Weak degeneracy of graphs

Anton Bernshteyn, Eugene Lee

Krzysztof Potępa
December 9, 2021
Theoretical Computer Science

Chromatic number

Coloring

Function $\phi: V(G) \rightarrow C$ is a coloring of G if:

- $\phi(u) \neq \phi(v)$ for each $u v \in E(G)$
$\chi(G)=$ minimum number of colors $|C|$ required to color vertices of G

List chromatic number

List coloring

Each vertex $v \in V(G)$ is assigned a list $L_{v} . \phi$ is an L-coloring of G if:

- $\phi(u) \in L_{u}$ for each $u \in V(G)$
- $\phi(u) \neq \phi(v)$ for each $u v \in E(G)$
$\chi_{\mathrm{L}}(G)=$ minimum k such that G has an L-coloring whenever each $\left|L_{v}\right| \geq k$

List chromatic number

List coloring

Each vertex $v \in V(G)$ is assigned a list $L_{v} . \phi$ is an L-coloring of G if:

- $\phi(u) \in L_{u}$ for each $u \in V(G)$
- $\phi(u) \neq \phi(v)$ for each $u v \in E(G)$
$\chi_{\mathrm{L}}(G)=$ minimum k such that G has an L-coloring whenever each $\left|L_{v}\right| \geq k$

DP chromatic number

DP coloring

Each vertex $v \in V(G)$ is assigned a list L_{v}.
Each edge $u v \in E(G)$ is assigned a matching $C_{u v}$ from L_{u} to L_{v}.
ϕ is an (L, C)-coloring of G if:

- $\phi(u) \in L_{u}$ for each $u \in V(G)$
- $\phi(u) \phi(v) \notin C_{u v}$ for each $u v \in E(G)$
$\chi_{\mathrm{DP}}(G)=$ minimum k such that G has an (L, C)-coloring whenever each $\left|L_{v}\right| \geq k$

DP chromatic number

DP coloring

Each vertex $v \in V(G)$ is assigned a list L_{v}.
Each edge $u v \in E(G)$ is assigned a matching $C_{u v}$ from L_{u} to L_{v}.
ϕ is an (L, C)-coloring of G if:

- $\phi(u) \in L_{u}$ for each $u \in V(G)$
- $\phi(u) \phi(v) \notin C_{u v}$ for each $u v \in E(G)$
$\chi_{\operatorname{DP}}(G)=$ minimum k such that G has an (L, C)-coloring whenever each $\left|L_{v}\right| \geq k$

DP chromatic number

DP coloring

Each vertex $v \in V(G)$ is assigned a list L_{v}.
Each edge $u v \in E(G)$ is assigned a matching $C_{u v}$ from L_{u} to L_{v}.
ϕ is an (L, C)-coloring of G if:

- $\phi(u) \in L_{u}$ for each $u \in V(G)$
- $\phi(u) \phi(v) \notin C_{u v}$ for each $u v \in E(G)$
$\chi_{\operatorname{DP}}(G)=$ minimum k such that G has an (L, C)-coloring whenever each $\left|L_{v}\right| \geq k$

Greedy (DP)-coloring

Degeneracy

Delete operation

Let $f: V(G) \rightarrow \mathbb{N}$ be a function, and let $u \in V(G)$.
Operation Delete (G, f, u) outputs graph $G \backslash\{u\}$ and function $f^{\prime}: G \backslash\{u\} \rightarrow \mathbb{N}$:

$$
f^{\prime}(v)= \begin{cases}f(v)-1 & \text { if } u v \in E(G) \\ f(v) & \text { otherwise }\end{cases}
$$

Operation is legal if f^{\prime} is non-negative.

Degeneracy

Delete operation

Let $f: V(G) \rightarrow \mathbb{N}$ be a function, and let $u \in V(G)$.
Operation Delete (G, f, u) outputs graph $G \backslash\{u\}$ and function $f^{\prime}: G \backslash\{u\} \rightarrow \mathbb{N}$:

$$
f^{\prime}(v)= \begin{cases}f(v)-1 & \text { if } u v \in E(G) \\ f(v) & \text { otherwise }\end{cases}
$$

Operation is legal if f^{\prime} is non-negative.

