A Relative of Hadwiger's Conjecture

Demian Banakh
Department of Theoretical Computer Science
Jagiellonian University

January 13, 2022

Overview

1. Hadwiger's conjecture
2. Main result
3. Applications

Notation

- We will consider only finite simple graphs (no loops or multiple edges).
- A graph H is a minor of a graph G if a graph isomorphic to H can be obtained from a subgraph of G by edge-contraction.
- $\Delta(G)$ denotes the maximum degree of G.
- If $X \subseteq V(G)$, we denote by $G \mid X$ the subgraph of G induced on X.
- $X \subseteq V(G)$ is called an independent set of G if $\Delta(G \mid X)=0$.

Hadwiger's conjecture

Conjecture

For all integers $t \geq 0$, and every graph G, if K_{t+1} is not a minor of G, then G is t-colorable.

Hadwiger's conjecture

Conjecture

For all integers $t \geq 0$, and every graph G, if K_{t+1} is not a minor of G, then G is t-colorable.

Source: Wikipedia

Hadwiger's conjecture

Conjecture

For all integers $t \geq 0$, and every graph G, if K_{t+1} is not a minor of G, then G is t-colorable.

- This is still an open question, even though the conjecture has been proven for $t \leq 5$.

Source: Wikipedia

Hadwiger's conjecture

Conjecture

For all integers $t \geq 0$, and every graph G, if K_{t+1} is not a minor of G, then G is t-colorable.

- This is still an open question, even though the conjecture has been proven for $t \leq 5$.
- In the 1980s it was proven that every graph with no K_{t} minor has average degree $O(t \sqrt{\log t})$ (the more formal statement of which we will see later) and hence is $O(t \sqrt{\log t})$-colorable. In [Postle, 2020], this bound was improved to $O\left(t \cdot(\log \log t)^{6}\right)$.

Source: Wikipedia

Hadwiger's conjecture

To match the statement of the main result presented today, let's rephrase the conclusion of Hadwiger's conjecture in terms of vertices partition.

Conjecture

For all integers $t \geq 0$, and every graph G, if K_{t+1} is not a minor of G, then $V(G)$ can be partitioned into t independent sets, i.e. sets X_{1}, \ldots, X_{t} such that $\Delta\left(G \mid X_{i}\right)=0$ for $1 \leq i \leq t$.

Hadwiger's conjecture

To match the statement of the main result presented today, let's rephrase the conclusion of Hadwiger's conjecture in terms of vertices partition.

Conjecture

For all integers $t \geq 0$, and every graph G, if K_{t+1} is not a minor of G, then $V(G)$ can be partitioned into t independent sets, i.e. sets X_{1}, \ldots, X_{t} such that $\Delta\left(G \mid X_{i}\right)=0$ for $1 \leq i \leq t$.

Note

It is a strong bound for the size of a partition - result becomes false if we ask for a partition into $t-1$ independent sets.

Main result

Theorem

For all integers $t \geq 0$ there is an integer s such that for every graph G, if K_{t+1} is not a minor of G, then $V(G)$ can be partitioned into t sets X_{1}, \ldots, X_{t} such that $\Delta\left(G \mid X_{i}\right) \leq s$ for $1 \leq i \leq t$.

Note

Such partitions are often called defective colorings in the literature.

Main result: strong bound

Despite being much weaker than Hadwiger's conjecture, it still exhibits a strong bound for the size of a partition in the same sense.

Theorem

For all integers $s \geq 0$ and $t \geq 1$, there is graph $G=G(s, t)$ such that K_{t+1} is not a minor of G, and there is no partition X_{1}, \ldots, X_{t-1} of $V(G)$ into $t-1$ sets such that $\Delta\left(G \mid X_{i}\right) \leq s$ for $1 \leq i \leq t-1$.

Main result: strong bound

Despite being much weaker than Hadwiger's conjecture, it still exhibits a strong bound for the size of a partition in the same sense.

Theorem

For all integers $s \geq 0$ and $t \geq 1$, there is graph $G=G(s, t)$ such that K_{t+1} is not a minor of G, and there is no partition X_{1}, \ldots, X_{t-1} of $V(G)$ into $t-1$ sets such that $\Delta\left(G \mid X_{i}\right) \leq s$ for $1 \leq i \leq t-1$.

