Rodl Nibble

Jan Mełech

27 maja 2020

Hypergraphs

- Hypergraphs are graphs with edges defined as subsets of vertices, i.e. edge can connect more than 2 vertices.
- Hypergraph is called r-uniform when all edges are subsets of exactly r vertices.

(n, k, r)-packings

- Family $\mathcal{F} \subseteq\binom{[n]}{k}$ is called a (n, k, r)-packing when no r vertices lie in more than one $S \in \mathcal{F}$, i.e. for every distinct $S_{1}, S_{2} \in \mathcal{F}$ we have $\left|S_{1} \cap S_{2}\right|<r$.
- Let $m(n, k, r)$ be maximal size of (n, k, r)-packing.
- Intuition - let G be complete r-uniform hypergraph on n vertices. Then $m(n, k, r)$ is maximal number of disjoint k-cliques that may be "packed" into G.

Bounds for maximal（ n, k, r ）－packings

Lemma

For any integers n, k, r such that $2 \leq r<k<n$ following inequality is true：

$$
m(n, k, r) \leq \frac{\binom{n}{r}}{\binom{k}{r}}
$$

Proof．

We can reformulate above inequality as：

$$
m(n, k, r)\binom{k}{r} \leq\binom{ n}{r}
$$

and use simple counting argument－each $S \in \mathcal{F}$ has $\binom{k}{r} r$－subsets of［ n ］．Summing them up for every $S \in \mathcal{F}$ we get family \mathcal{F}_{r} of distinct r－subsets of［ n ］．Such family can have cardinality equal at most $\binom{n}{r}$ ．

(n, k, r)-coverings

- Family $\mathcal{F} \subseteq\binom{[n]}{k}$ is called a (n, k, r)-covering when every r vertices lie in atleast one $S \in \mathcal{F}$.
- Let $M(n, k, r)$ be minimal size of (n, k, r)-covering.

Bounds for minimal (n, k, r)-coverings

Lemma

For any integers n, k, r such that $2 \leq r<k<n$ following inequality is true:

$$
M(n, k, r) \geq \frac{\binom{n}{r}}{\binom{k}{r}}
$$

Proof.

Analogous to proof for $m(n, k, r)$.

(n, k, r)-tactical configurations

- Family $\mathcal{F} \subseteq\binom{[n]}{k}$ is called a (n, k, r)-tactical configuration when every r-set is contained in exactly one $S \in \mathcal{F}$.

Property of (n, k, r)-tactical configuration

Lemma

If (n, k, r)-tactical configuration exists then for every $0 \leq i \leq r-1$ we have

$$
\left.\binom{k-i}{r-i} \right\rvert\,\binom{ n-i}{r-i}
$$

Proof.

Let $\mathcal{F} \subseteq\binom{[n]}{k}$ be (n, k, r)-tactical configuration. For every i there are $\binom{n-i}{r-i} r$-sets containing [i]. Each of them is contained in exactly one set $S \in \mathcal{F}$. On the other hand, every $S \in \mathcal{F}$ contains exactly $\binom{k-i}{r-i} r$-sets containing [i]. Therefore we have following equality:

$$
|\mathcal{F}|\binom{k-i}{r-i}=\binom{n-i}{r-i}
$$

Asymptotic packings and coverings

Lemma

For fixed r, k such that $2 \leq r<k$ we have:

$$
\lim _{n \rightarrow \infty} \frac{m(n, k, r)}{\binom{n}{r} /\binom{k}{r}}=1 \Leftrightarrow \lim _{n \rightarrow \infty} \frac{M(n, k, r)}{\binom{n}{r} /\binom{k}{r}}=1
$$

Proof.

