The Fixing Block Method in Combinatorics on Words

Szymon Salabura

June 17, 2021

Table of Contents

(1) Introduction

(2) Bottlenecks

(3) Inequalities involving bottlenecks
4) Fixing Block Inequalities

(5) Inductive Lemmas

Definitions

- A word is repetitive if it contains two consecutive identical blocks. A word barbarian is repetitive, while civilized is not.

Definitions

- A word is repetitive if it contains two consecutive identical blocks. A word barbarian is repetitive, while civilized is not.
- A word containing k consecutive identical blocks is said to contain a k power.
A word barbarian contains 2 power.

Definitions

- A word is repetitive if it contains two consecutive identical blocks. A word barbarian is repetitive, while civilized is not.
- A word containing k consecutive identical blocks is said to contain a k power.
A word barbarian contains 2 power.
- A sequence $\left\{s_{n}\right\}_{n=1}^{\infty}$ is non-repetitive up to $\bmod \mathbf{r}$ if each of its $\bmod k$ subsequences $\left\{s_{n k+j}\right\}_{n=1}^{\infty}$ is non-repetitive, $1 \leqslant k \leqslant r$, $0 \leqslant j \leqslant k-1$.

Definitions

- A word is repetitive if it contains two consecutive identical blocks. A word barbarian is repetitive, while civilized is not.
- A word containing k consecutive identical blocks is said to contain a k power.
A word barbarian contains 2 power.
- A sequence $\left\{s_{n}\right\}_{n=1}^{\infty}$ is non-repetitive up to $\bmod \mathbf{r}$ if each of its $\bmod k$ subsequences $\left\{s_{n k+j}\right\}_{n=1}^{\infty}$ is non-repetitive, $1 \leqslant k \leqslant r$, $0 \leqslant j \leqslant k-1$.
- A non-empty set L of infinite words is perfect if for any $u \in L$ and any n there is a word $v \in L, v \neq u$ such that u and v have a common prefix of length at least n.

Definitions

- A word is repetitive if it contains two consecutive identical blocks. A word barbarian is repetitive, while civilized is not.
- A word containing k consecutive identical blocks is said to contain a k power.
A word barbarian contains 2 power.
- A sequence $\left\{s_{n}\right\}_{n=1}^{\infty}$ is non-repetitive up to $\bmod \mathbf{r}$ if each of its $\bmod k$ subsequences $\left\{s_{n k+j}\right\}_{n=1}^{\infty}$ is non-repetitive, $1 \leqslant k \leqslant r$, $0 \leqslant j \leqslant k-1$.
- A non-empty set L of infinite words is perfect if for any $u \in L$ and any n there is a word $v \in L, v \neq u$ such that u and v have a common prefix of length at least n.
- A language L is perfect if its set of infinite words is perfect.

Problems

There are infinite words over the three letter alphabet $\{a, b, c\}$ which are non-repetitive.

Problems

There are infinite words over the three letter alphabet $\{a, b, c\}$ which are non-repetitive. For any alphabet Σ and any positive integer k the set of inifinite k power free words over Σ is perfect whenever it is nonempty.

Problems

There are infinite words over the three letter alphabet $\{a, b, c\}$ which are non-repetitive. For any alphabet Σ and any positive integer k the set of inifinite k power free words over Σ is perfect whenever it is nonempty.

Problem 1.1.

Let L be the set of infinite words over Σ which are non-repetitive up to $\bmod r$. Is L perfect?

Problems

There are infinite words over the three letter alphabet $\{a, b, c\}$ which are non-repetitive. For any alphabet Σ and any positive integer k the set of inifinite k power free words over Σ is perfect whenever it is nonempty.

Problem 1.1.

Let L be the set of infinite words over Σ which are non-repetitive up to $\bmod r$. Is L perfect?

For $r=1,2,3,5$ one can find a sequence over an $r+2$ letter alphabet which is non-repetitive up to mod r.

Problems

There are infinite words over the three letter alphabet $\{a, b, c\}$ which are non-repetitive. For any alphabet Σ and any positive integer k the set of inifinite k power free words over Σ is perfect whenever it is nonempty.