Proof

The proof is by induction on t. Construct $G=G(s, t)$ as follows. Note that G has no K_{t+1} minor, since each H_{i} has no K_{t} minor.

Main result: strong bound

Main result: strong bound

For the sake of contradiction, assume that such partition X_{1}, \ldots, X_{t-1} of $V(G)$ exists $\left(\forall i \Delta\left(G \mid X_{i}\right) \leq s\right)$. Without loss of generality, let $v \in X_{t-1}$.

Main result: strong bound

Main result: strong bound

One of the copies H_{i} must have no elements in common with X_{t-1}. Without loss of generality $X_{t-1} \cap V\left(H_{1}\right)=\emptyset$.

Main result: strong bound

Main result: strong bound

The other sets of partition restricted to $V\left(H_{1}\right)$ turn out to be a partition of $G(s, t-1)$ with maximum degree at most s, which is a contradiction.

Main result: strong bound

More formally, let $Y_{i}=X_{i} \cap V\left(H_{1}\right)$ for $1 \leq i \leq t-2$. Then Y_{1}, \ldots, Y_{t-2} provide a partition of $V\left(H_{1}\right)$ into $t-2$ sets, and since H_{1} is isomorphic to $G(s, t-1)$, it follows that $\Delta\left(H_{1} \mid Y_{i}\right)>s$ for some $1 \leq i \leq t-2$, a contradiction to $\Delta\left(G \mid X_{i}\right) \leq s$.

Proof of Main Result

Theorem

Let $t \geq 0$ be an integer, and let s be as in Lemma (3). For every graph G, if K_{t+1} is not a minor of G, then $V(G)$ can be partitioned into t sets X_{1}, \ldots, X_{t} such that $\Delta\left(G \mid X_{i}\right)<s$ for $1 \leq i \leq t$.

Proof of Main Result

Theorem

Let $t \geq 0$ be an integer, and let s be as in Lemma (3). For every graph G, if K_{t+1} is not a minor of G, then $V(G)$ can be partitioned into t sets X_{1}, \ldots, X_{t} such that $\Delta\left(G \mid X_{i}\right)<s$ for $1 \leq i \leq t$.

Proof

We proceed by induction on $|V(G)|+|E(G)|$.

Proof of Main Result

Theorem

Let $t \geq 0$ be an integer, and let s be as in Lemma (3). For every graph G, if K_{t+1} is not a minor of G, then $V(G)$ can be partitioned into t sets X_{1}, \ldots, X_{t} such that $\Delta\left(G \mid X_{i}\right)<s$ for $1 \leq i \leq t$.

Proof

We proceed by induction on $|V(G)|+|E(G)|$.

- If some vertex v of G has $\Delta(v)<t$, the result follows from the inductive hypothesis by deleting v (find a partition by induction and add v to some set X_{i} that contains no neighbor of v).

Proof of Main Result

Theorem

Let $t \geq 0$ be an integer, and let s be as in Lemma (3). For every graph G, if K_{t+1} is not a minor of G, then $V(G)$ can be partitioned into t sets X_{1}, \ldots, X_{t} such that $\Delta\left(G \mid X_{i}\right)<s$ for $1 \leq i \leq t$.

Proof

We proceed by induction on $|V(G)|+|E(G)|$.

- If some vertex v of G has $\Delta(v)<t$, the result follows from the inductive hypothesis by deleting v (find a partition by induction and add v to some set X_{i} that contains no neighbor of v).
- If some edge e has both ends of $\Delta<s$, the result follows from the inductive hypothesis by deleting e (find a partition by induction and note that inserting e back will not cause either of the ends of e to have degree too large).

Proof of Main Result

Theorem

Let $t \geq 0$ be an integer, and let s be as in Lemma (3). For every graph G, if K_{t+1} is not a minor of G, then $V(G)$ can be partitioned into t sets X_{1}, \ldots, X_{t} such that $\Delta\left(G \mid X_{i}\right)<s$ for $1 \leq i \leq t$.

Proof

We proceed by induction on $|V(G)|+|E(G)|$.

