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Definitions

A word is repetitive if it contains two consecutive identical blocks.
A word barbarian is repetitive, while civilized is not.

A word containing k consecutive identical blocks is said to contain a
k power.
A word barbarian contains 2 power.

A sequence {sn}∞n=1 is non-repetitive up to mod r if each of its
mod k subsequences {snk+j}∞n=1 is non-repetitive, 1 ¬ k ¬ r ,
0 ¬ j ¬ k − 1.

A non-empty set L of infinite words is perfect if for any u ∈ L and
any n there is a word v ∈ L, v 6= u such that u and v have a common
prefix of length at least n.

A language L is perfect if its set of infinite words is perfect.
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Problems

There are infinite words over the three letter alphabet {a, b, c} which are
non-repetitive.

For any alphabet Σ and any positive integer k the set of
inifinite k power free words over Σ is perfect whenever it is nonempty.

Problem 1.1.
Let L be the set of infinite words over Σ which are non-repetitive up to
mod r . Is L perfect?

For r = 1, 2, 3, 5 one can find a sequence over an r + 2 letter alphabet
which is non-repetitive up to mod r .

Problem 1.2.
Is there a sequence over a 6 letter alphabet which is non-repetitive up to
mod 4?
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More definitions

Let L be a set of words over a finite alphabet Σ. Suppose that L is closed
under taking prefixes.

The meet of words is their longest
common prefix.
2122 ∧ 211 = 21

The length of a word is the number of
letters in it.
|2122| = 4

v̂ is an upper cover of v if v < v̂ , but
there is no z ∈ L such that v < z < v̂ .

Given words u ¬ v in L, the closed
interval [u, v ] is the set
{w ∈ L : u ¬ w ¬ v}.
[u,∞] = {w ∈ L : u ¬ w}
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Bottlenecks

Suppose that:

u ¬ v

[v̂ ,∞] is infinite for at most one upper cover v̂ of v .

[u,∞]\[v ,∞] is finite.

In this case any path in L from u to ∞ must traverse the vertices of [u, v̂ ].
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Bottlenecks

We refer to the set B(u, v) = [u,∞]\[v̂ ,∞] as a bottleneck with core
[u, v ]. If [v ,∞] is finite, let B(u, v) = [u,∞].

The length of B = B(u, v) is
|B| = |v | − |u|+ 1.

The index of B is ι(B) = |u|.

Suppose that w ¬ y are elements of [u, v ].
It follows that at most one cover of y has an
infinite extension and we can form a
bottleneck B(w , y).
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Inequality 1.

Our approach is to show that long bottlenecks in L must occur far out.

Inequality 1.
ι(B)  f (|B|), whenever |B| > N0

Here N0 is some constant, while f is eventually increasing and unbounded.

Suppose now that Inequality 1 holds. The existence of such an inequality
gives information about the structure of L.
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Theorems involving Inequality 1.

Let g > N0 be a function such that for any non-negative integer M we
have f (x) > M whenever x > g(M).

Theorem 3.1.
Word u ∈ L is a prefix of infinitely many words in L if and only if L
contains a word v > u, with |v | − |u| = g(|u|).

Proof.
It suffices to prove the if direction. Suppose that L contains a word

v > u with |v | − |u| = g(|u|), but that [u,∞] is finite. Since [u,∞] is
finite, B = B(u, v) = [u,∞] is a bottleneck. We have ι(B) = |u|, and
|B| = |v | − |u|+ 1 > g(|u|). By Inequality 1:

|u| = ι(B)  f (|B|) = f (|v | − |u|+ 1) > |u|

This is a contradiction.
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Theorems involving Inequality 1.

Theorem 3.2.
Language L is infinite if and only if it contains a word of length g(0).

This is a special case (u = ε) of previous theorem.

Theorem 3.1.
Word u ∈ L is a prefix of infinitely many words in L if and only if L
contains a word v > u, with |v | − |u| = g(|u|).
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Theorems involving Inequality 1.

Theorem 3.3.
If L is infinite, then L is perfect.