Degeneracy

Delete operation

Let $f: V(G) \rightarrow \mathbb{N}$ be a function, and let $u \in V(G)$.
Operation Delete (G, f, u) outputs graph $G \backslash\{u\}$ and function $f^{\prime}: G \backslash\{u\} \rightarrow \mathbb{N}$:

$$
f^{\prime}(v)= \begin{cases}f(v)-1 & \text { if } u v \in E(G) \\ f(v) & \text { otherwise }\end{cases}
$$

Operation is legal if f^{\prime} is non-negative.

Degeneracy

Degeneracy

Graph G is f-degenerate if it is possible to remove all vertices of G using a sequence of legal Delete operations, starting with function f.
$d(G)=$ minimum d such that G is d-degenerate (for constant function d)

Degeneracy

Degeneracy

Graph G is f-degenerate if it is possible to remove all vertices of G using a sequence of legal Delete operations, starting with function f.
$d(G)=$ minimum d such that G is d-degenerate (for constant function d)

Degeneracy

Degeneracy

Graph G is f-degenerate if it is possible to remove all vertices of G using a sequence of legal Delete operations, starting with function f.
$d(G)=$ minimum d such that G is d-degenerate (for constant function d)

Degeneracy

Degeneracy

Graph G is f-degenerate if it is possible to remove all vertices of G using a sequence of legal Delete operations, starting with function f.
$d(G)=$ minimum d such that G is d-degenerate (for constant function d)

Degeneracy

Degeneracy

Graph G is f-degenerate if it is possible to remove all vertices of G using a sequence of legal Delete operations, starting with function f.
$d(G)=$ minimum d such that G is d-degenerate (for constant function d)

Degeneracy

Degeneracy

Graph G is f-degenerate if it is possible to remove all vertices of G using a sequence of legal Delete operations, starting with function f.
$d(G)=$ minimum d such that G is d-degenerate (for constant function d)

Degeneracy

Degeneracy

Graph G is f-degenerate if it is possible to remove all vertices of G using a sequence of legal Delete operations, starting with function f.
$d(G)=$ minimum d such that G is d-degenerate (for constant function d)

Degeneracy

Degeneracy

Graph G is f-degenerate if it is possible to remove all vertices of G using a sequence of legal Delete operations, starting with function f.
$d(G)=$ minimum d such that G is d-degenerate (for constant function d)

Degeneracy

Degeneracy

Graph G is f-degenerate if it is possible to remove all vertices of G using a sequence of legal Delete operations, starting with function f.
$d(G)=$ minimum d such that G is d-degenerate (for constant function d)

Degeneracy

Degeneracy

Graph G is f-degenerate if it is possible to remove all vertices of G using a sequence of legal Delete operations, starting with function f.
$d(G)=$ minimum d such that G is d-degenerate (for constant function d)

Degeneracy

Degeneracy

Graph G is f-degenerate if it is possible to remove all vertices of G using a sequence of legal Delete operations, starting with function f.
$d(G)=$ minimum d such that G is d-degenerate (for constant function d)

Degeneracy

Degeneracy

Graph G is f-degenerate if it is possible to remove all vertices of G using a sequence of legal Delete operations, starting with function f.
$d(G)=$ minimum d such that G is d-degenerate (for constant function d)

Degeneracy

Degeneracy

Graph G is f-degenerate if it is possible to remove all vertices of G using a sequence of legal Delete operations, starting with function f.
$d(G)=$ minimum d such that G is d-degenerate (for constant function d)

Degeneracy

Degeneracy

Graph G is f-degenerate if it is possible to remove all vertices of G using a sequence of legal Delete operations, starting with function f.
$d(G)=$ minimum d such that G is d-degenerate (for constant function d)

Degeneracy

Degeneracy

Graph G is f-degenerate if it is possible to remove all vertices of G using a sequence of legal Delete operations, starting with function f.
$d(G)=$ minimum d such that G is d-degenerate (for constant function d)

Saving a color

Weak degeneracy

DelSave operation

Let $f: V(G) \rightarrow \mathbb{N}$ be a function, and let $u, w \in V(G)$.
Operation DelSave (G, f, u, w) outputs graph $G \backslash\{u\}$ and function $f^{\prime}: G \backslash\{u\} \rightarrow \mathbb{N}$:

$$
f^{\prime}(v)= \begin{cases}f(v)-1 & \text { if } u v \in E(G) \text { and } v \neq w \\ f(v) & \text { otherwise }\end{cases}
$$

Operation is legal if $f(u)>f(w)$ and f^{\prime} is non-negative.

