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Notation

• We will consider only finite simple graphs (no loops or multiple edges).

• A graph H is a minor of a graph G if a graph isomorphic to H can be obtained from
a subgraph of G by edge-contraction.

• ∆(G ) denotes the maximum degree of G .

• If X ⊆ V (G ), we denote by G |X the subgraph of G induced on X .

• X ⊆ V (G ) is called an independent set of G if ∆(G |X ) = 0.
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Hadwiger’s conjecture

Conjecture

For all integers t ≥ 0, and every graph G , if Kt+1 is not a minor of G , then G is
t-colorable.

Source: Wikipedia

• This is still an open question, even though the conjecture

has been proven for t ≤ 5.

• In the 1980s it was proven that every graph with no Kt

minor has average degree O(t
√
log t) (the more formal

statement of which we will see later) and hence is

O(t
√
log t)-colorable. In [Postle, 2020], this bound was

improved to O(t · (log log t)6).
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Hadwiger’s conjecture

To match the statement of the main result presented today, let’s rephrase the conclusion
of Hadwiger’s conjecture in terms of vertices partition.

Conjecture

For all integers t ≥ 0, and every graph G , if Kt+1 is not a minor of G , then V (G ) can be
partitioned into t independent sets, i.e. sets X1, . . . ,Xt such that ∆(G |Xi ) = 0 for
1 ≤ i ≤ t.

Note

It is a strong bound for the size of a partition - result becomes false if we ask for a
partition into t − 1 independent sets.
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Main result

Theorem

For all integers t ≥ 0 there is an integer s such that for every graph G , if Kt+1 is not a
minor of G , then V (G ) can be partitioned into t sets X1, . . . ,Xt such that ∆(G |Xi ) ≤ s
for 1 ≤ i ≤ t.

Note

Such partitions are often called defective colorings in the literature.
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Main result: strong bound

Despite being much weaker than Hadwiger’s conjecture, it still exhibits a strong bound for
the size of a partition in the same sense.

Theorem

For all integers s ≥ 0 and t ≥ 1, there is graph G = G (s, t) such that Kt+1 is not a minor
of G , and there is no partition X1, . . . ,Xt−1 of V (G ) into t − 1 sets such that
∆(G |Xi ) ≤ s for 1 ≤ i ≤ t − 1.

Proof

The proof is by induction on t. Construct G = G (s, t) as follows. Note that G has no
Kt+1 minor, since each Hi has no Kt minor.
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Main result: strong bound

G (s, t − 1)

H1

G (s, t − 1)

H2

G (s, t − 1)

Hs+1

· · ·

v
G = G (s, t)

For the sake of contradiction, assume that such partition X1, . . . ,Xt−1 of V (G ) exists
(∀i ∆(G |Xi ) ≤ s). Without loss of generality, let v ∈ Xt−1.
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v
G = G (s, t)

One of the copies Hi must have no elements in common with Xt−1. Without loss of
generality Xt−1 ∩ V (H1) = ∅.
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The other sets of partition restricted to V (H1) turn out to be a partition of G (s, t − 1)
with maximum degree at most s, which is a contradiction.
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Main result: strong bound

More formally, let Yi = Xi ∩ V (H1) for 1 ≤ i ≤ t − 2. Then Y1, . . . ,Yt−2 provide a
partition of V (H1) into t − 2 sets, and since H1 is isomorphic to G (s, t − 1), it follows
that ∆(H1|Yi ) > s for some 1 ≤ i ≤ t − 2, a contradiction to ∆(G |Xi ) ≤ s.
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Proof of Main Result

Theorem

Let t ≥ 0 be an integer, and let s be as in Lemma (3). For every graph G , if Kt+1 is not
a minor of G , then V (G ) can be partitioned into t sets X1, . . . ,Xt such that
∆(G |Xi ) < s for 1 ≤ i ≤ t.

Proof

We proceed by induction on |V (G )|+ |E (G )|.

• If some vertex v of G has ∆(v) < t, the result follows from the inductive hypothesis
by deleting v (find a partition by induction and add v to some set Xi that contains
no neighbor of v).

• If some edge e has both ends of ∆ < s, the result follows from the inductive
hypothesis by deleting e (find a partition by induction and note that inserting e back
will not cause either of the ends of e to have degree too large).