Proof.
Suppose that L is infinite but not perfect. There is some word u ∈ L

with exactly one infinite extension. Let v > u be any finite prefix of the
unique infinite extension of u. There will correspond a bottleneck B(u, v)
of index |u| and length |v | − |u|+ 1. Because |u| is fixed, but |v | can be
made arbitrarily large, this violates Inequality 1.

Thus the infinite tree is constantly branching.

Theorem 3.4.
The set of non-repetitive words over {1, 2, 3} of length n grows
exponentially.
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Fixing Blocks

A word u = a1a2 . . . an has a period t if ai = ai+t for
1 ¬ i < i + t ¬ n.

A maximal word is a word of L with no extension in L.

Let L be a set of non-repetitive words over Σ = {1, 2, 3}. An example of a
maximal word in this case is w = 23121323121.

w1 = 2312132312 11 /∈ L, suffix w1 = 1 has period 1.

w2 = 23121323 1212 /∈ L, suffix w2 = 121 has period 2.

w3 = 231213231213 /∈ L, suffix w3 = w has period 6.

For each letter s ∈ Σ such that ws /∈ L, w must have a periodic suffix
which is ’near square’. A maximal non-repetitive word has several such
suffixes. We call them fixing blocks.
Fixing blocks are suffixes of non-repetitive words of the form ycy where y is
a word of L, c a letter of Σ. The period of such a fixing block is I = |yc |.
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Fixing blocks are suffixes of non-repetitive words of the form ycy where y is
a word of L, c a letter of Σ. The period of such a fixing block is I = |yc |.
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Fixing Blocks Inequalities

In a word with several periods, interference patterns can arise. For
example, if an infinite periodic word has periods α and β, it also has period
γ = gcd(α, β). A more complicated interaction happens when two distinct
non-repetitive words v1 and v2 end in fixing blocks, and we consider the
possible interference of these blocks in the common prefix v1 ∧ v2.

Lemma 4.1.
For i = 1, 2, let vi be a word of L with a fixing block suffix of period Ii .
Suppose that:
1 I2  I1
2 Not both I1 = I2 and |v1| = |v2|
3 I2 > |v2| − |v1 ∧ v2|

Then:
I2  2I1 − (|v1| − |v1 ∧ v2|)
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Fixing Blocks Inequalities

Using induction we can already show that reasonably long fixing blocks
occur:

Corollary 4.2.
For i = 1, . . . , r , let vi be a word in L with a fixing block of period Ii .
Suppose that for i = 1, . . . , r − 1 we have:
1 Ii+1  Ii
2 Not both Ii = Ii+1 and |vi | = |vi+1|
3 Ii+1 > |vi+1| − |vi ∧ vi+1|

Then:

Ir  2r−1I1 −
r−1∑
j=1

2r−1−j(|vj | − |vj ∧ vj+1|)
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Fixing Blocks Inequalities

Corollary 4.3.
If v is a word of L with exactly d upper covers, d < |Σ|, then v ends in a
fixing block of period  2|Σ|−d−1.

We begin to get a glimmer of how we arrive at the very long fixing blocks
in bottlenecks promised at the start of this section. A bottleneck, since it
offers only one path to infinity, must feature many dead ends, i.e.,
maximal words. Such words offer sources of many fixing blocks.
Similar lemma can be shown in a language L of words non-repetitive up to
mod r .

Lemma 4.4.
If v is a word of L with exactly d upper covers, d < |Σ|, then v ends in a
fixing block of period  2(|Σ|−d−1)/r .
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Regular bottlenecks

We call bottleneck B = B(u, v) regular when

|B|  |w | − |w ∧ v |+ 1 for any w ∈ B

Any bottleneck B contains a regular bottleneck of length |B|. (Just take
the length B suffix of the longest maximal word in B.)
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Inductive Lemmas

Lemma 5.1.
Suppose there exist numbers m and α, α > 5, such that every regular
bottleneck of length at least m contains a word with fixing block period at
least αm. Then each bottleneck of length at least 4m contains a word
with a fixing block period of at least 4m(2α− 5).