(\Rightarrow) Let $\mathcal{F} \subseteq\binom{[n]}{k}$ be (n, k, r)-packing of size $(1-o(1))\left(\begin{array}{c}\binom{n}{r} \\ \binom{k}{r}\end{array}\right.$. \mathcal{F} covers $|\mathcal{F}|\binom{k}{r}=(1-o(1))\binom{n}{r} r$-sets. We can transform \mathcal{F} to (n, k, r)-covering \mathcal{F}^{\prime} by adding $o(1)\binom{n}{r} k$-sets containing each uncovered r-set. Then we have

$$
\left|\mathcal{F}^{\prime}\right|=|\mathcal{F}|+o(1)\binom{n}{r}=(1-o(1)) \frac{\binom{n}{r}}{\binom{k}{r}}+o(1)\binom{n}{r}=(1+o(1)) \frac{\binom{n}{r}}{\binom{k}{r}}
$$

Erdos-Hanani conjecture, 1963

Conjecture

For fixed r, k such that $2 \leq r<k$ we have:

$$
\lim _{n \rightarrow \infty} \frac{m(n, k, r)}{\binom{n}{r} /\binom{k}{r}}=\lim _{n \rightarrow \infty} \frac{M(n, k, r)}{\binom{n}{r} /\binom{k}{r}}=1
$$

Hypergraph covers

- Let H be an r-uniform hypergraph on n vertices. Cover of H is a set of edges whose union contains all vertices, i.e. it is $(n, r, 1)$-covering whose sets are edges of H.

Pippenger theorem, 1989

Theorem

For every integer $t \geq 2$ and reals $\kappa \geq 1, \alpha>0$ there are $\gamma=\gamma(t, \kappa, \alpha)>0$ and $d_{0}=d_{0}(t, \kappa, \alpha)$ such that for every $n \geq D \geq d_{0}$ the following holds. Every t-uniform hypergraph $H=(V, E)$ on a set V of n vertices which all vertices have positive degrees and which satisfies the following conditions:

- For all vertices $v \in V$ but at most γ of them, $d(v)=(1 \pm \gamma) D$.
- For all $v \in V, d(v) \leq \kappa D$.
- For any two distinct $v, w \in V, d(v, w)<\gamma D$. contains a cover of at most $(1+\alpha) \frac{n}{t}$ edges.

Idea of proof of Pippenger theorem

- Fixing small $\epsilon>0$ one shows that a random set of roughly $\epsilon n / t$ has with high probability only some $O\left(\epsilon^{2} n\right)$ vertices covered more than once and hence covers at least $\epsilon n-O\left(\epsilon^{2} n\right)$ vertices.
- Moreover, after deleting the vertices covered, the induced hypergraph on the remaining vertices still satisfies the properties described in three points (for some other values of n, γ, κ and D.
- Therefore, one can choose again a random set of this hypergraph, covering roughly an ϵ-fraction of its vertices with nearly no overlaps.
- Proceeding in this way for a large number of times we are finally left with at most ϵn uncovered vertices, and then we can cover them trivially.

Proof of Erdos-Hanani conjecture

Theorem

For fixed r, k such that $2 \leq r<k$ we have:

$$
\lim _{n \rightarrow \infty} \frac{M(n, k, r)}{\binom{n}{r} /\binom{k}{r}}=1
$$

Proof.

Let $t:=\binom{k}{r}$ and H be t-uniform hypergraph satisfying:

$$
V(H)=\binom{[n]}{r} \quad E(H)=\left\{\binom{F}{r}: F \in\binom{[n]}{k}\right\}
$$

Each vertex of H has degree $D=\binom{n-r}{k-r}$.

Proof of Erdos-Hanani conjecture

Proof.

Let $\kappa=1$ and fix $\alpha>0$. Then we have $\gamma=\gamma(t, \kappa, \alpha)$.
Every two distinct vertices lie in at most $\binom{n-r-1}{k-r-1}=\frac{k-r}{n-r}\binom{n-r}{k-r}=\frac{k-r}{n-r} D$ common edges. From some point d_{0}, for every $n \geq D \geq d_{0}: \frac{k-r}{n-r} \leq \gamma$ what gives that $\frac{k-r}{n-r} D \leq \gamma D$.
Therefore, conditions in Pippenger theorem are satisfied for $(t, \kappa, \alpha)=\left(\binom{k}{r}, 1, \alpha\right)$ what implies that H has cover of size $(1+\alpha) \frac{\binom{n}{r}}{\binom{k}{r}}$. At the end, we can see that covers of H are exactly (n, k, r)-coverings what finishes the proof.

