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Tiling

1 Tiling T , a covering of the plane with non-overlapping shapes.
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Symmetry of a tiling

1 A symmetry of a tiling is any plane isometry that can be used
to map all the tiles to other tiles in an exact fashion. I.e. a tile
is mapped to a (possibly different) tile.

2 E.g. rotations, reflections, translations.
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Isohedral tiling

1 Isohedral tiling is a tiling where any two tiles T1,T2 ∈ T can
be mapped to each other using a symmetry of the tiling.
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Non-isohedral tiling

1 Non-isohedral tiling is where there are two tiles T1,T2 ∈ T
that cannot be mapped onto each other using a symmetry of
the tiling.
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Aperiodic tiling

1 Aperiodic tilings are tilings with no translational symmetry.
2 Penrose tiling with two prototiles.
3 Is there an aperiodic tiling with one prototile? OPEN
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Polyominos
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Polyomino tiling problem

1 Given a polyomino T does there exist a tiling T using T?

2 It is decidable and there is a known optimal algorithm in O(n),
n is the number of edges of the polyomino.
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Isohedral polyomino tiling

1 For a given polyomino T does there exist an isohedral tiling T
using T

2 An O(n18) algorithm in 1999 by Keating and Vince (matrix
based algorithm).

3 It was improved to O(n log2 n) by Stefan Langerman and
Andrew Winslow (complex algorithm which uses a word
representation of polyomino’s).

4 Open problem, does there exist an O(n) algorithm for
determining whether a polyomino admits a isohedral tiling?
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Isohedral polyomino tiling

1 Every polygon (hence every polyomino) with a tiling consisting
of only translated copies of the prototile also has such a tiling
that is isohedral.

2 If we allow 90◦ rotations then there are counterexamples:

3 Does every polyomino with a tiling consisting of only
translated and rotated by 180◦ copies of the prototile also has
such a tiling that is isohedral. OPEN
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Aperiodic polyomino tilings

1 Is there an aperiodic polyomino? OPEN

2 Is there a set of two polyomino’s admitting only aperiodic
tilings? OPEN

3 Aperiodic set of 3:
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Tilings with multiples polyomino’s

1 For a given set of 5 polyomino’s can we say if it can tile the
plane?

2 The above is undecidable (by Ollinger).
3 Is there an algorithm that answers the question but for sets of

up to 4 polyomino’s? OPEN
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Tilings of finite regions

1 It is NP-hard to answer if for L shaped tromino (polyomino
with 3 squares) tiles a finite region.

2 For every polyomino P that has a plane tiling, is determining
whether P can tile a finite region NP-hard? OPEN

3 We can define the order of polyomino P as the minimal
number of copies needed to tile a rectangle.

4 There exists a polyomino of order 4s for s ∈ N (by Golomb).
5 Other known polyominos with orders: 76, 92, 10, 18, 50, and

138 and polyominoes of order 2 being simple to construct.
6 No polyomino of order 3 exists.
7 Does there exist a polyomino of order 5? OPEN
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Polyomino of order 138
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Undecidable tiling
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Dziękuję za uwagę

Dziękuję za uwagę!
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