)$} = \begin{cases} \Delta(G^2) + 1 & \textit{when $\Delta(G) \leq 5$} \\ 7\Delta(G) - 7 & \textit{when $\Delta(G) \geq 6$} \end{cases} .$$

- Index the vertices from v_n to v₁ as follows. Having chosen v_n,..., v_{i+1}}, let G_i = G \ {v_n,..., v_{i+1}}. If δ(G_i) ≤ 3, then let v_i be a vertex of minimum degree; otherwise let v be a vertex as guaranteed by Lemma 4.8.
- Let $S_i = \{v_1, ..., v_i\}$. We choose colors for vertices in the order $v_1, ..., v_n$ so that the coloring of S_i satisfies all the constraints in the full graph G^2 from pairs of vertices in S_i .

Edge-coloring

Vizing's Theorem $\chi'(G) \leq \Delta(G) + 1$ when G is a graph.

Definition

G is Class 1 if $\chi'(G) = \Delta(G)$, Class 2 otherwise.

Definition

An edge-critical graph G is a Class 2 graph such that $\chi'(G \setminus e) = \Delta(G), \forall e \in E(G).$

Vizing's Adjacency Lemma

If x and y are adjacent in an edge-critical graph G, then at least $max\{1 + \Delta(G) - d(y), 2\}$ neighbors of x have degree $\Delta(G)$.

Edge-coloring cd.

Theorem 5.3

If G is a graph with mad(G) < 6 and $\Delta(G) \ge 8$, then $\chi'(G) = \Delta(G)$.

List edge-coloring definitions

Definition

An edge-list assignment L assigns lists of available colors to the edges of agraph G.

Definition

Given an edge-list assignment L, an L-edge-coloring of G is a proper edge-coloring ϕ such that $\phi(e) \in L(e), \forall e \in E(G)$.

Definition

A graph G is k-edge-choosable if G is L-edge-colorable whenever each list has size at least k.

Definition

The list edge-chromatic number of G, written $\chi'_{\ell}(G)$, is the least k such that G is k-edge-choosable.

Vladyslav Rachek, Ruslan Yevdokymov An Introduction to the Discharging Meth

List edge-coloring

Conjecture 5.5 $\chi'_{\ell}(G) = \chi'(G)$ for every graph *G*.

Definition

A *t*-alternating cycle alternates between *t*-vertices and vertices of higher degree.

Theorem 5.6

If G is a planar graph and $\Delta(G) \geq$ 9, then $\chi'_{\ell}(G) \leq \Delta(G) + 1$.

Lemma 5.7

If G is a simple plane graph with $(G) \ge 2$, then G contains:

- (C1) an edge uv with $d(u) + d(v) \le 15$, or
- (C2) a 2-alternating cycle C.

List edge-coloring cd.

Theorem 5.8

If G is a plane graph with $\Delta(G) \ge 14$, then $\chi'_{\ell}(G) = \Delta(G)$.

Iterated discharging

Theorem 5.9

If lists on the edges of a bipartite multigraph G satisfy $|L(uv)| \ge max\{d_G(u), d_G(v)\}$ for $uv \in E(G)$, then G has an L-edge-coloring.

Definition

In a multigraph G, an *i*-alternating subgraph is a bipartite submultigraph F with parts U and W such that $d_F(u) = d_G(u) \le i$ when $u \in U$ and $d_G(w) - d_F(w) \le \Delta(G) - i$ when w. Note that cycles in F alternate between W and i^- -vertices in U.

Lemma 5.11

i-alternating subgraphs are reducible for the property that edge-choosability equals maximum degree.

Iterated discharging cd.

Theorem 5.12 If $mad(G) \leq \sqrt{2\Delta(G)} - 1$, then $\chi'_{\ell}(G) = \Delta(G)$.