Problem 1.1.

Let L be the set of infinite words over Σ which are non-repetitive up to $\bmod r$. Is L perfect?

For $r=1,2,3,5$ one can find a sequence over an $r+2$ letter alphabet which is non-repetitive up to mod r.

Problem 1.2.

Is there a sequence over a 6 letter alphabet which is non-repetitive up to $\bmod 4$?

Table of Contents

(1) Introduction
(2) Bottlenecks

(3) Inequalities involving bottlenecks

4) Fixing Block Inequalities

5) Inductive Lemmas

More definitions

Let L be a set of words over a finite alphabet Σ. Suppose that L is closed under taking prefixes.

More definitions

Let L be a set of words over a finite alphabet \sum. Suppose that L is closed under taking prefixes.

- The meet of words is their longest common prefix. $2122 \wedge 211=21$

More definitions

Let L be a set of words over a finite alphabet \sum. Suppose that L is closed under taking prefixes.

- The meet of words is their longest common prefix. $2122 \wedge 211=21$

- The length of a word is the number of letters in it.

$$
|2122|=4
$$

More definitions

Let L be a set of words over a finite alphabet \sum. Suppose that L is closed under taking prefixes.

- The meet of words is their longest common prefix. $2122 \wedge 211=21$

- The length of a word is the number of letters in it. |2122| $=4$
- \hat{v} is an upper cover of v if $v<\hat{v}$, but there is no $z \in L$ such that $v<z<\hat{v}$.

More definitions

Let L be a set of words over a finite alphabet \sum. Suppose that L is closed under taking prefixes.

- The meet of words is their longest common prefix.

$$
2122 \wedge 211=21
$$

- The length of a word is the number of letters in it. |2122| $=4$
- \hat{v} is an upper cover of v if $v<\hat{v}$, but there is no $z \in L$ such that $v<z<\hat{v}$.
- Given words $u \leqslant v$ in L, the closed interval $[u, v]$ is the set
$\{w \in L: u \leqslant w \leqslant v\}$.
$[u, \infty]=\{w \in L: u \leqslant w\}$

Bottlenecks

Suppose that:

- $u \leqslant v$

Bottlenecks

Suppose that:

- $u \leqslant v$
- $[\hat{v}, \infty$] is infinite for at most one upper cover \hat{v} of v.

Bottlenecks

Suppose that:

- $u \leqslant v$
- $[\hat{v}, \infty$] is infinite for at most one upper cover \hat{v} of v.
- $[u, \infty] \backslash[v, \infty]$ is finite.

Bottlenecks

Suppose that:

- $u \leqslant v$
- $[\hat{v}, \infty$] is infinite for at most one upper cover \hat{v} of v.
- $[u, \infty] \backslash[v, \infty]$ is finite.

In this case any path in L from u to ∞ must traverse the vertices of $[u, \hat{v}]$.

Bottlenecks

We refer to the set $B(u, v)=[u, \infty] \backslash[\hat{v}, \infty]$ as a bottleneck with core $[u, v]$. If $[v, \infty]$ is finite, let $B(u, v)=[u, \infty]$.

Bottlenecks

We refer to the set $B(u, v)=[u, \infty] \backslash[\hat{v}, \infty]$ as a bottleneck with core $[u, v]$. If $[v, \infty]$ is finite, let $B(u, v)=[u, \infty]$.

- The length of $B=B(u, v)$ is $|B|=|v|-|u|+1$.

Bottlenecks

We refer to the set $B(u, v)=[u, \infty] \backslash[\hat{v}, \infty]$ as a bottleneck with core $[u, v]$. If $[v, \infty]$ is finite, let $B(u, v)=[u, \infty]$.

- The length of $B=B(u, v)$ is $|B|=|v|-|u|+1$.
- The index of B is $\iota(B)=|u|$.

Bottlenecks

We refer to the set $B(u, v)=[u, \infty] \backslash[\hat{v}, \infty]$ as a bottleneck with core $[u, v]$. If $[v, \infty]$ is finite, let $B(u, v)=[u, \infty]$.