- If some vertex v of G has $\Delta(v)<t$, the result follows from the inductive hypothesis by deleting v (find a partition by induction and add v to some set X_{i} that contains no neighbor of v).
- If some edge e has both ends of $\Delta<s$, the result follows from the inductive hypothesis by deleting e (find a partition by induction and note that inserting e back will not cause either of the ends of e to have degree too large).
The rest of this section is dedicated to arguing that at least one of these cases must hold.

Proof of Main Result

Lemma (1)

There exists $C>0$ such that for all integers $t \geq 0$ and all graphs G, if K_{t+1} is not a minor of G, then G has at most $C(t+1)(\log (t+1))^{\frac{1}{2}} \cdot|V(G)|$ edges.

Proof of Main Result

Lemma (2)

Let $t \geq 0$ be an integer, let C be as in Lemma (1), and let $r \geq C(t+1)(\log (t+1))^{\frac{1}{2}}$.
Let G be a graph such that K_{t+1} is not a minor of G, and let $A \subseteq V(G)$ be an independent set of vertices each of degree at least t. Then

$$
|E(G \backslash A)|+|A| \leq r|V(G \backslash A)|
$$

Proof of Main Result

Lemma (2)

Let $t \geq 0$ be an integer, let C be as in Lemma (1), and let $r \geq C(t+1)(\log (t+1))^{\frac{1}{2}}$.
Let G be a graph such that K_{t+1} is not a minor of G, and let $A \subseteq V(G)$ be an independent set of vertices each of degree at least t. Then

$$
|E(G \backslash A)|+|A| \leq r|V(G \backslash A)|
$$

Proof

The proof is by induction on $|A|$. If $A=\emptyset$, we refer to Lemma (1) directly.

Proof of Lemma (2)

- Otherwise, let $v \in A$, then $\Delta(v) \geq t$.

Proof of Lemma (2)

- Otherwise, let $v \in A$, then $\Delta(v) \geq t$.
- If every two neighbors of v were adjacent, we would get that K_{t+1} is a subgraph of G.

Proof of Lemma (2)

- Otherwise, let $v \in A$, then $\Delta(v) \geq t$.
- If every two neighbors of v were adjacent, we would get that K_{t+1} is a subgraph of G.
- So v has two neighbors x, y which are non-adjacent to each other.

Proof of Lemma (2)

Proof of Lemma (2)

Formally, let $G^{\prime}=(G \backslash v)+x y$ and $A^{\prime}=A \backslash\{v\}$. Note that $\left|V\left(G^{\prime} \backslash A^{\prime}\right)\right|=|V(G \backslash A)|$, $\left|E\left(G^{\prime} \backslash A^{\prime}\right)\right|=|E(G \backslash A)|+1$ and $\left|A^{\prime}\right|=|A|-1$.

Proof of Lemma (2)

Formally, let $G^{\prime}=(G \backslash v)+x y$ and $A^{\prime}=A \backslash\{v\}$.

$$
\begin{aligned}
\left|V\left(G^{\prime} \backslash A^{\prime}\right)\right| & =|V(G \backslash A)| \\
\left|E\left(G^{\prime} \backslash A^{\prime}\right)\right| & =|E(G \backslash A)|+1 \\
\left|A^{\prime}\right| & =|A|-1
\end{aligned}
$$

Proof of Lemma (2)

Formally, let $G^{\prime}=(G \backslash v)+x y$ and $A^{\prime}=A \backslash\{v\}$.

$$
\begin{aligned}
\left|V\left(G^{\prime} \backslash A^{\prime}\right)\right| & =|V(G \backslash A)| \\
\left|E\left(G^{\prime} \backslash A^{\prime}\right)\right| & =|E(G \backslash A)|+1 \\
\left|A^{\prime}\right| & =|A|-1
\end{aligned}
$$

K_{t+1} is not a minor of G^{\prime}, since G^{\prime} is a minor of G. It follows from the inductive hypothesis that $\left|E\left(G^{\prime} \backslash A^{\prime}\right)\right|+\left|A^{\prime}\right| \leq r\left|V\left(G^{\prime} \backslash A^{\prime}\right)\right|$. It is enough to apply the aforementioned equalities now.