Weak degeneracy

DelSave operation

Let $f: V(G) \rightarrow \mathbb{N}$ be a function, and let $u, w \in V(G)$.
Operation DelSave (G, f, u, w) outputs graph $G \backslash\{u\}$ and function $f^{\prime}: G \backslash\{u\} \rightarrow \mathbb{N}$:

$$
f^{\prime}(v)= \begin{cases}f(v)-1 & \text { if } u v \in E(G) \text { and } v \neq w \\ f(v) & \text { otherwise }\end{cases}
$$

Operation is legal if $f(u)>f(w)$ and f^{\prime} is non-negative.

Weak degeneracy

DelSave operation

Let $f: V(G) \rightarrow \mathbb{N}$ be a function, and let $u, w \in V(G)$.
Operation DelSave (G, f, u, w) outputs graph $G \backslash\{u\}$ and function $f^{\prime}: G \backslash\{u\} \rightarrow \mathbb{N}$:

$$
f^{\prime}(v)= \begin{cases}f(v)-1 & \text { if } u v \in E(G) \text { and } v \neq w \\ f(v) & \text { otherwise }\end{cases}
$$

Operation is legal if $f(u)>f(w)$ and f^{\prime} is non-negative.

Weak degeneracy

DelSave operation

Let $f: V(G) \rightarrow \mathbb{N}$ be a function, and let $u, w \in V(G)$.
Operation DelSave (G, f, u, w) outputs graph $G \backslash\{u\}$ and function $f^{\prime}: G \backslash\{u\} \rightarrow \mathbb{N}$:

$$
f^{\prime}(v)= \begin{cases}f(v)-1 & \text { if } u v \in E(G) \text { and } v \neq w \\ f(v) & \text { otherwise }\end{cases}
$$

Operation is legal if $f(u)>f(w)$ and f^{\prime} is non-negative.

Weak degeneracy

Weak degeneracy

Graph G is weakly f-degenerate if it is possible to remove all vertices of G using a sequence of legal Delete and DelSave operations, starting with function f. $\operatorname{wd}(G)=$ minimum d such that G is weakly d-degenerate

Weak degeneracy

Weak degeneracy

Graph G is weakly f-degenerate if it is possible to remove all vertices of G using a sequence of legal Delete and DelSave operations, starting with function f. $\operatorname{wd}(G)=$ minimum d such that G is weakly d-degenerate

$$
\chi(G) \leq \chi_{\mathrm{L}}(G) \leq \chi_{\mathrm{DP}}(G) \leq \operatorname{wd}(G)+1 \leq \mathrm{d}(G)+1
$$

Online DP-coloring

DP-painting game

Let $f: V(G) \rightarrow \mathbb{N}$ be a function. The DP-painting game on $\left(G_{0}, f\right)$ is played by Lister and Painter. The i-th round proceeds as follows:

Online DP-coloring

DP-painting game

Let $f: V(G) \rightarrow \mathbb{N}$ be a function. The DP-painting game on $\left(G_{0}, f\right)$ is played by
Lister and Painter. The i-th round proceeds as follows:

- Lister picks $L_{i}(u)$ for each $u \in V\left(G_{i}\right)$ and $C_{i, u v}$ for each $u v \in E\left(G_{i}\right)$.

Online DP-coloring

DP-painting game

Let $f: V(G) \rightarrow \mathbb{N}$ be a function. The DP-painting game on $\left(G_{0}, f\right)$ is played by
Lister and Painter. The i-th round proceeds as follows:

- Lister picks $L_{i}(u)$ for each $u \in V\left(G_{i}\right)$ and $C_{i, u v}$ for each $u v \in E\left(G_{i}\right)$.
- Painter picks $U_{i} \subseteq V\left(G_{i}\right)$ and shows $\left(L_{i}, C_{i}\right)$-coloring of $G_{i}\left[U_{i}\right]$.

