Weak degeneracy of graphs

Anton Bernshteyn, Eugene Lee

Krzysztof Potępa December 9, 2021

Theoretical Computer Science

Chromatic number

Coloring

Function $\phi : V(G) \to C$ is a coloring of G if:

• $\phi(u) \neq \phi(v)$ for each $uv \in E(G)$

 $\chi(G) =$ minimum number of colors |C| required to color vertices of G

List chromatic number

List coloring

Each vertex $v \in V(G)$ is assigned a list L_v . ϕ is an *L*-coloring of *G* if:

- $\phi(u) \in L_u$ for each $u \in V(G)$
- $\phi(u) \neq \phi(v)$ for each $uv \in E(G)$

 $\chi_L(G) = \min k$ such that G has an L-coloring whenever each $|L_v| \geq k$

List chromatic number

List coloring

Each vertex $v \in V(G)$ is assigned a list L_v . ϕ is an *L*-coloring of *G* if:

- $\phi(u) \in L_u$ for each $u \in V(G)$
- $\phi(u) \neq \phi(v)$ for each $uv \in E(G)$

 $\chi_L(G) = \min k$ such that G has an L-coloring whenever each $|L_v| \geq k$

DP chromatic number

DP coloring

Each vertex $v \in V(G)$ is assigned a list L_v . Each edge $uv \in E(G)$ is assigned a matching C_{uv} from L_u to L_v . ϕ is an (L, C)-coloring of G if:

- $\phi(u) \in L_u$ for each $u \in V(G)$
- $\phi(u)\phi(v) \notin C_{uv}$ for each $uv \in E(G)$

 $\chi_{\mathsf{DP}}(\mathsf{G}) = \mathsf{minimum} \ \mathsf{k}$ such that G has an (L, C)-coloring whenever each $|L_v| \geq \mathsf{k}$

DP chromatic number

DP coloring

Each vertex $v \in V(G)$ is assigned a list L_v . Each edge $uv \in E(G)$ is assigned a matching C_{uv} from L_u to L_v . ϕ is an (L, C)-coloring of G if:

- $\phi(u) \in L_u$ for each $u \in V(G)$
- $\phi(u)\phi(v) \notin C_{uv}$ for each $uv \in E(G)$

 $\chi_{\mathsf{DP}}(\mathsf{G}) = \mathsf{minimum} \ \mathsf{k}$ such that G has an (L, C)-coloring whenever each $|L_v| \geq \mathsf{k}$

DP chromatic number

DP coloring

Each vertex $v \in V(G)$ is assigned a list L_v . Each edge $uv \in E(G)$ is assigned a matching C_{uv} from L_u to L_v . ϕ is an (L, C)-coloring of G if:

- $\phi(u) \in L_u$ for each $u \in V(G)$
- $\phi(u)\phi(v) \notin C_{uv}$ for each $uv \in E(G)$

 $\chi_{\mathsf{DP}}(\mathsf{G}) = \mathsf{minimum} \ \mathsf{k}$ such that G has an (L, C)-coloring whenever each $|L_v| \geq \mathsf{k}$

 $\chi(G) \leq \chi_{\mathsf{L}}(G) \leq \chi_{\mathsf{DP}}(G)$

Delete operation

Let $f : V(G) \to \mathbb{N}$ be a function, and let $u \in V(G)$. Operation Delete(G, f, u) outputs graph $G \setminus \{u\}$ and function $f' : G \setminus \{u\} \to \mathbb{N}$:

$$f'(v) = egin{cases} f(v) - 1 & ext{if } uv \in E(G); \ f(v) & ext{otherwise.} \end{cases}$$

Operation is **legal** if f' is non-negative.

Delete operation

Let $f : V(G) \to \mathbb{N}$ be a function, and let $u \in V(G)$. Operation Delete(G, f, u) outputs graph $G \setminus \{u\}$ and function $f' : G \setminus \{u\} \to \mathbb{N}$:

$$f'(v) = egin{cases} f(v) - 1 & ext{if } uv \in E(G); \ f(v) & ext{otherwise.} \end{cases}$$

Operation is **legal** if f' is non-negative.

Delete operation

Let $f : V(G) \to \mathbb{N}$ be a function, and let $u \in V(G)$. Operation Delete(G, f, u) outputs graph $G \setminus \{u\}$ and function $f' : G \setminus \{u\} \to \mathbb{N}$:

$$f'(v) = egin{cases} f(v) - 1 & ext{if } uv \in E(G); \ f(v) & ext{otherwise.} \end{cases}$$

Operation is **legal** if f' is non-negative.

