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Definitions

@ A word is repetitive if it contains two consecutive identical blocks.
A word barbarian is repetitive, while civilized is not.
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@ A non-empty set L of infinite words is perfect if for any v € L and
any n there is a word v € L, v # u such that v and v have a common
prefix of length at least n.
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@ A word is repetitive if it contains two consecutive identical blocks.
A word barbarian is repetitive, while civilized is not.

@ A word containing k consecutive identical blocks is said to contain a
k power.
A word barbarian contains 2 power.

A sequence {s,}°2; is non-repetitive up to mod r if each of its
mod k subsequences {spc4}52; is non-repetitive, 1 < k < r,
0<j<k-1

A non-empty set L of infinite words is perfect if for any v € L and
any n there is a word v € L, v # u such that v and v have a common
prefix of length at least n.

A language L is perfect if its set of infinite words is perfect.
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There are infinite words over the three letter alphabet {a, b, c} which are
non-repetitive.
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There are infinite words over the three letter alphabet {a, b, c} which are
non-repetitive. For any alphabet ¥ and any positive integer k the set of
inifinite k power free words over ¥ is perfect whenever it is nonempty.

Problem 1.1.

Let L be the set of infinite words over ¥ which are non-repetitive up to
mod r. Is L perfect?
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There are infinite words over the three letter alphabet {a, b, c} which are
non-repetitive. For any alphabet ¥ and any positive integer k the set of
inifinite k power free words over ¥ is perfect whenever it is nonempty.

Problem 1.1.

Let L be the set of infinite words over ¥ which are non-repetitive up to
mod r. Is L perfect?

For r =1,2,3,5 one can find a sequence over an r + 2 letter alphabet
which is non-repetitive up to mod r.
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There are infinite words over the three letter alphabet {a, b, c} which are
non-repetitive. For any alphabet ¥ and any positive integer k the set of
inifinite k power free words over ¥ is perfect whenever it is nonempty.

Problem 1.1.

Let L be the set of infinite words over ¥ which are non-repetitive up to
mod r. Is L perfect?

For r =1,2,3,5 one can find a sequence over an r + 2 letter alphabet
which is non-repetitive up to mod r.

Problem 1.2.

Is there a sequence over a 6 letter alphabet which is non-repetitive up to
mod 47
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More definitions

Let L be a set of words over a finite alphabet ¥. Suppose that L is closed
under taking prefixes.
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More definitions

Let L be a set of words over a finite alphabet ¥. Suppose that L is closed
under taking prefixes.

@ The meet of words is their longest
common prefix.
2122 A211 =21

2122
211 212

21 22
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More definitions

Let L be a set of words over a finite alphabet ¥. Suppose that L is closed
under taking prefixes.

@ The meet of words is their longest
common prefix.
2122 A211 =21

2122 § The length of a word is the number of
211 219 letters in it.
|2122| = 4
21 22 @ v is an upper cover of v if v < V, but

thereisno z € L such that v < z < ¥.
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More definitions

Let L be a set of words over a finite alphabet ¥. Suppose that L is closed
under taking prefixes.

@ The meet of words is their longest
common prefix.
2122 A211 =21

2122 § The length of a word is the number of
911 219 letters in it.
|2122| = 4
21 22 @ v is an upper cover of v if v < V, but
there is no z € L such that v < z < V.
1 2

@ Given words u < v in L, the closed
interval [u, v] is the set

€ {wel:u<w<v}.

[uyo0]={wel:u<w}
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Bottlenecks

Suppose that:

e u<v
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Bottlenecks

Suppose that:
e u<v

@ [V, 00] is infinite for at most one upper cover ¥ of v.
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Bottlenecks

Suppose that:
e u<v
@ [V, 00] is infinite for at most one upper cover ¥ of v.

o [u,00]\[v, 0] is finite.
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Bottlenecks

Suppose that:
e u<v
@ [V, 00] is infinite for at most one upper cover ¥ of v.
o [u,00]\[v, 0] is finite.

In this case any path in L from u to co must traverse the vertices of [u, V].
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Bottlenecks

We refer to the set B(u, v) = [u, o0]\[V, oc] as a bottleneck with core
[u, v]. If [v,o0] is finite, let B(u, v) = [u, o).
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e The length of B = B(u,v) is
|B| = |v| — |u| + 1.

€
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Bottlenecks

We refer to the set B(u, v) = [u, o0]\[V, oc] as a bottleneck with core
[u, v]. If [v,o0] is finite, let B(u, v) = [u, o).

e The length of B = B(u,v) is
|B| = |v| — |u| + 1.
@ The index of B is «(B) = |u|.
Suppose that w < y are elements of [u, v].
It follows that at most one cover of y has an
infinite extension and we can form a
bottleneck B(w, y).

