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Chromatic number

Coloring
Function ¢ : V(G) — C is a coloring of G if:
o ¢(u) # ¢(v) for each uv € E(G)

X(G) = minimum number of colors |C| required to color vertices of G



List chromatic number

List coloring

Each vertex v € V(G) is assigned a list L,. ¢ is an L-coloring of G if:
o ¢(u) € L, for each u € V(G)
o o(u) # ¢(v) for each uv € E(G)

XL(G) = minimum k such that G has an L-coloring whenever each |L,| >
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DP chromatic number

DP coloring
Each vertex v € V/(G) is assigned a list L,.
Each edge uv € E(G) is assigned a matching C,, from L, to L,.
¢ is an (L, C)-coloring of G if:
e ¢(u) € L, for each u € V(G)
o O(u)p(v) ¢ C,y for each uv € E(G)
Xpp(G) = minimum k such that G has an (L, C)-coloring whenever each |L,| >
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Delete operation

Let 7 : V(G) — N be a function, and let v € V(G).
Operation Delete(G, f, u) outputs graph G \ {u} and function 7' : G \ {u} — N:

. {f(v) S e E(C)

f(v) otherwise.
Operation is legal if ' is non-negative.
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Degeneracy

Graph G is f-degenerate if it is possible to remove all vertices of G using a sequence
of legal Delete operations, starting with function 7.

d(G) = minimum d such that G is d-degenerate (for constant function o)
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Degeneracy

Graph G is f-degenerate if it is possible to remove all vertices of G using a sequence
of legal Delete operations, starting with function 7.

d(G) = minimum d such that G is d-degenerate (for constant function o)

X(G) < xL(G) < xpp(G) < col(G) =d(G) +1
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Weak degeneracy

DelSave operation

Let 7 : V(G) — N be a function, and let u,w € V(G).
Operation DelSave(G, f, u, w) outputs graph G \ {u} and function 7" : G\ {v} — N:

V) f(v)—1 ifuveE(G)and v #w;

V)=
f(v) otherwise.

Operation is legal if f(u) > f(w) and ' is non-negative.

1
3



Weak degeneracy

DelSave operation

Let 7 : V(G) — N be a function, and let u,w € V(G).
Operation DelSave(G, f, u, w) outputs graph G \ {u} and function 7" : G\ {v} — N:

V) f(v)—1 ifuveE(G)and v #w;

V)=
f(v) otherwise.

Operation is legal if f(u) > f(w) and ' is non-negative.

1
3



Weak degeneracy

DelSave operation

Let 7 : V(G) — N be a function, and let u,w € V(G).
Operation DelSave(G, f, u, w) outputs graph G \ {u} and function 7" : G\ {v} — N:

V) f(v)—1 ifuveE(G)and v #w;

V)=
f(v) otherwise.

Operation is legal if f(u) > f(w) and ' is non-negative.

1
3



Weak degeneracy

DelSave operation

Let 7 : V(G) — N be a function, and let u,w € V(G).
Operation DelSave(G, f, u, w) outputs graph G \ {u} and function 7" : G\ {v} — N:

(v) = {f(v)l if uv € E(G) and v # w;

f(v) otherwise.

Operation is legal if f(u) > f(w) and ' is non-negative.
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Weak degeneracy

Graph G is weakly f-degenerate if it is possible to remove all vertices of G using a
sequence of legal Delete and DelSave operations, starting with function 7.

wd(G) = minimum d such that G is weakly d-degenerate



Weak degeneracy

Weak degeneracy

Graph G is weakly f-degenerate if it is possible to remove all vertices of G using a
sequence of legal Delete and DelSave operations, starting with function 7.
wd(G) = minimum d such that G is weakly d-degenerate

X(6) < xL(6) < xop(G) < Wd(G) +1 < d(G) +1



Online DP-coloring

DP-painting game
Let 7 : V(G) — N be a function. The DP-painting game on (G, f) is played by
Lister and Painter. The i-th round proceeds as follows:
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Online DP-coloring

DP-painting game
Let 7 : V(G) — N be a function. The DP-painting game on (G, f) is played by
Lister and Painter. The i-th round proceeds as follows:

e Lister picks L;(u) for each v € V(G;) and C; ,, for each uv € E(G;).

e Painter picks U; C V(G,-) and shows (L;, C;)-coloring of G;[U].

e Set Gj1 = G;

\ Uj. If Gjy1 is empty, then the Painter wins.
o If > i |Li(u)| = ( ) for some u € Gjy1, then the Lister wins.