Degeneracy

Degeneracy

Graph G is f-degenerate if it is possible to remove all vertices of G using a sequence of legal Delete operations, starting with function f. d(G) = minimum d such that G is d-degenerate (for constant function d)

 $\chi(G) \leq \chi_{\mathsf{L}}(G) \leq \chi_{\mathsf{DP}}(G) \leq \mathsf{col}(G) = \mathsf{d}(G) + 1$

7

7

7

7

Let $f : V(G) \to \mathbb{N}$ be a function, and let $u, w \in V(G)$. Operation **DelSave**(G, f, u, w) outputs graph $G \setminus \{u\}$ and function $f' : G \setminus \{u\} \to \mathbb{N}$:

$$f'(v) = egin{cases} f(v) - 1 & ext{if } uv \in E(G) ext{ and } v
eq w; \ f(v) & ext{otherwise.} \end{cases}$$

Let $f : V(G) \to \mathbb{N}$ be a function, and let $u, w \in V(G)$. Operation DelSave(G, f, u, w) outputs graph $G \setminus \{u\}$ and function $f' : G \setminus \{u\} \to \mathbb{N}$:

$$f'(v) = egin{cases} f(v) - 1 & ext{if } uv \in E(G) ext{ and } v
eq w; \ f(v) & ext{otherwise.} \end{cases}$$

Let $f : V(G) \to \mathbb{N}$ be a function, and let $u, w \in V(G)$. Operation DelSave(G, f, u, w) outputs graph $G \setminus \{u\}$ and function $f' : G \setminus \{u\} \to \mathbb{N}$:

$$f'(v) = egin{cases} f(v) - 1 & ext{if } uv \in E(G) ext{ and } v
eq w; \ f(v) & ext{otherwise.} \end{cases}$$

Let $f : V(G) \to \mathbb{N}$ be a function, and let $u, w \in V(G)$. Operation **DelSave**(G, f, u, w) outputs graph $G \setminus \{u\}$ and function $f' : G \setminus \{u\} \to \mathbb{N}$:

$$f'(v) = egin{cases} f(v) - 1 & ext{if } uv \in E(G) ext{ and } v
eq w; \ f(v) & ext{otherwise.} \end{cases}$$

Weak degeneracy

Graph *G* is weakly *f*-degenerate if it is possible to remove all vertices of *G* using a sequence of legal **Delete** and **DelSave** operations, starting with function *f*. wd(*G*) = minimum *d* such that *G* is weakly *d*-degenerate

Weak degeneracy

Graph *G* is weakly *f*-degenerate if it is possible to remove all vertices of *G* using a sequence of legal **Delete** and **DelSave** operations, starting with function *f*. wd(*G*) = minimum *d* such that *G* is weakly *d*-degenerate

 $\chi(G) \leq \chi_{\mathsf{L}}(G) \leq \chi_{\mathsf{DP}}(G) \leq \mathsf{wd}(G) + 1 \leq \mathsf{d}(G) + 1$

DP-painting game

Let $f: V(G) \to \mathbb{N}$ be a function. The **DP-painting** game on (G_0, f) is played by **Lister** and **Painter**. The *i*-th round proceeds as follows:

DP-painting game

Let $f : V(G) \to \mathbb{N}$ be a function. The **DP-painting** game on (G_0, f) is played by **Lister** and **Painter**. The *i*-th round proceeds as follows:

• Lister picks $L_i(u)$ for each $u \in V(G_i)$ and $C_{i,uv}$ for each $uv \in E(G_i)$.

DP-painting game

Let $f : V(G) \to \mathbb{N}$ be a function. The **DP-painting** game on (G_0, f) is played by Lister and Painter. The *i*-th round proceeds as follows:

- Lister picks $L_i(u)$ for each $u \in V(G_i)$ and $C_{i,uv}$ for each $uv \in E(G_i)$.
- Painter picks $U_i \subseteq V(G_i)$ and shows (L_i, C_i) -coloring of $G_i[U_i]$.

DP-painting game

Let $f : V(G) \to \mathbb{N}$ be a function. The **DP-painting** game on (G_0, f) is played by **Lister** and **Painter**. The *i*-th round proceeds as follows:

- Lister picks $L_i(u)$ for each $u \in V(G_i)$ and $C_{i,uv}$ for each $uv \in E(G_i)$.
- Painter picks $U_i \subseteq V(G_i)$ and shows (L_i, C_i) -coloring of $G_i[U_i]$.
- Set $G_{i+1} := G_i \setminus U_i$. If G_{i+1} is empty, then the Painter wins.