- The length of $B=B(u, v)$ is

$$
|B|=|v|-|u|+1
$$

- The index of B is $\iota(B)=|u|$.

Suppose that $w \leqslant y$ are elements of $[u, v]$. It follows that at most one cover of y has an infinite extension and we can form a bottleneck $B(w, y)$.

Table of Contents

(1) Introduction
(2) Bottlenecks
(3) Inequalities involving bottlenecks

4) Fixing Block Inequalities

5) Inductive Lemmas

Inequality 1.

Our approach is to show that long bottlenecks in L must occur far out.

Inequality 1.

$\iota(B) \geqslant f(|B|)$, whenever $|B|>N_{0}$
Here N_{0} is some constant, while f is eventually increasing and unbounded.

Inequality 1.

Our approach is to show that long bottlenecks in L must occur far out.

Inequality 1.

$\iota(B) \geqslant f(|B|)$, whenever $|B|>N_{0}$
Here N_{0} is some constant, while f is eventually increasing and unbounded. Suppose now that Inequality 1 holds. The existence of such an inequality gives information about the structure of L.

Theorems involving Inequality 1.

Let $g>N_{0}$ be a function such that for any non-negative integer M we have $f(x)>M$ whenever $x>g(M)$.

Theorems involving Inequality 1.

Let $g>N_{0}$ be a function such that for any non-negative integer M we have $f(x)>M$ whenever $x>g(M)$.

Theorem 3.1.

Word $u \in L$ is a prefix of infinitely many words in L if and only if L contains a word $v>u$, with $|v|-|u|=g(|u|)$.

Theorems involving Inequality 1.

Let $g>N_{0}$ be a function such that for any non-negative integer M we have $f(x)>M$ whenever $x>g(M)$.

Theorem 3.1.

Word $u \in L$ is a prefix of infinitely many words in L if and only if L contains a word $v>u$, with $|v|-|u|=g(|u|)$.

Proof.

It suffices to prove the if direction. Suppose that L contains a word $v>u$ with $|v|-|u|=g(|u|)$, but that $[u, \infty]$ is finite. Since $[u, \infty]$ is finite, $B=B(u, v)=[u, \infty]$ is a bottleneck. We have $\iota(B)=|u|$, and $|B|=|v|-|u|+1>g(|u|)$. By Inequality 1 :

$$
|u|=\iota(B) \geqslant f(|B|)=f(|v|-|u|+1)>|u|
$$

This is a contradiction.

Theorems involving Inequality 1.

Theorem 3.2.
Language L is infinite if and only if it contains a word of length $g(0)$.

Theorems involving Inequality 1.

Theorem 3.2.
Language L is infinite if and only if it contains a word of length $g(0)$.
This is a special case $(u=\varepsilon)$ of previous theorem.

Theorems involving Inequality 1.

Theorem 3.2.

Language L is infinite if and only if it contains a word of length $g(0)$.
This is a special case $(u=\varepsilon)$ of previous theorem.

Theorem 3.1.

Word $u \in L$ is a prefix of infinitely many words in L if and only if L contains a word $v>u$, with $|v|-|u|=g(|u|)$.

Theorems involving Inequality 1.

Theorem 3.3.

If L is infinite, then L is perfect.

Theorems involving Inequality 1.

Theorem 3.3.

If L is infinite, then L is perfect.
Proof.
Suppose that L is infinite but not perfect. There is some word $u \in L$ with exactly one infinite extension. Let $v>u$ be any finite prefix of the unique infinite extension of u. There will correspond a bottleneck $B(u, v)$ of index $|u|$ and length $|v|-|u|+1$. Because $|u|$ is fixed, but $|v|$ can be made arbitrarily large, this violates Inequality 1.

Theorems involving Inequality 1.

Theorem 3.3.