The rest of this section is dedicated to arguing that at least one of these cases must hold.
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Proof of Main Result

Lemma (1)

There exists C > 0 such that for all integers t ≥ 0 and all graphs G , if Kt+1 is not a

minor of G , then G has at most C (t + 1)(log(t + 1))
1
2 · |V (G )| edges.
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Proof of Main Result

Lemma (2)

Let t ≥ 0 be an integer, let C be as in Lemma (1), and let r ≥ C (t + 1)(log(t + 1))
1
2 .

Let G be a graph such that Kt+1 is not a minor of G , and let A ⊆ V (G ) be an
independent set of vertices each of degree at least t. Then

|E (G \ A)|+ |A| ≤ r |V (G \ A)|

Proof

The proof is by induction on |A|. If A = ∅, we refer to Lemma (1) directly.
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Proof of Lemma (2)

A

v

G

x1
x2

xt

. . .

• Otherwise, let v ∈ A, then ∆(v) ≥ t.

• If every two neighbors of v were adjacent,

we would get that Kt+1 is a subgraph of G .

• So v has two neighbors x , y which are

non-adjacent to each other.
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Proof of Lemma (2)

A

v

G

x

y

A

v

G ′

x

y

A′

Formally, let G ′ = (G \ v) + xy and A′ = A \ {v}. Note that |V (G ′ \ A′)| = |V (G \ A)|,
|E (G ′ \ A′)| = |E (G \ A)|+ 1 and |A′| = |A| − 1.
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Proof of Lemma (2)

Formally, let G ′ = (G \ v) + xy and A′ = A \ {v}.

|V (G ′ \ A′)| = |V (G \ A)|
|E (G ′ \ A′)| = |E (G \ A)|+ 1

|A′| = |A| − 1

Kt+1 is not a minor of G ′, since G ′ is a minor of G . It follows from the inductive
hypothesis that |E (G ′ \ A′)|+ |A′| ≤ r |V (G ′ \ A′)|. It is enough to apply the
aforementioned equalities now.
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Proof of Main Result

Lemma (3)

Let t ≥ 0 be an integer, let C be as in Lemma (1), and let r ≥ C (t + 1)(log(t + 1))
1
2 and

r > t
2 . Let s > r(2r − t + 2). Let G be a nonnull graph such that Kt+1 is not a minor of

G . Then either

• some vertex has degree less than t, or

• there are 2 adjacent vertices both with degree less than s.

Proof

Assume that t ≥ 2, for if t ≤ 1 the result is trivially true.
Let A = {v | ∆(v) < s} and B = {v | ∆(v) ≥ s}.

We may assume that every vertex in A has degree at least t, for otherwise the first
outcome holds.
We may also assume that no two vertices of A are adjacent because otherwise the second
outcome holds.
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Proof of Lemma (3)

A B

∆ ⩾ t ∆ ⩾ s

A = {v | t ≤ ∆(v) < s} -
independent set of G .
B = {v | ∆(v) ≥ s}.
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Proof of Lemma (3)

A B

∆ ⩾ t ∆ ⩾ s

A = {v | t ≤ ∆(v) < s} -
independent set of G .
B = {v | ∆(v) ≥ s}.

• By summing all the degrees,

2|E (G )| ≥ t|A|+ s|B|
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Proof of Lemma (3)

A B

∆ ⩾ t ∆ ⩾ s

A = {v | t ≤ ∆(v) < s} -
independent set of G .
B = {v | ∆(v) ≥ s}.

• By summing all the degrees,

2|E (G )| ≥ t|A|+ s|B|

• By Lemma (1),

|E (G )| ≤ r(|A|+ |B|)

• It follows that

t|A|+ s|B| ≤ 2r(|A|+ |B|),

that is,

|A| ≥ s − 2r

2r − t
|B|,

since 2r > t.
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Proof of Lemma (3)
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Proof of Lemma (3)

A B

∆ ⩾ t ∆ ⩾ s

A = {v | t ≤ ∆(v) < s} -
independent set of G .
B = {v | ∆(v) ≥ s}.