DP-painting game

Let $f : V(G) \to \mathbb{N}$ be a function. The **DP-painting** game on (G_0, f) is played by **Lister** and **Painter**. The *i*-th round proceeds as follows:

- Lister picks $L_i(u)$ for each $u \in V(G_i)$ and $C_{i,uv}$ for each $uv \in E(G_i)$.
- Painter picks $U_i \subseteq V(G_i)$ and shows (L_i, C_i) -coloring of $G_i[U_i]$.
- Set $G_{i+1} := G_i \setminus U_i$. If G_{i+1} is empty, then the Painter wins.
- If $\sum_{j \leq i} |L_j(u)| \geq f(u)$ for some $u \in G_{i+1}$, then the Lister wins.

DP-paintability Graph *G* is *f*-**DP-paintable** if Painter has a winning strategy on (*G*, *f*). $\chi_{\text{DPP}}(G) = \text{minimum } k$ such that *G* is *k*-DP-paintable

DP-paintability Graph *G* is *f*-**DP-paintable** if Painter has a winning strategy on (*G*, *f*). $\chi_{\text{DPP}}(G) = \text{minimum } k$ such that *G* is *k*-DP-paintable

$$\chi(G) \leq \chi_{\mathsf{L}}(G) \leq \chi_{\mathsf{DP}}(G) \leq \chi_{\mathsf{DPP}}(G)$$

Proposition

If G is weakly f-degenerate, then G is (f + 1)-DP-paintable.

Proposition

If G is weakly f-degenerate, then G is (f + 1)-DP-paintable.

Partitioning lemma

Let G be weakly f-degenerate. Suppose that g(u) + h(u) = f(u) - 1 for each $u \in V(G)$. Then there is a partition $V(G) = V_1 \sqcup V_2$ such that $G[V_1]$ is weakly g-degenerate and $G[V_2]$ is weakly h-degenerate.

Proposition

If G is weakly f-degenerate, then G is (f + 1)-DP-paintable.

Partitioning lemma

Let G be weakly f-degenerate. Suppose that g(u) + h(u) = f(u) - 1 for each $u \in V(G)$. Then there is a partition $V(G) = V_1 \sqcup V_2$ such that $G[V_1]$ is weakly g-degenerate and $G[V_2]$ is weakly h-degenerate.

Invariant: G_i is f_i -degenerate, where $f_i(u) = f(u) - \sum_{j < i} |L_j(u)|$.

Proposition

If G is weakly f-degenerate, then G is (f + 1)-DP-paintable.

Partitioning lemma

Let G be weakly f-degenerate. Suppose that g(u) + h(u) = f(u) - 1 for each $u \in V(G)$. Then there is a partition $V(G) = V_1 \sqcup V_2$ such that $G[V_1]$ is weakly g-degenerate and $G[V_2]$ is weakly h-degenerate.

Invariant: G_i is f_i -degenerate, where $f_i(u) = f(u) - \sum_{j < i} |L_j(u)|$. On *i*-th round, partition G_i into g-degenerate and h-degenerate graphs:

 $g(u) = |L_i(u)| - 1$ $h(u) = f_i(u) - |L_j(u)|$

Proposition

If G is weakly f-degenerate, then G is (f + 1)-DP-paintable.

Partitioning lemma

Let G be weakly f-degenerate. Suppose that g(u) + h(u) = f(u) - 1 for each $u \in V(G)$. Then there is a partition $V(G) = V_1 \sqcup V_2$ such that $G[V_1]$ is weakly g-degenerate and $G[V_2]$ is weakly h-degenerate.

Invariant: G_i is f_i -degenerate, where $f_i(u) = f(u) - \sum_{j < i} |L_j(u)|$. On *i*-th round, partition G_i into g-degenerate and h-degenerate graphs:

 $g(u) = |L_i(u)| - 1$ $h(u) = f_i(u) - |L_j(u)|$

 $\chi(G) \leq \chi_{\mathsf{L}}(G) \leq \chi_{\mathsf{DP}}(G) \leq \chi_{\mathsf{DPP}}(G) \leq \mathsf{wd}(G) + 1 \leq \mathsf{d}(G) + 1$

Every planar graph is 5-degenerate.

Every planar graph is 5-degenerate.

Theorem

Every planar graph is **weakly 4**-degenerate.

Every planar graph is 5-degenerate.

Theorem

Every planar graph is weakly 4-degenerate.

For planar graphs:

$$\chi(G) \leq 4$$

 $\chi_{\mathsf{L}}(G) \leq \chi_{\mathsf{DPP}}(G) \leq \mathsf{wd}(G) + 1 \leq 5$
 $\mathsf{d}(G) + 1 \leq 6$

Safe weak degeneration

Graph G is U-safely weakly f-degenerate for $U \subseteq V(G)$ if there is a sequence of legal Delete and DelSave operations where every vertex in U is removed using Delete.