If L is infinite, then L is perfect.
Proof.
Suppose that L is infinite but not perfect. There is some word $u \in L$ with exactly one infinite extension. Let $v>u$ be any finite prefix of the unique infinite extension of u. There will correspond a bottleneck $B(u, v)$ of index $|u|$ and length $|v|-|u|+1$. Because $|u|$ is fixed, but $|v|$ can be made arbitrarily large, this violates Inequality 1.

Thus the infinite tree is constantly branching.

Theorems involving Inequality 1.

Theorem 3.3.

If L is infinite, then L is perfect.
Proof.
Suppose that L is infinite but not perfect. There is some word $u \in L$ with exactly one infinite extension. Let $v>u$ be any finite prefix of the unique infinite extension of u. There will correspond a bottleneck $B(u, v)$ of index $|u|$ and length $|v|-|u|+1$. Because $|u|$ is fixed, but $|v|$ can be made arbitrarily large, this violates Inequality 1.

Thus the infinite tree is constantly branching.

Theorem 3.4.

The set of non-repetitive words over $\{1,2,3\}$ of length n grows exponentially.

Table of Contents

(1) Introduction

(2) Bottlenecks

(3) Inequalities involving bottlenecks

4 Fixing Block Inequalities

(5) Inductive Lemmas

Fixing Blocks

- A word $u=a_{1} a_{2} \ldots a_{n}$ has a period t if $a_{i}=a_{i+t}$ for $1 \leqslant i<i+t \leqslant n$.

Fixing Blocks

- A word $u=a_{1} a_{2} \ldots a_{n}$ has a period t if $a_{i}=a_{i+t}$ for $1 \leqslant i<i+t \leqslant n$.
- A maximal word is a word of L with no extension in L.

Fixing Blocks

- A word $u=a_{1} a_{2} \ldots a_{n}$ has a period t if $a_{i}=a_{i+t}$ for $1 \leqslant i<i+t \leqslant n$.
- A maximal word is a word of L with no extension in L.

Let L be a set of non-repetitive words over $\Sigma=\{1,2,3\}$. An example of a maximal word in this case is $w=23121323121$.

Fixing Blocks

- A word $u=a_{1} a_{2} \ldots a_{n}$ has a period t if $a_{i}=a_{i+t}$ for $1 \leqslant i<i+t \leqslant n$.
- A maximal word is a word of L with no extension in L.

Let L be a set of non-repetitive words over $\Sigma=\{1,2,3\}$. An example of a maximal word in this case is $w=23121323121$.

- $w 1=231213231211 \notin L$, suffix $w_{1}=1$ has period 1 .

Fixing Blocks

- A word $u=a_{1} a_{2} \ldots a_{n}$ has a period t if $a_{i}=a_{i+t}$ for $1 \leqslant i<i+t \leqslant n$.
- A maximal word is a word of L with no extension in L.

Let L be a set of non-repetitive words over $\Sigma=\{1,2,3\}$. An example of a maximal word in this case is $w=23121323121$.

- $w 1=231213231211 \notin L$, suffix $w_{1}=1$ has period 1 .
- $w 2=231213231212 \notin L$, suffix $w_{2}=121$ has period 2 .

Fixing Blocks

- A word $u=a_{1} a_{2} \ldots a_{n}$ has a period t if $a_{i}=a_{i+t}$ for $1 \leqslant i<i+t \leqslant n$.
- A maximal word is a word of L with no extension in L.

Let L be a set of non-repetitive words over $\Sigma=\{1,2,3\}$. An example of a maximal word in this case is $w=23121323121$.

- $w 1=231213231211 \notin L$, suffix $w_{1}=1$ has period 1 .
- $w 2=231213231212 \notin L$, suffix $w_{2}=121$ has period 2 .
- $w 3=231213231213 \notin L$, suffix $w_{3}=w$ has period 6 .

Fixing Blocks

- A word $u=a_{1} a_{2} \ldots a_{n}$ has a period t if $a_{i}=a_{i+t}$ for $1 \leqslant i<i+t \leqslant n$.
- A maximal word is a word of L with no extension in L.