• that is,

|A| ≥ s − 2r

2r − t
|B|

• By Lemma (2),

|A| ≤ r |B|

• Since G is a nonnull graph, |B| ≠ 0, and so

r ≥ s − 2r

2r − t
,

that is,
s ≤ r(2r − t + 2),

a contradiction.
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Partitions into sets inducing graphs with no large
component

In [Kawarabayashi, Mohar, 2007], the following variant of defective colorings was proven.

Theorem

There is a function f (t) ∈ O(t) and a computable function s(t) such that if G is a graph
with no Kt+1 minor, then V (G ) can be partitioned into f (t) sets, inducing subgraphs in
which every component is size at most s(t).

In particular, the authors showed that taking f (t) = ⌈15.5(t + 1)⌉ works. Later this was
improved to f (t) = 3t in [Liu, Oum, 2018]. That suggests a nice open question - can we
prove the same with f (t) = t?
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Partitions into sets inducing graphs with no large
component

We will exploit the main theorem proved earlier to improve the original result and show
that f (t) = 4t works.

[Alon, Ding, Oporowski, Vertigan, 2003] proved the following partition theorem.

Theorem

For all integers t,∆ ≥ 0, there exists s such that for every graph G , if Kt+1 is not a
minor of G and ∆(G ) ≤ ∆, then V (G ) can be partitioned into four sets X1,X2,X3,X4

such that every component of G |Xi has at most s vertices.

For a graph G with no Kt+1 minor, we first partition it into t sets each inducing a
subgraph of bounded degree. Finally, we apply the theorem above to every set in the
partition to obtain a partition of V (G ) into 4t sets each inducing a graph with no large
component.

48 / 52



Partitions into sets inducing graphs with no large
component

We will exploit the main theorem proved earlier to improve the original result and show
that f (t) = 4t works.
[Alon, Ding, Oporowski, Vertigan, 2003] proved the following partition theorem.

Theorem

For all integers t,∆ ≥ 0, there exists s such that for every graph G , if Kt+1 is not a
minor of G and ∆(G ) ≤ ∆, then V (G ) can be partitioned into four sets X1,X2,X3,X4

such that every component of G |Xi has at most s vertices.

For a graph G with no Kt+1 minor, we first partition it into t sets each inducing a
subgraph of bounded degree. Finally, we apply the theorem above to every set in the
partition to obtain a partition of V (G ) into 4t sets each inducing a graph with no large
component.

49 / 52



Partitions into sets inducing graphs with no large
component

We will exploit the main theorem proved earlier to improve the original result and show
that f (t) = 4t works.
[Alon, Ding, Oporowski, Vertigan, 2003] proved the following partition theorem.

Theorem

For all integers t,∆ ≥ 0, there exists s such that for every graph G , if Kt+1 is not a
minor of G and ∆(G ) ≤ ∆, then V (G ) can be partitioned into four sets X1,X2,X3,X4

such that every component of G |Xi has at most s vertices.

For a graph G with no Kt+1 minor, we first partition it into t sets each inducing a
subgraph of bounded degree. Finally, we apply the theorem above to every set in the
partition to obtain a partition of V (G ) into 4t sets each inducing a graph with no large
component.

50 / 52



References

Katherine Edwards, Dong Yeap Kang, Jaehoon Kim, Sang-il Oum and Paul Seymour (2015)

A Relative of Hadwiger’s Conjecture

Society for Industrial & Applied Mathematics (SIAM) 29(4), 2385—2388

Noga Alon, Guoli Ding, Bogdan Oporowski and Dirk Vertigan (2003)

Partitioning into graphs with only small components

Journal of Combinatorial Theory, Series B 87(2), 231–243

Ken-ichi Kawarabayashi and Bojan Mohar (2007)

A relaxed Hadwiger’s conjecture for list colorings

Journal of Combinatorial Theory, Series B 97(4), 647–651

Chun Hung Liu and Sang il Oum (2018)

Partitioning H-minor free graphs into three subgraphs with no large components

Journal of Combinatorial Theory, Series B 128, 114–133

Luke Postle (2020)

Further progress towards Hadwiger’s conjecture

https://arxiv.org/abs/2006.11798v3
51 / 52

https://arxiv.org/abs/2006.11798v3


The End

52 / 52


	Hadwiger's conjecture
	Main result
	Applications