Online DP-coloring

DP-painting game

Let $f: V(G) \rightarrow \mathbb{N}$ be a function. The DP-painting game on $\left(G_{0}, f\right)$ is played by
Lister and Painter. The i-th round proceeds as follows:

- Lister picks $L_{i}(u)$ for each $u \in V\left(G_{i}\right)$ and $C_{i, u v}$ for each $u v \in E\left(G_{i}\right)$.
- Painter picks $U_{i} \subseteq V\left(G_{i}\right)$ and shows $\left(L_{i}, C_{i}\right)$-coloring of $G_{i}\left[U_{i}\right]$.
- Set $G_{i+1}:=G_{i} \backslash U_{i}$. If G_{i+1} is empty, then the Painter wins.

Online DP-coloring

DP-painting game

Let $f: V(G) \rightarrow \mathbb{N}$ be a function. The DP-painting game on $\left(G_{0}, f\right)$ is played by Lister and Painter. The i-th round proceeds as follows:

- Lister picks $L_{i}(u)$ for each $u \in V\left(G_{i}\right)$ and $C_{i, u v}$ for each $u v \in E\left(G_{i}\right)$.
- Painter picks $U_{i} \subseteq V\left(G_{i}\right)$ and shows $\left(L_{i}, C_{i}\right)$-coloring of $G_{i}\left[U_{i}\right]$.
- Set $G_{i+1}:=G_{i} \backslash U_{i}$. If G_{i+1} is empty, then the Painter wins.
- If $\sum_{j \leq i}\left|L_{j}(u)\right| \geq f(u)$ for some $u \in G_{i+1}$, then the Lister wins.

Online DP-coloring

DP-paintability

Graph G is f-DP-paintable if Painter has a winning strategy on (G, f). $\chi_{\operatorname{DPP}}(G)=$ minimum k such that G is k-DP-paintable

Online DP-coloring

DP-paintability

Graph G is f-DP-paintable if Painter has a winning strategy on (G, f). $\chi_{\operatorname{DPP}}(G)=$ minimum k such that G is k-DP-paintable

$$
\chi(G) \leq \chi_{\mathrm{L}}(G) \leq \chi_{\mathrm{DP}}(G) \leq \chi_{\operatorname{DPP}}(G)
$$

Weak degeneracy vs online DP-coloring

Proposition

If G is weakly f-degenerate, then G is $(f+1)$-DP-paintable.

Weak degeneracy vs online DP-coloring

Proposition

If G is weakly f-degenerate, then G is $(f+1)$-DP-paintable.

Partitioning lemma

Let G be weakly f-degenerate. Suppose that $g(u)+h(u)=f(u)-1$ for each $u \in V(G)$. Then there is a partition $V(G)=V_{1} \sqcup V_{2}$ such that $G\left[V_{1}\right]$ is weakly g-degenerate and $G\left[V_{2}\right]$ is weakly h-degenerate.

Weak degeneracy vs online DP-coloring

Proposition

If G is weakly f-degenerate, then G is $(f+1)$-DP-paintable.

Partitioning lemma

Let G be weakly f-degenerate. Suppose that $g(u)+h(u)=f(u)-1$ for each $u \in V(G)$. Then there is a partition $V(G)=V_{1} \sqcup V_{2}$ such that $G\left[V_{1}\right]$ is weakly g-degenerate and $G\left[V_{2}\right]$ is weakly h-degenerate.

Invariant: G_{i} is f_{i}-degenerate, where $f_{i}(u)=f(u)-\sum_{j<i}\left|L_{j}(u)\right|$.

Weak degeneracy vs online DP-coloring

Proposition

If G is weakly f-degenerate, then G is $(f+1)$-DP-paintable.