Let L be a set of non-repetitive words over $\Sigma=\{1,2,3\}$. An example of a maximal word in this case is $w=23121323121$.

- $w 1=231213231211 \notin L$, suffix $w_{1}=1$ has period 1 .
- $w 2=231213231212 \notin L$, suffix $w_{2}=121$ has period 2 .
- $w 3=231213231213 \notin L$, suffix $w_{3}=w$ has period 6 .

For each letter $s \in \Sigma$ such that ws $\notin L, w$ must have a periodic suffix which is 'near square'. A maximal non-repetitive word has several such suffixes. We call them fixing blocks.
Fixing blocks are suffixes of non-repetitive words of the form ycy where y is a word of L, c a letter of Σ. The period of such a fixing block is $I=|y c|$.

Fixing Blocks Inequalities

In a word with several periods, interference patterns can arise. For example, if an infinite periodic word has periods α and β, it also has period $\gamma=\operatorname{gcd}(\alpha, \beta)$. A more complicated interaction happens when two distinct non-repetitive words v_{1} and v_{2} end in fixing blocks, and we consider the possible interference of these blocks in the common prefix $v_{1} \wedge v_{2}$.

Fixing Blocks Inequalities

In a word with several periods, interference patterns can arise. For example, if an infinite periodic word has periods α and β, it also has period $\gamma=\operatorname{gcd}(\alpha, \beta)$. A more complicated interaction happens when two distinct non-repetitive words v_{1} and v_{2} end in fixing blocks, and we consider the possible interference of these blocks in the common prefix $v_{1} \wedge v_{2}$.

Lemma 4.1.

For $i=1,2$, let v_{i} be a word of L with a fixing block suffix of period I_{i}. Suppose that:
(1) $I_{2} \geqslant I_{1}$
(2) Not both $I_{1}=I_{2}$ and $\left|v_{1}\right|=\left|v_{2}\right|$
(3) $l_{2}>\left|v_{2}\right|-\left|v_{1} \wedge v_{2}\right|$

Then:

$$
I_{2} \geqslant 2 I_{1}-\left(\left|v_{1}\right|-\left|v_{1} \wedge v_{2}\right|\right)
$$

Fixing Blocks Inequalities

Using induction we can already show that reasonably long fixing blocks occur:

Corollary 4.2.

For $i=1, \ldots, r$, let v_{i} be a word in L with a fixing block of period I_{i}. Suppose that for $i=1, \ldots, r-1$ we have:
(1) $I_{i+1} \geqslant I_{i}$
(2) Not both $I_{i}=I_{i+1}$ and $\left|v_{i}\right|=\left|v_{i+1}\right|$
(3) $I_{i+1}>\left|v_{i+1}\right|-\left|v_{i} \wedge v_{i+1}\right|$

Then:

$$
I_{r} \geqslant 2^{r-1} I_{1}-\sum_{j=1}^{r-1} 2^{r-1-j}\left(\left|v_{j}\right|-\left|v_{j} \wedge v_{j+1}\right|\right)
$$

Fixing Blocks Inequalities

Corollary 4.3.

If v is a word of L with exactly d upper covers, $d<|\Sigma|$, then v ends in a fixing block of period $\geqslant 2^{|\Sigma|-d-1}$.

Fixing Blocks Inequalities

Corollary 4.3.

If v is a word of L with exactly d upper covers, $d<|\Sigma|$, then v ends in a fixing block of period $\geqslant 2^{|\Sigma|-d-1}$.

We begin to get a glimmer of how we arrive at the very long fixing blocks in bottlenecks promised at the start of this section. A bottleneck, since it offers only one path to infinity, must feature many dead ends, i.e., maximal words. Such words offer sources of many fixing blocks.

Fixing Blocks Inequalities

Corollary 4.3.

If v is a word of L with exactly d upper covers, $d<|\Sigma|$, then v ends in a fixing block of period $\geqslant 2^{|\Sigma|-d-1}$.