(0/4)

(2/3)

(0/5)
10



Online DP-coloring

DP-paintability
Graph G is f-DP-paintable if Painter has a winning strategy on (G, f).
Xppp(G) = minimum k such that G is k-DP-paintable
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Weak degeneracy vs online DP-coloring

Proposition
If G is weakly f-degenerate, then G is (f + 1)-DP-paintable.
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For planar graphs:
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Weak degeneracy of planar graphs

Safe weak degeneration

Graph G is U-safely weakly f-degenerate for U C V/(G) if there is a sequence of
legal Delete and DelSave operations where every vertex in U is removed using Delete.
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Weak degeneracy of planar graphs

Lemma

Let G be a planar graph on at least 3 vertices, where every internal face is triangle,
and the outer face is a cycle C = (w1, ..., vk). Define f : V(G) \ {vi,n} = N:

2 —|N(u) N {vi,w}| ifue V(C)
4 — |N(u) N {vi, va}| otherwise.

fu) =

Then G\ {vi, v} is (C\ {v1, va})-safely f-degenerate.
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Weak degeneracy of planar graphs

2. C has no cord.
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2. C has no cord.
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Weak degeneracy of planar graphs

2. C has no cord.

V3 ¢
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Weak degeneracy of planar graphs

Every planar graph is 5-degenerate.

Theorem

Every planar graph is weakly 4-degenerate.

For planar graphs:

= =~
VAN VAN VAN
[ @) B & B
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Brooks-type results

Theorem

If G is a connected graph with maximum degree d > 3, then either G = K1 or G is
weakly (d — 1)-degenerate.
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Brooks-type results

Lemma

Let G be a connected graph and let 7 : V(G) — N such that:
o f(u) >deg(u) —1 for all ue V(G);
o f(x) > deg(u) for some x € V(G).

Then G is f-degenerate.
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Brooks-type results

Lemma

Let G be a connected graph and let 7 : V(G) — N such that:
o f(u) >deg(u) —1 for all ue V(G);
o f(x) > deg(u) for some x € V(G).

Then G is f-degenerate.

Remove vertices in decreasing distance order from x.
1

0

o

2




Brooks-type results

Lemma

Let G be a connected graph such that every biconnected induced subgraph of G is
regular. Then G is GDP-tree.
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Brooks-type results

Lemma

Let G be a connected graph that is not weakly (deg —1)-degenerate. Then every
biconnected induced subgraph of G is regular.
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Brooks-type results

Theorem

Let G be a connected graph. The following statements are equivalent:
1. G is weakly (deg —1)-degenerate

2. G is not a GDP-tree

(2 = 1) proved on previous slides
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Brooks-type results

Theorem

Let G be a connected graph. The following statements are equivalent:
1. G is weakly (deg —1)-degenerate

2. G is not a GDP-tree

—~~

2 = 1) proved on previous slides
(1 = 2) GDP-trees are not DP-degree-colorable. [Bernshteyn, Kostochka, Pron 2017]
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Brooks-type results

Maximum average degree

_ 2|E(G[Y])]
mad(G) = vevie)  |U|
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Brooks-type results

Maximum average degree

_ 2|E(G[Y])]
mad(G) = vevie)  |U|

Theorem
Let G be a nonempty graph. If the weak degeneracy of G is at least d > 3, then
either G contains a (d + 1)-clique or

d—2

dG)>d+ 2=
mad(G) 2 d+ o0
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Lower bounds for regular graphs

Theorem

If G is d-regular with n > 2 vertices, then wd(G) > d — v/2n.
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For what classes of graphs the upper bound wd(G) > d — O(v/d) holds?

Theorem

For each integer k > 1, there exists ¢ > 0 and dy € N such that if G is a graph of
maximum degree d > dy with x(G) < k, then wd(G) < d — cV/d.

Theorem

There exists ¢ > 0 and dy € N such that if G is a graph of maximum degree d > dj
and girth at least 5, then wd(G) < d — Vd.

Conjecture

For each integer k > 1, there exists ¢ > 0 and dy € N such that if G is a graph of
maximum degree d > dy and without a k-clique, then wd(G) < d — Vd.

The authors don't know if the conjecture holds even for k = 3.
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