Lemma

Let G be a planar graph on at least 3 vertices, where every internal face is triangle, and the outer face is a cycle $C = (v_1, ..., v_k)$. Define $f : V(G) \setminus \{v_1, v_2\} \to \mathbb{N}$:

$$f(u) = \begin{cases} 2 - |N(u) \cap \{v_1, v_2\}| & \text{if } u \in V(C); \\ 4 - |N(u) \cap \{v_1, v_2\}| & \text{otherwise.} \end{cases}$$

Lemma

Let G be a planar graph on at least 3 vertices, where every internal face is triangle, and the outer face is a cycle $C = (v_1, ..., v_k)$. Define $f : V(G) \setminus \{v_1, v_2\} \to \mathbb{N}$:

$$f(u) = \begin{cases} 2 - |\mathcal{N}(u) \cap \{v_1, v_2\}| & \text{if } u \in \mathcal{V}(\mathcal{C}); \\ 4 - |\mathcal{N}(u) \cap \{v_1, v_2\}| & \text{otherwise.} \end{cases}$$

Lemma

Let G be a planar graph on at least 3 vertices, where every internal face is triangle, and the outer face is a cycle $C = (v_1, ..., v_k)$. Define $f : V(G) \setminus \{v_1, v_2\} \to \mathbb{N}$:

$$f(u) = \begin{cases} 2 - |\mathcal{N}(u) \cap \{v_1, v_2\}| & \text{if } u \in \mathcal{V}(\mathcal{C}); \\ 4 - |\mathcal{N}(u) \cap \{v_1, v_2\}| & \text{otherwise.} \end{cases}$$

Lemma

Let G be a planar graph on at least 3 vertices, where every internal face is triangle, and the outer face is a cycle $C = (v_1, ..., v_k)$. Define $f : V(G) \setminus \{v_1, v_2\} \to \mathbb{N}$:

$$f(u) = \begin{cases} 2 - |\mathcal{N}(u) \cap \{v_1, v_2\}| & \text{if } u \in \mathcal{V}(\mathcal{C}); \\ 4 - |\mathcal{N}(u) \cap \{v_1, v_2\}| & \text{otherwise.} \end{cases}$$

Every planar graph is 5-degenerate.

Theorem Every planar graph is **weakly 4**-degenerate.

For planar graphs:

$$\chi(G) \le 4$$

 $\chi_{L}(G) \le \chi_{DP}(G) \le \chi_{DPP}(G) \le wd(G) + 1 \le 5$
 $d(G) + 1 \le 6$

If G is a connected graph with maximum degree $d \ge 3$, then either $G \cong K_{d+1}$ or G is weakly (d-1)-degenerate.

If G is a connected graph with maximum degree $d \ge 3$, then either $G \cong K_{d+1}$ or G is weakly (d-1)-degenerate.

GDP-tree

Graph G is **GDP-tree** if its each biconnected component is a cycle or clique.

If G is a connected graph with maximum degree $d \ge 3$, then either $G \cong K_{d+1}$ or G is weakly (d-1)-degenerate.

GDP-tree

Graph G is **GDP-tree** if its each biconnected component is a cycle or clique.

Theorem

Let G be a connected graph. The following statements are equivalent:

- 1. G is weakly (deg 1)-degenerate
- 2. G is not a GDP-tree

Lemma

Let G be a connected graph and let $f: V(G) \to \mathbb{N}$ such that:

- $f(u) \ge \deg(u) 1$ for all $u \in V(G)$;
- $f(x) \ge \deg(u)$ for some $x \in V(G)$.

Then G is f-degenerate.

Lemma

Let G be a connected graph and let $f: V(G) \to \mathbb{N}$ such that:

- $f(u) \ge \deg(u) 1$ for all $u \in V(G)$;
- $f(x) \ge \deg(u)$ for some $x \in V(G)$.

Then G is f-degenerate.

Remove vertices in decreasing distance order from x.

Lemma

Let G be a connected graph such that every biconnected induced subgraph of G is regular. Then G is GDP-tree.