We begin to get a glimmer of how we arrive at the very long fixing blocks in bottlenecks promised at the start of this section. A bottleneck, since it offers only one path to infinity, must feature many dead ends, i.e., maximal words. Such words offer sources of many fixing blocks.
Similar lemma can be shown in a language L of words non-repetitive up to $\bmod r$.

Lemma 4.4.

If v is a word of L with exactly d upper covers, $d<|\Sigma|$, then v ends in a fixing block of period $\geqslant 2^{(|\Sigma|-d-1) / r}$.

Table of Contents

(1) Introduction
(2) Bottlenecks
(3) Inequalities involving bottlenecks
4. Fixing Block Inequalities
(5) Inductive Lemmas

Regular bottlenecks

We call bottleneck $B=B(u, v)$ regular when

$$
|B| \geqslant|w|-|w \wedge v|+1 \text { for any } w \in B
$$

Regular bottlenecks

We call bottleneck $B=B(u, v)$ regular when

$$
|B| \geqslant|w|-|w \wedge v|+1 \text { for any } w \in B
$$

Any bottleneck B contains a regular bottleneck of length $|B|$. (Just take the length B suffix of the longest maximal word in B.)

Inductive Lemmas

Lemma 5.1.

Suppose there exist numbers m and $\alpha, \alpha>5$, such that every regular bottleneck of length at least m contains a word with fixing block period at least αm. Then each bottleneck of length at least $4 m$ contains a word with a fixing block period of at least $4 m(2 \alpha-5)$.

Inductive Lemmas

Lemma 5.1.

Suppose there exist numbers m and $\alpha, \alpha>5$, such that every regular bottleneck of length at least m contains a word with fixing block period at least αm. Then each bottleneck of length at least $4 m$ contains a word with a fixing block period of at least $4 m(2 \alpha-5)$.

Induction gives the following:

Lemma 5.2.

If every regular bottleneck of length at least m contains a word with a fixing block period at least αm, for some $\alpha>5$, then each bottleneck of length $\geqslant 4^{n} m$ must contain a word with a fixing block period of at least $4^{n} m\left(2^{n}(\alpha-5)\right)$.

Inductive Lemmas

Lemma 5.1.

Suppose there exist numbers m and $\alpha, \alpha>5$, such that every regular bottleneck of length at least m contains a word with fixing block period at least αm. Then each bottleneck of length at least $4 m$ contains a word with a fixing block period of at least $4 m(2 \alpha-5)$.

Induction gives the following:

Lemma 5.2.

If every regular bottleneck of length at least m contains a word with a fixing block period at least αm, for some $\alpha>5$, then each bottleneck of length $\geqslant 4^{n} m$ must contain a word with a fixing block period of at least $4^{n} m\left(2^{n}(\alpha-5)\right)$.

Suppose we can find such m and α. Then Lemma 5.2. gives an inequality of the form of Inequality 1.

Inductive Lemmas

Lemma 5.2.

If every regular bottleneck of length at least m contains a word with a fixing block period at least αm, for some $\alpha>5$, then each bottleneck of length $\geqslant 4^{n} m$ must contain a word with a fixing block period of at least $4^{n} m\left(2^{n}(\alpha-5)\right)$.

When $|\Sigma|>4$, the hypothesis of Lemma 5.2. can be shown to hold with $m=1, \alpha=2^{|\Sigma|-2}$, using Corollary 4.3.

Inductive Lemmas

Lemma 5.2.

If every regular bottleneck of length at least m contains a word with a fixing block period at least αm, for some $\alpha>5$, then each bottleneck of length $\geqslant 4^{n} m$ must contain a word with a fixing block period of at least $4^{n} m\left(2^{n}(\alpha-5)\right)$.

When $|\Sigma|>4$, the hypothesis of Lemma 5.2. can be shown to hold with $m=1, \alpha=2^{|\Sigma|-2}$, using Corollary 4.3.

Corollary 4.3.

If v is a word of L with exactly d upper covers, $d<|\Sigma|$, then v ends in a fixing block of period $\geqslant 2^{|\Sigma|-d-1}$.

Inductive Lemmas

Lemma 5.2.