Partitioning lemma

Let G be weakly f-degenerate. Suppose that $g(u)+h(u)=f(u)-1$ for each $u \in V(G)$. Then there is a partition $V(G)=V_{1} \sqcup V_{2}$ such that $G\left[V_{1}\right]$ is weakly g-degenerate and $G\left[V_{2}\right]$ is weakly h-degenerate.

Invariant: G_{i} is f_{i}-degenerate, where $f_{i}(u)=f(u)-\sum_{j<i}\left|L_{j}(u)\right|$.
On i-th round, partition G_{i} into g-degenerate and h-degenerate graphs:

$$
\begin{gathered}
g(u)=\left|L_{i}(u)\right|-1 \\
h(u)=f_{i}(u)-\left|L_{j}(u)\right|
\end{gathered}
$$

Weak degeneracy vs online DP-coloring

Proposition

If G is weakly f-degenerate, then G is $(f+1)$-DP-paintable.

Partitioning lemma

Let G be weakly f-degenerate. Suppose that $g(u)+h(u)=f(u)-1$ for each $u \in V(G)$. Then there is a partition $V(G)=V_{1} \sqcup V_{2}$ such that $G\left[V_{1}\right]$ is weakly g-degenerate and $G\left[V_{2}\right]$ is weakly h-degenerate.

Invariant: G_{i} is f_{i}-degenerate, where $f_{i}(u)=f(u)-\sum_{j<i}\left|L_{j}(u)\right|$.
On i-th round, partition G_{i} into g-degenerate and h-degenerate graphs:

$$
\begin{gathered}
g(u)=\left|L_{i}(u)\right|-1 \\
h(u)=f_{i}(u)-\left|L_{j}(u)\right|
\end{gathered}
$$

$$
\chi(G) \leq \chi_{\mathrm{L}}(G) \leq \chi_{\mathrm{DP}}(G) \leq \chi_{\mathrm{DPP}}(G) \leq \mathrm{wd}(G)+1 \leq \mathrm{d}(G)+1
$$

Weak degeneracy of planar graphs

Every planar graph is 5-degenerate.

Weak degeneracy of planar graphs

Every planar graph is 5-degenerate.
Theorem
Every planar graph is weakly 4-degenerate.

Weak degeneracy of planar graphs

Every planar graph is 5-degenerate.
Theorem
Every planar graph is weakly 4-degenerate.
For planar graphs:

$$
\begin{aligned}
\chi(G) & \leq 4 \\
\chi_{\mathrm{L}}(G) \leq \chi_{\operatorname{DP}}(G) \leq \chi_{\operatorname{DPP}}(G) \leq \mathrm{wd}(G)+1 & \leq 5 \\
\mathrm{~d}(G)+1 & \leq 6
\end{aligned}
$$

Weak degeneracy of planar graphs

Safe weak degeneration
Graph G is U-safely weakly f-degenerate for $U \subseteq V(G)$ if there is a sequence of legal Delete and DelSave operations where every vertex in U is removed using Delete.

Weak degeneracy of planar graphs

Lemma

Let G be a planar graph on at least 3 vertices, where every internal face is triangle, and the outer face is a cycle $C=\left(v_{1}, \ldots, v_{k}\right)$. Define $f: V(G) \backslash\left\{v_{1}, v_{2}\right\} \rightarrow \mathbb{N}$:

$$
f(u)= \begin{cases}2-\left|N(u) \cap\left\{v_{1}, v_{2}\right\}\right| & \text { if } u \in V(C) ; \\ 4-\left|N(u) \cap\left\{v_{1}, v_{2}\right\}\right| & \text { otherwise. }\end{cases}
$$

Then $G \backslash\left\{v_{1}, v_{2}\right\}$ is $\left(C \backslash\left\{v_{1}, v_{2}\right\}\right)$-safely f-degenerate.