Proof of Main Result

Lemma (3)

Let $t \geq 0$ be an integer, let C be as in Lemma (1), and let $r \geq C(t+1)(\log (t+1))^{\frac{1}{2}}$ and $r>\frac{t}{2}$. Let $s>r(2 r-t+2)$. Let G be a nonnull graph such that K_{t+1} is not a minor of G. Then either

- some vertex has degree less than t, or
- there are 2 adjacent vertices both with degree less than s.

Proof of Main Result

Lemma (3)

Let $t \geq 0$ be an integer, let C be as in Lemma (1), and let $r \geq C(t+1)(\log (t+1))^{\frac{1}{2}}$ and $r>\frac{t}{2}$. Let $s>r(2 r-t+2)$. Let G be a nonnull graph such that K_{t+1} is not a minor of G. Then either

- some vertex has degree less than t, or
- there are 2 adjacent vertices both with degree less than s.

Proof

Assume that $t \geq 2$, for if $t \leq 1$ the result is trivially true.
Let $A=\{v \mid \Delta(v)<s\}$ and $B=\{v \mid \Delta(v) \geq s\}$.

Proof of Main Result

Lemma (3)

Let $t \geq 0$ be an integer, let C be as in Lemma (1), and let $r \geq C(t+1)(\log (t+1))^{\frac{1}{2}}$ and $r>\frac{t}{2}$. Let $s>r(2 r-t+2)$. Let G be a nonnull graph such that K_{t+1} is not a minor of G. Then either

- some vertex has degree less than t, or
- there are 2 adjacent vertices both with degree less than s.

Proof

Assume that $t \geq 2$, for if $t \leq 1$ the result is trivially true.
Let $A=\{v \mid \Delta(v)<s\}$ and $B=\{v \mid \Delta(v) \geq s\}$.
We may assume that every vertex in A has degree at least t, for otherwise the first outcome holds.

Proof of Main Result

Lemma (3)

Let $t \geq 0$ be an integer, let C be as in Lemma (1), and let $r \geq C(t+1)(\log (t+1))^{\frac{1}{2}}$ and $r>\frac{t}{2}$. Let $s>r(2 r-t+2)$. Let G be a nonnull graph such that K_{t+1} is not a minor of G. Then either

- some vertex has degree less than t, or
- there are 2 adjacent vertices both with degree less than s.

Proof

Assume that $t \geq 2$, for if $t \leq 1$ the result is trivially true.
Let $A=\{v \mid \Delta(v)<s\}$ and $B=\{v \mid \Delta(v) \geq s\}$.
We may assume that every vertex in A has degree at least t, for otherwise the first outcome holds.
We may also assume that no two vertices of A are adjacent because otherwise the second outcome holds.

Proof of Lemma (3)

Proof of Lemma (3)

- By summing all the degrees,

$$
2|E(G)| \geq t|A|+s|B|
$$

independent set of G.

$$
B=\{v \mid \Delta(v) \geq s\} .
$$

Proof of Lemma (3)

$A=\{v \mid t \leq \Delta(v)<s\}$ -
independent set of G.

$$
B=\{v \mid \Delta(v) \geq s\} .
$$

- By summing all the degrees,

$$
2|E(G)| \geq t|A|+s|B|
$$

- By Lemma (1),

$$
|E(G)| \leq r(|A|+|B|)
$$

Proof of Lemma (3)

 independent set of G.

$$
B=\{v \mid \Delta(v) \geq s\} .
$$

- By summing all the degrees,

$$
2|E(G)| \geq t|A|+s|B|
$$

- By Lemma (1),

$$
|E(G)| \leq r(|A|+|B|)
$$

- It follows that

$$
t|A|+s|B| \leq 2 r(|A|+|B|)
$$

that is,

$$
|A| \geq \frac{s-2 r}{2 r-t}|B|
$$

since $2 r>t$.

Proof of Lemma (3)

independent set of G.
$B=\{v \mid \Delta(v) \geq s\}$.