If every regular bottleneck of length at least m contains a word with a fixing block period at least αm, for some $\alpha>5$, then each bottleneck of length $\geqslant 4^{n} m$ must contain a word with a fixing block period of at least $4^{n} m\left(2^{n}(\alpha-5)\right)$.

When $|\Sigma|>4$, the hypothesis of Lemma 5.2. can be shown to hold with $m=1, \alpha=2^{|\Sigma|-2}$, using Corollary 4.3.

Corollary 4.3.

If v is a word of L with exactly d upper covers, $d<|\Sigma|$, then v ends in a fixing block of period $\geqslant 2^{|\Sigma|-d-1}$.

As noted in Section 3, this gives the interesting result that for such Σ, the set of infinite non-repetitive words over Σ is perfect.

Inductive Lemmas

For the rest of this section, let L be the language of words over an alphabet Σ which are non-repetitive up to $\bmod r$. Let s be chosen so that

$$
\left(2^{s-1}-(r(s-1)+1)\right)>0
$$

Let α be chosen so that

$$
\alpha>2(r(s-1)+1)
$$

and

$$
\alpha>\frac{2(r(s-1)+1)\left(2^{s-2}-1\right)}{2^{s-1}-(r(s-1)+1)}
$$

Inductive Lemmas

Lemma 5.3.

Suppose that every regular bottleneck of length m has a vertex with a fixing block of period at least αm. Then every regular bottleneck of length at least $(r(s-1)+1) m$ has a vertex with a fixing block of period at least $\alpha(r(s-1)+1) m$.

Inductive Lemmas

Lemma 5.3.

Suppose that every regular bottleneck of length m has a vertex with a fixing block of period at least αm. Then every regular bottleneck of length at least $(r(s-1)+1) m$ has a vertex with a fixing block of period at least $\alpha(r(s-1)+1) m$.

Proof sketch.
Let B be a regular bottleneck of length $(r(s-1)+1) m$. Divide the core of B into $r(s-1)+1$ disjoint paths, each of length m. Each of these paths is the core of a bottleneck of length m, therefore we can find $r(s-1)+1$ disjoint regular bottlenecks of length m, so $r(s-1)+1$ distinct vertices in B, each having a fixing block of period at least αm. We apply Lemma from previous section and, by the choice of α, we have

$$
I_{r(s-1)+1} \geqslant \alpha(r(s-1)+1) m
$$

Inductive Lemmas

If we can find α and m as in Lemma 5.3. we can get an inequality of form Inequality 1 . This will enable us to show that L is perfect. However, it requires s and α to be rather large. An induction can be started with $r=4, s=6, \alpha=630 / 13, m=1$, if $|\Sigma| \geqslant 35$; this follows from Lemma 4.4. We get the following results:

Inductive Lemmas

If we can find α and m as in Lemma 5.3. we can get an inequality of form Inequality 1 . This will enable us to show that L is perfect. However, it requires s and α to be rather large. An induction can be started with $r=4, s=6, \alpha=630 / 13, m=1$, if $|\Sigma| \geqslant 35$; this follows from Lemma 4.4. We get the following results:

Theorem 5.4.

The set of infinite words over an alphabet Σ which are non-repetitive up to mod 4 is perfect if $|\Sigma| \geqslant 35$.

Inductive Lemmas

If we can find α and m as in Lemma 5.3. we can get an inequality of form Inequality 1 . This will enable us to show that L is perfect. However, it requires s and α to be rather large. An induction can be started with $r=4, s=6, \alpha=630 / 13, m=1$, if $|\Sigma| \geqslant 35$; this follows from Lemma 4.4. We get the following results:

Theorem 5.4.

The set of infinite words over an alphabet Σ which are non-repetitive up to $\bmod 4$ is perfect if $|\Sigma| \geqslant 35$.

Theorem 5.5.

The set of infinite words over an alphabet Σ which are non-repetitive up to mod r is perfect if $|\Sigma|$ is sufficiently large.
'Sufficiently large' can be replaced by a constructive condition based on first choosing s, then α, then Σ.

