Polyomino Tilings

Michał Zwonek

10 czerwca 2020

O posadzkach

Tiling

lacktriangledown Tiling \mathcal{T} , a covering of the plane with non-overlapping shapes.

Symmetry of a tiling

- A symmetry of a tiling is any plane isometry that can be used to map all the tiles to other tiles in an exact fashion. I.e. a tile is mapped to a (possibly different) tile.
- 2 E.g. rotations, reflections, translations.

Isohedral tiling

• Isohedral tiling is a tiling where any two tiles $T_1, T_2 \in \mathcal{T}$ can be mapped to each other using a symmetry of the tiling.

Non-isohedral tiling

• Non-isohedral tiling is where there are two tiles $T_1, T_2 \in \mathcal{T}$ that cannot be mapped onto each other using a symmetry of the tiling.

Aperiodic tiling

- Aperiodic tilings are tilings with no translational symmetry.
- Penrose tiling with two prototiles.
- Is there an aperiodic tiling with one prototile? OPEN

Polyominos

Polyomino tiling problem

• Given a polyomino T does there exist a tiling T using T?

Polyomino tiling problem

- Given a polyomino T does there exist a tiling T using T?
- ② It is decidable and there is a known optimal algorithm in O(n), n is the number of edges of the polyomino.

 $lackbox{0}$ For a given polyomino T does there exist an isohedral tiling T using T

- lacktriangledown For a given polyomino T does there exist an isohedral tiling T using T
- ② An $O(n^{18})$ algorithm in 1999 by Keating and Vince (matrix based algorithm).

- $lackbox{0}$ For a given polyomino T does there exist an isohedral tiling $\mathcal T$ using T
- ② An $O(n^{18})$ algorithm in 1999 by Keating and Vince (matrix based algorithm).
- **3** It was improved to $O(n \log^2 n)$ by Stefan Langerman and Andrew Winslow (complex algorithm which uses a word representation of polyomino's).

- $lackbox{0}$ For a given polyomino T does there exist an isohedral tiling $\mathcal T$ using T
- ② An $O(n^{18})$ algorithm in 1999 by Keating and Vince (matrix based algorithm).
- **3** It was improved to $O(n \log^2 n)$ by Stefan Langerman and Andrew Winslow (complex algorithm which uses a word representation of polyomino's).
- **②** Open problem, does there exist an O(n) algorithm for determining whether a polyomino admits a isohedral tiling?

• Every polygon (hence every polyomino) with a tiling consisting of only translated copies of the prototile also has such a tiling that is isohedral.

- Every polygon (hence every polyomino) with a tiling consisting of only translated copies of the prototile also has such a tiling that is isohedral.
- ② If we allow 90° rotations then there are counterexamples:

- Every polygon (hence every polyomino) with a tiling consisting of only translated copies of the prototile also has such a tiling that is isohedral.
- 2 If we allow 90° rotations then there are counterexamples:

 $\begin{tabular}{ll} \hline \textbf{O} Does every polyomino with a tiling consisting of only translated and rotated by 180° copies of the prototile also has such a tiling that is isohedral. OPEN \end{tabular}$

Aperiodic polyomino tilings

Is there an aperiodic polyomino? OPEN

Aperiodic polyomino tilings

- Is there an aperiodic polyomino? OPEN
- Is there a set of two polyomino's admitting only aperiodic tilings? OPEN

Aperiodic polyomino tilings

- Is there an aperiodic polyomino? OPEN
- Is there a set of two polyomino's admitting only aperiodic tilings? OPEN

Aperiodic set of 3:

Tilings with multiples polyomino's

• For a given set of 5 polyomino's can we say if it can tile the plane?

Tilings with multiples polyomino's

- For a given set of 5 polyomino's can we say if it can tile the plane?
- 2 The above is undecidable (by Ollinger).

Tilings with multiples polyomino's

- For a given set of 5 polyomino's can we say if it can tile the plane?
- 2 The above is undecidable (by Ollinger).
- Is there an algorithm that answers the question but for sets of up to 4 polyomino's? OPEN

• It is NP-hard to answer if for *L* shaped tromino (polyomino with 3 squares) tiles a finite region.

- It is NP-hard to answer if for L shaped tromino (polyomino with 3 squares) tiles a finite region.
- For every polyomino P that has a plane tiling, is determining whether P can tile a finite region NP-hard? OPEN

- It is NP-hard to answer if for L shaped tromino (polyomino with 3 squares) tiles a finite region.
- For every polyomino P that has a plane tiling, is determining whether P can tile a finite region NP-hard? OPEN
- We can define the order of polyomino P as the minimal number of copies needed to tile a rectangle.

- It is NP-hard to answer if for L shaped tromino (polyomino with 3 squares) tiles a finite region.
- For every polyomino P that has a plane tiling, is determining whether P can tile a finite region NP-hard? OPEN
- We can define the order of polyomino P as the minimal number of copies needed to tile a rectangle.
- **1** There exists a polyomino of order 4s for $s \in \mathbb{N}$ (by Golomb).

- 1 It is NP-hard to answer if for L shaped tromino (polyomino with 3 squares) tiles a finite region.
- For every polyomino P that has a plane tiling, is determining whether P can tile a finite region NP-hard? OPEN
- We can define the order of polyomino P as the minimal number of copies needed to tile a rectangle.
- **4** There exists a polyomino of order 4s for $s \in \mathbb{N}$ (by Golomb).
- Other known polyominos with orders: 76, 92, 10, 18, 50, and 138 and polyominoes of order 2 being simple to construct.

- It is NP-hard to answer if for *L* shaped tromino (polyomino with 3 squares) tiles a finite region.
- For every polyomino P that has a plane tiling, is determining whether P can tile a finite region NP-hard? OPEN
- We can define the order of polyomino P as the minimal number of copies needed to tile a rectangle.
- **①** There exists a polyomino of order 4s for $s \in \mathbb{N}$ (by Golomb).
- Other known polyominos with orders: 76, 92, 10, 18, 50, and 138 and polyominoes of order 2 being simple to construct.
- No polyomino of order 3 exists.

- It is NP-hard to answer if for *L* shaped tromino (polyomino with 3 squares) tiles a finite region.
- ② For every polyomino P that has a plane tiling, is determining whether P can tile a finite region NP-hard? OPEN
- We can define the order of polyomino P as the minimal number of copies needed to tile a rectangle.
- **①** There exists a polyomino of order 4s for $s \in \mathbb{N}$ (by Golomb).
- Other known polyominos with orders: 76, 92, 10, 18, 50, and 138 and polyominoes of order 2 being simple to construct.
- No polyomino of order 3 exists.
- O Does there exist a polyomino of order 5? OPEN

Polyomino of order 138

Undecidable tiling

Dziękuję za uwagę

Dziękuję za uwagę!