Weak degeneracy of planar graphs

Lemma

Let G be a planar graph on at least 3 vertices, where every internal face is triangle, and the outer face is a cycle $C=\left(v_{1}, \ldots, v_{k}\right)$. Define $f: V(G) \backslash\left\{v_{1}, v_{2}\right\} \rightarrow \mathbb{N}$:

$$
f(u)= \begin{cases}2-\left|N(u) \cap\left\{v_{1}, v_{2}\right\}\right| & \text { if } u \in V(C) \\ 4-\left|N(u) \cap\left\{v_{1}, v_{2}\right\}\right| & \text { otherwise }\end{cases}
$$

Then $G \backslash\left\{v_{1}, v_{2}\right\}$ is $\left(C \backslash\left\{v_{1}, v_{2}\right\}\right)$-safely f-degenerate.

Weak degeneracy of planar graphs

Lemma

Let G be a planar graph on at least 3 vertices, where every internal face is triangle, and the outer face is a cycle $C=\left(v_{1}, \ldots, v_{k}\right)$. Define $f: V(G) \backslash\left\{v_{1}, v_{2}\right\} \rightarrow \mathbb{N}$:

$$
f(u)= \begin{cases}2-\left|N(u) \cap\left\{v_{1}, v_{2}\right\}\right| & \text { if } u \in V(C) \\ 4-\left|N(u) \cap\left\{v_{1}, v_{2}\right\}\right| & \text { otherwise }\end{cases}
$$

Then $G \backslash\left\{v_{1}, v_{2}\right\}$ is $\left(C \backslash\left\{v_{1}, v_{2}\right\}\right)$-safely f-degenerate.

Weak degeneracy of planar graphs

Lemma

Let G be a planar graph on at least 3 vertices, where every internal face is triangle, and the outer face is a cycle $C=\left(v_{1}, \ldots, v_{k}\right)$. Define $f: V(G) \backslash\left\{v_{1}, v_{2}\right\} \rightarrow \mathbb{N}$:

$$
f(u)= \begin{cases}2-\left|N(u) \cap\left\{v_{1}, v_{2}\right\}\right| & \text { if } u \in V(C) \\ 4-\left|N(u) \cap\left\{v_{1}, v_{2}\right\}\right| & \text { otherwise }\end{cases}
$$

Then $G \backslash\left\{v_{1}, v_{2}\right\}$ is $\left(C \backslash\left\{v_{1}, v_{2}\right\}\right)$-safely f-degenerate.

Weak degeneracy of planar graphs

1. C has a cord $v_{a} v_{b}$.

Weak degeneracy of planar graphs

1. C has a cord $v_{a} v_{b}$.

Weak degeneracy of planar graphs

1. C has a cord $v_{a} v_{b}$.

Weak degeneracy of planar graphs

1. C has a cord $v_{a} v_{b}$.

Weak degeneracy of planar graphs

1. C has a cord $v_{a} v_{b}$.

Weak degeneracy of planar graphs

2. C has no cord.

Weak degeneracy of planar graphs

2. C has no cord.

Weak degeneracy of planar graphs

2. C has no cord.

Weak degeneracy of planar graphs

2. C has no cord.

Weak degeneracy of planar graphs

Every planar graph is 5-degenerate.

Theorem

Every planar graph is weakly 4-degenerate.
For planar graphs:

$$
\begin{aligned}
\chi(G) & \leq 4 \\
\chi_{\mathrm{L}}(G) \leq \chi_{\operatorname{DP}}(G) \leq \chi_{\operatorname{DPP}}(G) \leq \mathrm{wd}(G)+1 & \leq 5 \\
\mathrm{~d}(G)+1 & \leq 6
\end{aligned}
$$

Brooks-type results

Theorem

If G is a connected graph with maximum degree $d \geq 3$, then either $G \cong K_{d+1}$ or G is weakly ($d-1$)-degenerate.

Brooks-type results

Theorem

If G is a connected graph with maximum degree $d \geq 3$, then either $G \cong K_{d+1}$ or G is weakly ($d-1$)-degenerate.

GDP-tree

Graph G is GDP-tree if its each biconnected component is a cycle or clique.

Brooks-type results

Theorem

If G is a connected graph with maximum degree $d \geq 3$, then either $G \cong K_{d+1}$ or G is weakly $(d-1)$-degenerate.

GDP-tree

Graph G is GDP-tree if its each biconnected component is a cycle or clique.