Proof of Lemma (3)

$$
A=\{v \mid t \leq \Delta(v)<s\}
$$

independent set of G.

$$
B=\{v \mid \Delta(v) \geq s\} .
$$

- that is,

$$
|A| \geq \frac{s-2 r}{2 r-t}|B|
$$

- By Lemma (2),

$$
|A| \leq r|B|
$$

Proof of Lemma (3)

$A=\{v \mid t \leq \Delta(v)<s\}$ -
independent set of G.

$$
B=\{v \mid \Delta(v) \geq s\} .
$$

- that is,

$$
|A| \geq \frac{s-2 r}{2 r-t}|B|
$$

- By Lemma (2),

$$
|A| \leq r|B|
$$

- Since G is a nonnull graph, $|B| \neq 0$, and so

$$
r \geq \frac{s-2 r}{2 r-t}
$$

that is,

$$
s \leq r(2 r-t+2)
$$

a contradiction.

Partitions into sets inducing graphs with no large component

In [Kawarabayashi, Mohar, 2007], the following variant of defective colorings was proven.

Theorem

There is a function $f(t) \in O(t)$ and a computable function $s(t)$ such that if G is a graph with no K_{t+1} minor, then $V(G)$ can be partitioned into $f(t)$ sets, inducing subgraphs in which every component is size at most $s(t)$.

Partitions into sets inducing graphs with no large component

In [Kawarabayashi, Mohar, 2007], the following variant of defective colorings was proven.

Theorem

There is a function $f(t) \in O(t)$ and a computable function $s(t)$ such that if G is a graph with no K_{t+1} minor, then $V(G)$ can be partitioned into $f(t)$ sets, inducing subgraphs in which every component is size at most $s(t)$.

In particular, the authors showed that taking $f(t)=\lceil 15.5(t+1)\rceil$ works. Later this was improved to $f(t)=3 t$ in [Liu, Oum, 2018]. That suggests a nice open question - can we prove the same with $f(t)=t$?

Partitions into sets inducing graphs with no large component

We will exploit the main theorem proved earlier to improve the original result and show that $f(t)=4 t$ works.

Partitions into sets inducing graphs with no large component

We will exploit the main theorem proved earlier to improve the original result and show that $f(t)=4 t$ works.
[Alon, Ding, Oporowski, Vertigan, 2003] proved the following partition theorem.

Theorem

For all integers $t, \Delta \geq 0$, there exists s such that for every graph G, if K_{t+1} is not a minor of G and $\Delta(G) \leq \Delta$, then $V(G)$ can be partitioned into four sets $X_{1}, X_{2}, X_{3}, X_{4}$ such that every component of $G \mid X_{i}$ has at most s vertices.

Partitions into sets inducing graphs with no large component

We will exploit the main theorem proved earlier to improve the original result and show that $f(t)=4 t$ works.
[Alon, Ding, Oporowski, Vertigan, 2003] proved the following partition theorem.

Theorem

For all integers $t, \Delta \geq 0$, there exists s such that for every graph G, if K_{t+1} is not a minor of G and $\Delta(G) \leq \Delta$, then $V(G)$ can be partitioned into four sets $X_{1}, X_{2}, X_{3}, X_{4}$ such that every component of $G \mid X_{i}$ has at most s vertices.

For a graph G with no K_{t+1} minor, we first partition it into t sets each inducing a subgraph of bounded degree. Finally, we apply the theorem above to every set in the partition to obtain a partition of $V(G)$ into $4 t$ sets each inducing a graph with no large component.

References

Katherine Edwards, Dong Yeap Kang, Jaehoon Kim, Sang-il Oum and Paul Seymour (2015) A Relative of Hadwiger's Conjecture Society for Industrial \& Applied Mathematics (SIAM) 29(4), 2385-2388
国 Noga Alon, Guoli Ding, Bogdan Oporowski and Dirk Vertigan (2003)
Partitioning into graphs with only small components
Journal of Combinatorial Theory, Series B 87(2), 231-243
囯 Ken-ichi Kawarabayashi and Bojan Mohar (2007)
A relaxed Hadwiger's conjecture for list colorings
Journal of Combinatorial Theory, Series B 97(4), 647-651
R- Chun Hung Liu and Sang il Oum (2018)
Partitioning H -minor free graphs into three subgraphs with no large components
Journal of Combinatorial Theory, Series B 128, 114-133
R- Luke Postle (2020)
Further progress towards Hadwiger's conjecture
https://arxiv.org/abs/2006.11798v3

The End