Lemma

Let G be a connected graph. The following statements are equivalent:

- 1. G is weakly (deg 1)-degenerate
- 2. G is not a GDP-tree

 $(2 \Rightarrow 1)$ proved on previous slides

Let G be a connected graph. The following statements are equivalent:

- 1. G is weakly (deg 1)-degenerate
- 2. G is not a GDP-tree

 $(2 \Rightarrow 1)$ proved on previous slides

 $(1 \Rightarrow 2)$ GDP-trees are not DP-degree-colorable. [Bernshteyn, Kostochka, Pron 2017]

Maximum average degree

$$\mathsf{mad}(G) = \max_{U \subseteq V(G)} \frac{2|E(G[U])|}{|U|}$$

Maximum average degree

$$\mathsf{mad}(G) = \max_{U \subseteq V(G)} \frac{2|E(G[U])|}{|U|}$$

Theorem

Let G be a nonempty graph. If the weak degeneracy of G is at least $d \ge 3$, then either G contains a (d + 1)-clique or

$$\operatorname{mad}(G) \ge d + \frac{d-2}{d^2 + 2d - 2}$$

If G is d-regular with $n \ge 2$ vertices, then wd(G) $\ge d - \sqrt{2n}$.

If G is d-regular with $n \ge 2$ vertices, then wd(G) $\ge d - \sqrt{2n}$.

Theorem

If G is d-regular and triangle-free with $n \ge 4$ vertices, then wd(G) $\ge d - \sqrt{n} - 1$.

If G is d-regular with $n \ge 2$ vertices, then wd(G) $\ge d - \sqrt{2n}$.

Theorem

If G is d-regular and triangle-free with $n \ge 4$ vertices, then wd(G) $\ge d - \sqrt{n} - 1$.

Conjecture

Every *d*-regular graph *G* satisfies wd(G) $\geq d - O(\sqrt{d})$.

If G is d-regular with $n \ge 2$ vertices, then wd(G) $\ge d - \sqrt{2n}$.

Theorem

If G is d-regular and triangle-free with $n \ge 4$ vertices, then wd(G) $\ge d - \sqrt{n} - 1$.

Conjecture

Every *d*-regular graph *G* satisfies wd(G) $\geq d - O(\sqrt{d})$.

For what classes of graphs the **upper** bound wd(G) $\leq d - O(\sqrt{d})$ holds?

For what classes of graphs the upper bound wd(G) $\geq d - O(\sqrt{d})$ holds?

For what classes of graphs the upper bound wd(G) $\geq d - O(\sqrt{d})$ holds?

Theorem

For each integer $k \ge 1$, there exists c > 0 and $d_0 \in \mathbb{N}$ such that if G is a graph of maximum degree $d \ge d_0$ with $\chi(G) \le k$, then wd $(G) \le d - c\sqrt{d}$.

For what classes of graphs the upper bound wd(G) $\geq d - O(\sqrt{d})$ holds?

Theorem

For each integer $k \ge 1$, there exists c > 0 and $d_0 \in \mathbb{N}$ such that if G is a graph of maximum degree $d \ge d_0$ with $\chi(G) \le k$, then wd $(G) \le d - c\sqrt{d}$.

Theorem

There exists c > 0 and $d_0 \in \mathbb{N}$ such that if G is a graph of maximum degree $d \ge d_0$ and girth at least 5, then wd(G) $\le d - c\sqrt{d}$.

For what classes of graphs the upper bound wd(G) $\geq d - O(\sqrt{d})$ holds?

Theorem

For each integer $k \ge 1$, there exists c > 0 and $d_0 \in \mathbb{N}$ such that if G is a graph of maximum degree $d \ge d_0$ with $\chi(G) \le k$, then wd $(G) \le d - c\sqrt{d}$.

Theorem

There exists c > 0 and $d_0 \in \mathbb{N}$ such that if G is a graph of maximum degree $d \ge d_0$ and girth at least 5, then wd(G) $\le d - c\sqrt{d}$.

Conjecture

For each integer $k \ge 1$, there exists c > 0 and $d_0 \in \mathbb{N}$ such that if G is a graph of maximum degree $d \ge d_0$ and without a k-clique, then wd(G) $\le d - c\sqrt{d}$.

For what classes of graphs the upper bound wd(G) $\geq d - O(\sqrt{d})$ holds?

Theorem

For each integer $k \ge 1$, there exists c > 0 and $d_0 \in \mathbb{N}$ such that if G is a graph of maximum degree $d \ge d_0$ with $\chi(G) \le k$, then wd $(G) \le d - c\sqrt{d}$.

Theorem

There exists c > 0 and $d_0 \in \mathbb{N}$ such that if G is a graph of maximum degree $d \ge d_0$ and girth at least 5, then wd(G) $\le d - c\sqrt{d}$.

Conjecture

For each integer $k \ge 1$, there exists c > 0 and $d_0 \in \mathbb{N}$ such that if G is a graph of maximum degree $d \ge d_0$ and without a k-clique, then wd(G) $\le d - c\sqrt{d}$.

The authors don't know if the conjecture holds even for k = 3.