Theorem

Let G be a connected graph. The following statements are equivalent:

1. G is weakly $(\operatorname{deg}-1)$-degenerate
2. G is not a GDP-tree

Brooks-type results

Lemma

Let G be a connected graph and let $f: V(G) \rightarrow \mathbb{N}$ such that:

- $f(u) \geq \operatorname{deg}(u)-1$ for all $u \in V(G)$;
- $f(x) \geq \operatorname{deg}(u)$ for some $x \in V(G)$.

Then G is f-degenerate.

Brooks-type results

Lemma

Let G be a connected graph and let $f: V(G) \rightarrow \mathbb{N}$ such that:

- $f(u) \geq \operatorname{deg}(u)-1$ for all $u \in V(G)$;
- $f(x) \geq \operatorname{deg}(u)$ for some $x \in V(G)$.

Then G is f-degenerate.
Remove vertices in decreasing distance order from x.

Brooks-type results

Lemma

Let G be a connected graph such that every biconnected induced subgraph of G is regular. Then G is GDP-tree.

Brooks-type results

Lemma

Let G be a connected graph that is not weakly (deg -1)-degenerate. Then every biconnected induced subgraph of G is regular.

Brooks-type results

Lemma

Let G be a connected graph that is not weakly (deg -1)-degenerate. Then every biconnected induced subgraph of G is regular.

Brooks-type results

Lemma

Let G be a connected graph that is not weakly (deg -1)-degenerate. Then every biconnected induced subgraph of G is regular.

Brooks-type results

Lemma

Let G be a connected graph that is not weakly (deg -1)-degenerate. Then every biconnected induced subgraph of G is regular.

Brooks-type results

Lemma

Let G be a connected graph that is not weakly (deg -1)-degenerate. Then every biconnected induced subgraph of G is regular.

Brooks-type results

Lemma

Let G be a connected graph that is not weakly (deg -1)-degenerate. Then every biconnected induced subgraph of G is regular.

Brooks-type results

Lemma

Let G be a connected graph that is not weakly (deg -1)-degenerate. Then every biconnected induced subgraph of G is regular.

Brooks-type results

Lemma

Let G be a connected graph that is not weakly (deg -1)-degenerate. Then every biconnected induced subgraph of G is regular.

Brooks-type results

Theorem

Let G be a connected graph. The following statements are equivalent:

1. G is weakly $(\operatorname{deg}-1)$-degenerate
2. G is not a GDP-tree
$(2 \Rightarrow 1)$ proved on previous slides

Brooks-type results

Theorem

Let G be a connected graph. The following statements are equivalent:

1. G is weakly $(\operatorname{deg}-1)$-degenerate
2. G is not a GDP-tree
$(2 \Rightarrow 1)$ proved on previous slides
$(1 \Rightarrow 2)$ GDP-trees are not DP-degree-colorable. [Bernshteyn, Kostochka, Pron 2017]

Brooks-type results

Maximum average degree

$$
\operatorname{mad}(G)=\max _{U \subseteq V(G)} \frac{2|E(G[U])|}{|U|}
$$

Brooks-type results

Maximum average degree

$$
\operatorname{mad}(G)=\max _{U \subseteq V(G)} \frac{2|E(G[U])|}{|U|}
$$

Theorem

Let G be a nonempty graph. If the weak degeneracy of G is at least $d \geq 3$, then either G contains a $(d+1)$-clique or

$$
\operatorname{mad}(G) \geq d+\frac{d-2}{d^{2}+2 d-2}
$$

Lower bounds for regular graphs

Theorem

If G is d-regular with $n \geq 2$ vertices, then $\operatorname{wd}(G) \geq d-\sqrt{2 n}$.

Lower bounds for regular graphs

Theorem

If G is d-regular with $n \geq 2$ vertices, then $\operatorname{wd}(G) \geq d-\sqrt{2 n}$.

Theorem

If G is d-regular and triangle-free with $n \geq 4$ vertices, then $\operatorname{wd}(G) \geq d-\sqrt{n}-1$.

Lower bounds for regular graphs

Theorem

If G is d-regular with $n \geq 2$ vertices, then $\operatorname{wd}(G) \geq d-\sqrt{2 n}$.