Induction gives the following:

Lemma 5.2.
If every regular bottleneck of length at least m contains a word with a
fixing block period at least αm, for some α > 5, then each bottleneck of
length  4nm must contain a word with a fixing block period of at least
4nm(2n(α− 5)).

Suppose we can find such m and α. Then Lemma 5.2. gives an inequality
of the form of Inequality 1.
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Inductive Lemmas

Lemma 5.2.
If every regular bottleneck of length at least m contains a word with a
fixing block period at least αm, for some α > 5, then each bottleneck of
length  4nm must contain a word with a fixing block period of at least
4nm(2n(α− 5)).

When |Σ| > 4, the hypothesis of Lemma 5.2. can be shown to hold with
m = 1, α = 2|Σ|−2, using Corollary 4.3.

Corollary 4.3.
If v is a word of L with exactly d upper covers, d < |Σ|, then v ends in a
fixing block of period  2|Σ|−d−1.

As noted in Section 3, this gives the interesting result that for such Σ, the
set of infinite non-repetitive words over Σ is perfect.
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Inductive Lemmas

For the rest of this section, let L be the language of words over an
alphabet Σ which are non-repetitive up to mod r . Let s be chosen so that

(2s−1 − (r(s − 1) + 1)) > 0

Let α be chosen so that

α > 2(r(s − 1) + 1)

and

α >
2(r(s − 1) + 1)(2s−2 − 1)

2s−1 − (r(s − 1) + 1)
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Inductive Lemmas

Lemma 5.3.
Suppose that every regular bottleneck of length m has a vertex with a
fixing block of period at least αm. Then every regular bottleneck of length
at least (r(s − 1) + 1)m has a vertex with a fixing block of period at least
α(r(s − 1) + 1)m.

Proof sketch.
Let B be a regular bottleneck of length (r(s − 1) + 1)m. Divide the

core of B into r(s − 1) + 1 disjoint paths, each of length m. Each of these
paths is the core of a bottleneck of length m, therefore we can find
r(s − 1) + 1 disjoint regular bottlenecks of length m, so r(s − 1) + 1
distinct vertices in B, each having a fixing block of period at least αm.
We apply Lemma from previous section and, by the choice of α, we have

Ir(s−1)+1  α(r(s − 1) + 1)m

Szymon Salabura Combinatorial Optimization Seminar June 17, 2021 24 / 25



Inductive Lemmas

Lemma 5.3.
Suppose that every regular bottleneck of length m has a vertex with a
fixing block of period at least αm. Then every regular bottleneck of length
at least (r(s − 1) + 1)m has a vertex with a fixing block of period at least
α(r(s − 1) + 1)m.

Proof sketch.
Let B be a regular bottleneck of length (r(s − 1) + 1)m. Divide the

core of B into r(s − 1) + 1 disjoint paths, each of length m. Each of these
paths is the core of a bottleneck of length m, therefore we can find
r(s − 1) + 1 disjoint regular bottlenecks of length m, so r(s − 1) + 1
distinct vertices in B, each having a fixing block of period at least αm.
We apply Lemma from previous section and, by the choice of α, we have

Ir(s−1)+1  α(r(s − 1) + 1)m

Szymon Salabura Combinatorial Optimization Seminar June 17, 2021 24 / 25



Inductive Lemmas

If we can find α and m as in Lemma 5.3. we can get an inequality of form
Inequality 1. This will enable us to show that L is perfect. However, it
requires s and α to be rather large. An induction can be started with
r = 4, s = 6, α = 630/13,m = 1, if |Σ|  35; this follows from Lemma
4.4. We get the following results:

Theorem 5.4.
The set of infinite words over an alphabet Σ which are non-repetitive up
to mod 4 is perfect if |Σ|  35.

Theorem 5.5.
The set of infinite words over an alphabet Σ which are non-repetitive up
to mod r is perfect if |Σ| is sufficiently large.

’Sufficiently large’ can be replaced by a constructive condition based on
first choosing s, then α, then Σ.
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