€
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Inequality 1.

Our approach is to show that long bottlenecks in L must occur far out.

Inequality 1.

t(B) = f(|B]), whenever |B| > Ny

Here Ny is some constant, while f is eventually increasing and unbounded.
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Inequality 1.

Our approach is to show that long bottlenecks in L must occur far out.

Inequality 1.

t(B) = f(|B]), whenever |B| > Ny

Here Ny is some constant, while f is eventually increasing and unbounded.
Suppose now that Inequality 1 holds. The existence of such an inequality
gives information about the structure of L.
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Theorems involving Inequality 1.

Let g > Np be a function such that for any non-negative integer M we
have f(x) > M whenever x > g(M).
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Theorems involving Inequality 1.

Let g > Np be a function such that for any non-negative integer M we
have f(x) > M whenever x > g(M).

Word u € L is a prefix of infinitely many words in L if and only if L
contains a word v > u, with |v| — |u| = g(]u]).
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Theorems involving Inequality 1.

Let g > Np be a function such that for any non-negative integer M we
have f(x) > M whenever x > g(M).

Word u € L is a prefix of infinitely many words in L if and only if L
contains a word v > u, with |v| — |u| = g(]u]).

Proof.

It suffices to prove the if direction. Suppose that L contains a word
v > u with |v| — |u| = g(Ju]), but that [u, 00] is finite. Since [u, o0] is
finite, B = B(u,v) = [u, 0] is a bottleneck. We have «(B) = |u|, and
|B| = |v| — |u| + 1> g(|u]). By Inequality 1:

|ul = «(B) > f(|B]) = f([v] = [ul + 1) > |u|

This is a contradiction.
]
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Theorems involving Inequality 1.

Language L is infinite if and only if it contains a word of length g(0).
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Theorems involving Inequality 1.

Language L is infinite if and only if it contains a word of length g(0).

This is a special case (u = ¢) of previous theorem.
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Theorems involving Inequality 1.

Language L is infinite if and only if it contains a word of length g(0).

This is a special case (u = ¢) of previous theorem.

Word u € L is a prefix of infinitely many words in L if and only if L
contains a word v > u, with |v| — |u] = g(|ul).
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Theorems involving Inequality 1.
If L is infinite, then L is perfect. l
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Theorems involving Inequality 1.
If L is infinite, then L is perfect. \

Proof.

Suppose that L is infinite but not perfect. There is some word u € L
with exactly one infinite extension. Let v > u be any finite prefix of the
unique infinite extension of u. There will correspond a bottleneck B(u, v)
of index |u| and length |v| — |u| + 1. Because |u| is fixed, but |v| can be
made arbitrarily large, this violates Inequality 1.

O
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Theorems involving Inequality 1.
If L is infinite, then L is perfect. \

Proof.

Suppose that L is infinite but not perfect. There is some word u € L
with exactly one infinite extension. Let v > u be any finite prefix of the
unique infinite extension of u. There will correspond a bottleneck B(u, v)
of index |u| and length |v| — |u| + 1. Because |u| is fixed, but |v| can be
made arbitrarily large, this violates Inequality 1.

L]
Thus the infinite tree is constantly branching.
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Theorems involving Inequality 1.
If L is infinite, then L is perfect. \

Proof.

Suppose that L is infinite but not perfect. There is some word u € L
with exactly one infinite extension. Let v > u be any finite prefix of the
unique infinite extension of u. There will correspond a bottleneck B(u, v)
of index |u| and length |v| — |u| + 1. Because |u| is fixed, but |v| can be
made arbitrarily large, this violates Inequality 1.

L]
Thus the infinite tree is constantly branching.

Theorem 3.4.

The set of non-repetitive words over {1,2, 3} of length n grows
exponentially.
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Fixing Blocks

o Aword u=ajay...a, has a period t if a; = a;4; for
1<i<i+t<n
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Fixing Blocks

o Aword u=ajay...a, has a period t if a; = a;4; for
1<i<i+t<n

@ A maximal word is a word of L with no extension in L.

Let L be a set of non-repetitive words over ¥ = {1,2,3}. An example of a
maximal word in this case is w = 23121323121.
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o Aword u=ajay...a, has a period t if a; = a;4; for
1<i<i+t<n

@ A maximal word is a word of L with no extension in L.

Let L be a set of non-repetitive words over ¥ = {1,2,3}. An example of a
maximal word in this case is w = 23121323121.

e wl =231213231211 ¢ L, suffix w; = 1 has period 1.
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Fixing Blocks

o Aword u=ajay...a, has a period t if a; = a;4; for
1<i<i+t<n
@ A maximal word is a word of L with no extension in L.