Theorem

If G is d-regular and triangle-free with $n \geq 4$ vertices, then $\operatorname{wd}(G) \geq d-\sqrt{n}-1$.

Conjecture

Every d-regular graph G satisfies $\operatorname{wd}(G) \geq d-O(\sqrt{d})$.

Lower bounds for regular graphs

Theorem

If G is d-regular with $n \geq 2$ vertices, then $\operatorname{wd}(G) \geq d-\sqrt{2 n}$.

Theorem

If G is d-regular and triangle-free with $n \geq 4$ vertices, then $\operatorname{wd}(G) \geq d-\sqrt{n}-1$.

Conjecture

Every d-regular graph G satisfies $\operatorname{wd}(G) \geq d-O(\sqrt{d})$.
For what classes of graphs the upper bound $\operatorname{wd}(G) \leq d-O(\sqrt{d})$ holds?

Upper bounds

For what classes of graphs the upper bound $\operatorname{wd}(G) \geq d-O(\sqrt{d})$ holds?

Upper bounds

For what classes of graphs the upper bound $\operatorname{wd}(G) \geq d-O(\sqrt{d})$ holds?

Theorem

For each integer $k \geq 1$, there exists $c>0$ and $d_{0} \in \mathbb{N}$ such that if G is a graph of maximum degree $d \geq d_{0}$ with $\chi(G) \leq k$, then $\operatorname{wd}(G) \leq d-c \sqrt{d}$.

Upper bounds

For what classes of graphs the upper bound $\operatorname{wd}(G) \geq d-O(\sqrt{d})$ holds?

Theorem

For each integer $k \geq 1$, there exists $c>0$ and $d_{0} \in \mathbb{N}$ such that if G is a graph of maximum degree $d \geq d_{0}$ with $\chi(G) \leq k$, then $\operatorname{wd}(G) \leq d-c \sqrt{d}$.

Theorem

There exists $c>0$ and $d_{0} \in \mathbb{N}$ such that if G is a graph of maximum degree $d \geq d_{0}$ and girth at least 5 , then $\operatorname{wd}(G) \leq d-c \sqrt{d}$.

Upper bounds

For what classes of graphs the upper bound $\operatorname{wd}(G) \geq d-O(\sqrt{d})$ holds?

Theorem

For each integer $k \geq 1$, there exists $c>0$ and $d_{0} \in \mathbb{N}$ such that if G is a graph of maximum degree $d \geq d_{0}$ with $\chi(G) \leq k$, then $\operatorname{wd}(G) \leq d-c \sqrt{d}$.

Theorem

There exists $c>0$ and $d_{0} \in \mathbb{N}$ such that if G is a graph of maximum degree $d \geq d_{0}$ and girth at least 5 , then $\operatorname{wd}(G) \leq d-c \sqrt{d}$.

Conjecture

For each integer $k \geq 1$, there exists $c>0$ and $d_{0} \in \mathbb{N}$ such that if G is a graph of maximum degree $d \geq d_{0}$ and without a k-clique, then $\operatorname{wd}(G) \leq d-c \sqrt{d}$.

Upper bounds

For what classes of graphs the upper bound $\operatorname{wd}(G) \geq d-O(\sqrt{d})$ holds?

Theorem

For each integer $k \geq 1$, there exists $c>0$ and $d_{0} \in \mathbb{N}$ such that if G is a graph of maximum degree $d \geq d_{0}$ with $\chi(G) \leq k$, then $\operatorname{wd}(G) \leq d-c \sqrt{d}$.

Theorem

There exists $c>0$ and $d_{0} \in \mathbb{N}$ such that if G is a graph of maximum degree $d \geq d_{0}$ and girth at least 5 , then $\operatorname{wd}(G) \leq d-c \sqrt{d}$.

Conjecture

For each integer $k \geq 1$, there exists $c>0$ and $d_{0} \in \mathbb{N}$ such that if G is a graph of maximum degree $d \geq d_{0}$ and without a k-clique, then $\operatorname{wd}(G) \leq d-c \sqrt{d}$.

The authors don't know if the conjecture holds even for $k=3$.

