Polyomino Tilings

Michał Zwonek

10 czerwca 2020

O posadzkach

Tiling

(1) Tiling \mathcal{T}, a covering of the plane with non-overlapping shapes.

Symmetry of a tiling

(1) A symmetry of a tiling is any plane isometry that can be used to map all the tiles to other tiles in an exact fashion. I.e. a tile is mapped to a (possibly different) tile.
(2) E.g. rotations, reflections, translations.

Isohedral tiling

(1) Isohedral tiling is a tiling where any two tiles $T_{1}, T_{2} \in \mathcal{T}$ can be mapped to each other using a symmetry of the tiling.

Non-isohedral tiling

(1) Non-isohedral tiling is where there are two tiles $T_{1}, T_{2} \in \mathcal{T}$ that cannot be mapped onto each other using a symmetry of the tiling.

Aperiodic tiling

(1) Aperiodic tilings are tilings with no translational symmetry.
(2) Penrose tiling with two prototiles.
(3) Is there an aperiodic tiling with one prototile? OPEN

『『『『Td d『\＆tゃ哖

Polyomino tiling problem

(1) Given a polyomino T does there exist a tiling \mathcal{T} using T ?

Polyomino tiling problem

(1) Given a polyomino T does there exist a tiling \mathcal{T} using T ?
(2) It is decidable and there is a known optimal algorithm in $O(n)$, n is the number of edges of the polyomino.

Isohedral polyomino tiling

(1) For a given polyomino T does there exist an isohedral tiling \mathcal{T} using T

Isohedral polyomino tiling

(1) For a given polyomino T does there exist an isohedral tiling \mathcal{T} using T
(2) An $O\left(n^{18}\right)$ algorithm in 1999 by Keating and Vince (matrix based algorithm).

Isohedral polyomino tiling

(1) For a given polyomino T does there exist an isohedral tiling \mathcal{T} using T
(2) An $O\left(n^{18}\right)$ algorithm in 1999 by Keating and Vince (matrix based algorithm).
(3) It was improved to $O\left(n \log ^{2} n\right)$ by Stefan Langerman and Andrew Winslow (complex algorithm which uses a word representation of polyomino's).

Isohedral polyomino tiling

(1) For a given polyomino T does there exist an isohedral tiling \mathcal{T} using T
(2) An $O\left(n^{18}\right)$ algorithm in 1999 by Keating and Vince (matrix based algorithm).
(3) It was improved to $O\left(n \log ^{2} n\right)$ by Stefan Langerman and Andrew Winslow (complex algorithm which uses a word representation of polyomino's).
(c) Open problem, does there exist an $O(n)$ algorithm for determining whether a polyomino admits a isohedral tiling?

Isohedral polyomino tiling

(1) Every polygon (hence every polyomino) with a tiling consisting of only translated copies of the prototile also has such a tiling that is isohedral.

Isohedral polyomino tiling

(1) Every polygon (hence every polyomino) with a tiling consisting of only translated copies of the prototile also has such a tiling that is isohedral.
(2) If we allow 90° rotations then there are counterexamples:

Isohedral polyomino tiling

(1) Every polygon (hence every polyomino) with a tiling consisting of only translated copies of the prototile also has such a tiling that is isohedral.
(2) If we allow 90° rotations then there are counterexamples:

(3) Does every polyomino with a tiling consisting of only translated and rotated by 180° copies of the prototile also has such a tiling that is isohedral. OPEN

Aperiodic polyomino tilings

(1) Is there an aperiodic polyomino? OPEN

Aperiodic polyomino tilings

(1) Is there an aperiodic polyomino? OPEN
(2) Is there a set of two polyomino's admitting only aperiodic tilings? OPEN

Aperiodic polyomino tilings

(1) Is there an aperiodic polyomino? OPEN
(2) Is there a set of two polyomino's admitting only aperiodic tilings? OPEN
(3) Aperiodic set of 3:

(1) For a given set of 5 polyomino's can we say if it can tile the plane?
(1) For a given set of 5 polyomino's can we say if it can tile the plane?
(2) The above is undecidable (by Ollinger).
(1) For a given set of 5 polyomino's can we say if it can tile the plane?
(2) The above is undecidable (by Ollinger).
(3) Is there an algorithm that answers the question but for sets of up to 4 polyomino's? OPEN
(1) It is NP-hard to answer if for L shaped tromino (polyomino with 3 squares) tiles a finite region.
(1) It is NP-hard to answer if for L shaped tromino (polyomino with 3 squares) tiles a finite region.
(2) For every polyomino P that has a plane tiling, is determining whether P can tile a finite region NP-hard? OPEN
(1) It is NP-hard to answer if for L shaped tromino (polyomino with 3 squares) tiles a finite region.
(2) For every polyomino P that has a plane tiling, is determining whether P can tile a finite region NP-hard? OPEN
(3) We can define the order of polyomino P as the minimal number of copies needed to tile a rectangle.
(1) It is NP-hard to answer if for L shaped tromino (polyomino with 3 squares) tiles a finite region.
(2) For every polyomino P that has a plane tiling, is determining whether P can tile a finite region NP-hard? OPEN
(3) We can define the order of polyomino P as the minimal number of copies needed to tile a rectangle.
(4) There exists a polyomino of order $4 s$ for $s \in \mathbb{N}$ (by Golomb).
(1) It is NP-hard to answer if for L shaped tromino (polyomino with 3 squares) tiles a finite region.
(2) For every polyomino P that has a plane tiling, is determining whether P can tile a finite region NP-hard? OPEN
(3) We can define the order of polyomino P as the minimal number of copies needed to tile a rectangle.
(4) There exists a polyomino of order $4 s$ for $s \in \mathbb{N}$ (by Golomb).
(5) Other known polyominos with orders: 76, $92,10,18,50$, and 138 and polyominoes of order 2 being simple to construct.
(1) It is NP-hard to answer if for L shaped tromino (polyomino with 3 squares) tiles a finite region.
(2) For every polyomino P that has a plane tiling, is determining whether P can tile a finite region NP-hard? OPEN
(3) We can define the order of polyomino P as the minimal number of copies needed to tile a rectangle.
(4) There exists a polyomino of order $4 s$ for $s \in \mathbb{N}$ (by Golomb).
(5) Other known polyominos with orders: $76,92,10,18,50$, and 138 and polyominoes of order 2 being simple to construct.
(6) No polyomino of order 3 exists.
(1) It is NP-hard to answer if for L shaped tromino (polyomino with 3 squares) tiles a finite region.
(2) For every polyomino P that has a plane tiling, is determining whether P can tile a finite region NP-hard? OPEN
(3) We can define the order of polyomino P as the minimal number of copies needed to tile a rectangle.
(9) There exists a polyomino of order $4 s$ for $s \in \mathbb{N}$ (by Golomb).
(5) Other known polyominos with orders: 76, $92,10,18,50$, and 138 and polyominoes of order 2 being simple to construct.
(6) No polyomino of order 3 exists.
(3) Does there exist a polyomino of order 5? OPEN

Polyomino of order 138

Undecidable tiling

Dziękuję za uwagę

Dziękuję za uwagę!