Let L be a set of non-repetitive words over ¥ = {1,2,3}. An example of a
maximal word in this case is w = 23121323121.

e wl =231213231211 ¢ L, suffix w; = 1 has period 1.
e w2 = 231213231212 ¢ L, suffix wy = 121 has period 2.
e w3 = 231213231213 ¢ L, suffix w3 = w has period 6.

For each letter s € ¥ such that ws ¢ L, w must have a periodic suffix
which is 'near square’. A maximal non-repetitive word has several such
suffixes. We call them fixing blocks.

Fixing blocks are suffixes of non-repetitive words of the form ycy where y is
a word of L, ¢ a letter of X. The period of such a fixing block is | = |yc].
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Fixing Blocks Inequalities

In a word with several periods, interference patterns can arise. For
example, if an infinite periodic word has periods « and 3, it also has period
~v = ged(a, ). A more complicated interaction happens when two distinct
non-repetitive words v; and v, end in fixing blocks, and we consider the
possible interference of these blocks in the common prefix vi A vs.
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Fixing Blocks Inequalities

In a word with several periods, interference patterns can arise. For
example, if an infinite periodic word has periods « and 3, it also has period
~v = ged(a, ). A more complicated interaction happens when two distinct
non-repetitive words v; and v, end in fixing blocks, and we consider the
possible interference of these blocks in the common prefix v; A vs.

Lemma 4.1.

For i = 1,2, let v; be a word of L with a fixing block suffix of period /;.
Suppose that:

Q@ h>h
@ Not both /1 = h and |vi| = |wy|
Q h> |V2| = |V1 N sz

Then:

b > 2 — (|V1| = |V1 N V2|)
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Fixing Blocks Inequalities

Using induction we can already show that reasonably long fixing blocks
occur:

Corollary 4.2.
Fori=1,...,r, let v; be a word in L with a fixing block of period /;.
Suppose that for i =1,...,r — 1 we have:

Q liy1>1;

@ Not both /; = /,'_;,.1 and |V;| = |V,'+1|

Q lit1 > [Vig1| = [vi A viqa]

Then: L
_

Ir> 27 =Y "2 (] = v A vigal)
j=1
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Fixing Blocks Inequalities

Corollary 4.3.

If v is a word of L with exactly d upper covers, d < |Z|, then v ends in a
fixing block of period > 2/*I=d-1,
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Fixing Blocks Inequalities

Corollary 4.3.

If v is a word of L with exactly d upper covers, d < |Z|, then v ends in a
fixing block of period > 2/*I=d-1,

We begin to get a glimmer of how we arrive at the very long fixing blocks
in bottlenecks promised at the start of this section. A bottleneck, since it
offers only one path to infinity, must feature many dead ends, i.e.,
maximal words. Such words offer sources of many fixing blocks.
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Fixing Blocks Inequalities

Corollary 4.3.

If v is a word of L with exactly d upper covers, d < |Z|, then v ends in a
fixing block of period > 2/*I=d-1,

We begin to get a glimmer of how we arrive at the very long fixing blocks
in bottlenecks promised at the start of this section. A bottleneck, since it
offers only one path to infinity, must feature many dead ends, i.e.,
maximal words. Such words offer sources of many fixing blocks.

Similar lemma can be shown in a language L of words non-repetitive up to
mod r.

If v is a word of L with exactly d upper covers, d < |X|, then v ends in a
fixing block of period > 2(/I=d=1)/r.

Szymon Salabura Combinatorial Optimization Seminar June 17, 2021 18 /25



Table of Contents

© Inductive Lemmas

Szymon Salabura Combinatorial Optimization Seminar



Regular bottlenecks

We call bottleneck B = B(u, v) regular when

|B| > |w| — |wAv|+1forany w e B
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Regular bottlenecks

We call bottleneck B = B(u, v) regular when
|B| > |w| — |wAv|+1forany we B

Any bottleneck B contains a regular bottleneck of length |B|. (Just take
the length B suffix of the longest maximal word in B.)
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Inductive Lemmas

Suppose there exist numbers m and «, « > 5, such that every regular
bottleneck of length at least m contains a word with fixing block period at
least am. Then each bottleneck of length at least 4m contains a word
with a fixing block period of at least 4m(2a — 5).
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Inductive Lemmas

Suppose there exist numbers m and «, « > 5, such that every regular
bottleneck of length at least m contains a word with fixing block period at
least am. Then each bottleneck of length at least 4m contains a word
with a fixing block period of at least 4m(2a. — 5).

