Rodl Nibble

Jan Mełech

27 maja 2020

Jan Mełech Rodl Nibble

æ

- Hypergraphs are graphs with edges defined as subsets of vertices, i.e. edge can connect more than 2 vertices.
- Hypergraph is called *r*-uniform when all edges are subsets of exactly *r* vertices.

- Family $\mathcal{F} \subseteq {[n] \choose k}$ is called a (n, k, r)-packing when no r vertices lie in more than one $S \in \mathcal{F}$, i.e. for every distinct $S_1, S_2 \in \mathcal{F}$ we have $|S_1 \cap S_2| < r$.
- Let m(n, k, r) be maximal size of (n, k, r)-packing.
- Intuition let G be complete r-uniform hypergraph on n vertices. Then m(n, k, r) is maximal number of disjoint k-cliques that may be "packed" into G.

Bounds for maximal (n, k, r)-packings

Lemma

For any integers n, k, r such that $2 \le r < k < n$ following inequality is true:

$$m(n,k,r) \leq \frac{\binom{n}{r}}{\binom{k}{r}}$$

Proof.

We can reformulate above inequality as:

$$m(n,k,r)\binom{k}{r} \leq \binom{n}{r}$$

and use simple counting argument - each $S \in \mathcal{F}$ has $\binom{k}{r}$ *r*-subsets of [n]. Summing them up for every $S \in \mathcal{F}$ we get family \mathcal{F}_r of distinct *r*-subsets of [n]. Such family can have cardinality equal at most $\binom{n}{r}$.

- Family *F* ⊆ (^[n]_k) is called a (n, k, r)-covering when every r vertices lie in atleast one *S* ∈ *F*.
- Let M(n, k, r) be minimal size of (n, k, r)-covering.

Bounds for minimal (n, k, r)-coverings

Lemma

For any integers n, k, r such that $2 \le r < k < n$ following inequality is true:

$$M(n,k,r) \geq \frac{\binom{n}{r}}{\binom{k}{r}}$$

Proof.

Analogous to proof for m(n, k, r).

• Family $\mathcal{F} \subseteq {[n] \choose k}$ is called a (n, k, r)-tactical configuration when every *r*-set is contained in exactly one $S \in \mathcal{F}$.

Property of (n, k, r)-tactical configuration

Lemma

If (n, k, r)-tactical configuration exists then for every $0 \le i \le r - 1$ we have

$$\binom{k-i}{r-i} | \binom{n-i}{r-i}$$

Proof.

Let $\mathcal{F} \subseteq {\binom{[n]}{k}}$ be (n, k, r)-tactical configuration. For every *i* there are $\binom{n-i}{r-i}$ *r*-sets containing [*i*]. Each of them is contained in exactly one set $S \in \mathcal{F}$. On the other hand, every $S \in \mathcal{F}$ contains exactly $\binom{k-i}{r-i}$ *r*-sets containing [*i*]. Therefore we have following equality:

$$|\mathcal{F}|\binom{k-i}{r-i} = \binom{n-i}{r-i}$$

Asymptotic packings and coverings

Lemma

For fixed r, k such that $2 \le r < k$ we have:

$$\lim_{n \to \infty} \frac{m(n,k,r)}{\binom{n}{r}/\binom{k}{r}} = 1 \Leftrightarrow \lim_{n \to \infty} \frac{M(n,k,r)}{\binom{n}{r}/\binom{k}{r}} = 1$$

Proof.

(⇒) Let $\mathcal{F} \subseteq {\binom{[n]}{k}}$ be (n, k, r)-packing of size $(1 - o(1))\frac{\binom{n}{r}}{\binom{k}{r}}$. \mathcal{F} covers $|\mathcal{F}|\binom{k}{r} = (1 - o(1))\binom{n}{r}$ *r*-sets. We can transform \mathcal{F} to (n, k, r)-covering \mathcal{F}' by adding $o(1)\binom{n}{r}$ *k*-sets containing each uncovered *r*-set. Then we have

$$|\mathcal{F}'| = |\mathcal{F}| + o(1)\binom{n}{r} = (1 - o(1))\frac{\binom{n}{r}}{\binom{k}{r}} + o(1)\binom{n}{r} = (1 + o(1))\frac{\binom{n}{r}}{\binom{k}{r}}$$

Conjecture

For fixed r, k such that $2 \le r < k$ we have:

$$\lim_{n \to \infty} \frac{m(n,k,r)}{\binom{n}{r}/\binom{k}{r}} = \lim_{n \to \infty} \frac{M(n,k,r)}{\binom{n}{r}/\binom{k}{r}} = 1$$

• Let *H* be an *r*-uniform hypergraph on *n* vertices. Cover of *H* is a set of edges whose union contains all vertices, i.e. it is (n, r, 1)-covering whose sets are edges of *H*.

Theorem

For every integer $t \ge 2$ and reals $\kappa \ge 1$, $\alpha > 0$ there are $\gamma = \gamma(t, \kappa, \alpha) > 0$ and $d_0 = d_0(t, \kappa, \alpha)$ such that for every $n \ge D \ge d_0$ the following holds. Every t-uniform hypergraph H = (V, E) on a set V of n vertices which all vertices have positive degrees and which satisfies the following conditions:

- For all vertices $v \in V$ but at most γ of them, $d(v) = (1 \pm \gamma)D$.
- For all $v \in V$, $d(v) \leq \kappa D$.
- For any two distinct $v, w \in V$, $d(v, w) < \gamma D$.

contains a cover of at most $(1 + \alpha)\frac{n}{t}$ edges.

Idea of proof of Pippenger theorem

- Fixing small ε > 0 one shows that a random set of roughly εn/t has with high probability only some O(ε²n) vertices covered more than once and hence covers at least εn − O(ε²n) vertices.
- Moreover, after deleting the vertices covered, the induced hypergraph on the remaining vertices still satisfies the properties described in three points (for some other values of n, γ, κ and D.
- Therefore, one can choose again a random set of this hypergraph, covering roughly an ϵ -fraction of its vertices with nearly no overlaps.
- Proceeding in this way for a large number of times we are finally left with at most *εn* uncovered vertices, and then we can cover them trivially.

Proof of Erdos-Hanani conjecture

Theorem

For fixed r, k such that $2 \le r < k$ we have:

$$\lim_{n\to\infty}\frac{M(n,k,r)}{\binom{n}{r}/\binom{k}{r}}=1$$

Proof.

Let $t := \binom{k}{r}$ and *H* be *t*-uniform hypergraph satisfying:

$$V(H) = \binom{[n]}{r} \quad E(H) = \left\{ \binom{F}{r} : F \in \binom{[n]}{k} \right\}$$

Each vertex of *H* has degree $D = \binom{n-r}{k-r}$.

Proof.

Let $\kappa = 1$ and fix $\alpha > 0$. Then we have $\gamma = \gamma(t, \kappa, \alpha)$. Every two distinct vertices lie in at most $\binom{n-r-1}{k-r-1} = \frac{k-r}{n-r}\binom{n-r}{k-r} = \frac{k-r}{n-r}D$ common edges. From some point d_0 , for every $n \ge D \ge d_0$: $\frac{k-r}{n-r} \le \gamma$ what gives that $\frac{k-r}{n-r}D \le \gamma D$. Therefore, conditions in Pippenger theorem are satisfied for $(t, \kappa, \alpha) = \binom{k}{r}, 1, \alpha$ what implies that H has cover of size $(1+\alpha)\frac{\binom{n}{r}}{\binom{k}{r}}$. At the end, we can see that covers of H are exactly (n, k, r) - coverings what finishes the proof.