Induction gives the following:

If every regular bottleneck of length at least m contains a word with a
fixing block period at least am, for some o > 5, then each bottleneck of
length > 4"m must contain a word with a fixing block period of at least
4"m(2"(a — 5)).
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Inductive Lemmas

Suppose there exist numbers m and «, « > 5, such that every regular
bottleneck of length at least m contains a word with fixing block period at
least am. Then each bottleneck of length at least 4m contains a word
with a fixing block period of at least 4m(2a. — 5).

Induction gives the following:

If every regular bottleneck of length at least m contains a word with a
fixing block period at least am, for some o > 5, then each bottleneck of
length > 4"m must contain a word with a fixing block period of at least
4"m(2"(a — 5)).

Suppose we can find such m and a. Then Lemma 5.2. gives an inequality
of the form of Inequality 1.
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Inductive Lemmas

If every regular bottleneck of length at least m contains a word with a
fixing block period at least am, for some « > 5, then each bottleneck of

length > 4"m must contain a word with a fixing block period of at least
4"m(2"(a — 5)).

When |X| > 4, the hypothesis of Lemma 5.2. can be shown to hold with
m=1,a = 2*-2 using Corollary 4.3.
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Inductive Lemmas

If every regular bottleneck of length at least m contains a word with a
fixing block period at least am, for some « > 5, then each bottleneck of
length > 4"m must contain a word with a fixing block period of at least
4"m(2"(a — 5)).

When |X| > 4, the hypothesis of Lemma 5.2. can be shown to hold with
m=1,a = 2*-2 using Corollary 4.3.

Corollary 4.3.

If v is a word of L with exactly d upper covers, d < |X|, then v ends in a
fixing block of period > 2/¥I-d-1,
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Inductive Lemmas

If every regular bottleneck of length at least m contains a word with a
fixing block period at least am, for some « > 5, then each bottleneck of
length > 4"m must contain a word with a fixing block period of at least
4"m(2"(a — 5)).

When |X| > 4, the hypothesis of Lemma 5.2. can be shown to hold with
m=1,a = 2*-2 using Corollary 4.3.

Corollary 4.3.

If v is a word of L with exactly d upper covers, d < |X|, then v ends in a
fixing block of period > 2/¥I-d-1,

As noted in Section 3, this gives the interesting result that for such ¥, the
set of infinite non-repetitive words over ¥ is perfect.
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Inductive Lemmas

For the rest of this section, let L be the language of words over an
alphabet > which are non-repetitive up to mod r. Let s be chosen so that

(25t —(r(s—1)+1))>0

Let v be chosen so that

a>2(r(s—1)+1)

and 2(r(s —1)+1)(2572 1)

CZ T T (r(s— 1)+ 1)

Szymon Salabura
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Inductive Lemmas

Suppose that every regular bottleneck of length m has a vertex with a
fixing block of period at least am. Then every regular bottleneck of length
at least (r(s — 1) + 1)m has a vertex with a fixing block of period at least
a(r(s—1)+1)m.
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Inductive Lemmas

Suppose that every regular bottleneck of length m has a vertex with a
fixing block of period at least am. Then every regular bottleneck of length
at least (r(s — 1) + 1)m has a vertex with a fixing block of period at least
a(r(s—1)+1)m.

Proof sketch.

Let B be a regular bottleneck of length (r(s — 1) + 1)m. Divide the
core of B into r(s — 1) + 1 disjoint paths, each of length m. Each of these
paths is the core of a bottleneck of length m, therefore we can find
r(s — 1) + 1 disjoint regular bottlenecks of length m, so r(s —1) +1
distinct vertices in B, each having a fixing block of period at least am.
We apply Lemma from previous section and, by the choice of «, we have

Ir(sfl)Jrl > a(r(s - 1) + l)m
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Inductive Lemmas

If we can find « and m as in Lemma 5.3. we can get an inequality of form
Inequality 1. This will enable us to show that L is perfect. However, it
requires s and « to be rather large. An induction can be started with
r=4,5s=6,a=0630/13, m=1, if |X| > 35; this follows from Lemma
4.4. We get the following results:
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Inductive Lemmas

If we can find « and m as in Lemma 5.3. we can get an inequality of form
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Inequality 1. This will enable us to show that L is perfect. However, it
requires s and « to be rather large. An induction can be started with
r=4,5s=6,a=0630/13, m=1, if |X| > 35; this follows from Lemma
4.4. We get the following results:

Theorem 5.4.

The set of infinite words over an alphabet ¥ which are non-repetitive up
to mod 4 is perfect if |X| > 35.

Theorem 5.5.

The set of infinite words over an alphabet ¥ which are non-repetitive up
to mod r is perfect if |X| is sufficiently large.

'Sufficiently large’ can be replaced by a constructive condition based on
first choosing s, then «, then X.
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