Recap

List coloring - Given a graph G and a set L(v) of colors for
each vertex v, a list coloring is a choice function that maps
every vertex v to a color in the list L(v), and no two adjacent
vertices receive the same color.

k-choosability - A graph is k-choosable if it has a proper list
coloring no matter how one assigns a list of k colors to each
vertex.

Minor - A graph H is called a minor of the graph G if H can

be formed from GG by deleting edges and vertices and by
contracting edges.

Wagner’s theorem - A finite graph is planar if and only if it
does not have K5 or K33 as a minor.



heorems

Theorem 1 (Thomassen, 1994) All planar graphs are
5-choosable.

Theorem 2 (Skrekovski, 1998) All K5-minor free graphs are
5-choosable.



Proof of the theorem 1

Lemma 1. Let G be a near-triangulation with an outer cycle C :
V1Vy ...V, and L be a list assignment of G such that |L(v)| > 3 for
v € C and |L(v)| > 5 for v € V' \ C. Suppose that A is a coloring of
{v1,v2}. Then X can be extended to a coloring of G

Case 1. Outer cycle has a chord - v,;v;.

Uj+1 et

WLOG vl and vy are in the right F;1>art.
We can appl?/ the induction hypothesis to color the right part.
This fixes colors for v; and v;, so we can apply the induction hypothesis

to color the left part.



Proof of the theorem 1

Case 2. Outer cycle doesn't have a chord.

Let v, u1,u2,...,ux, vp—1 be the neighbors of v,, in that order.

Let c1,co € L(v,) be colors different from the one fixed for v;.

Let's remove c¢q, co from L(u;) for all 7.

Let's apply the induction hypothesis to the graph without the v,,.

We can color v, with either ¢; or ¢y depending on which color is assigned
to the vertex v,_1.



Lemma 2. . Let G be a near-triangulation and L be a list assignment of
G such that |L(v)| > 5 for every v € V(G). Suppose that H is a
subgraph of G isomorphic to K3 or K5 and A is a coloring of H. Then A
can be extended to a coloring of G.

Case 1. H = K,

We may assume that H lies on the outer cycle of G and G is
near-triangulation. In that case we can use lemma 1 to extend the A.

Case 2. H is not a separating cycle.

We may assume that H is an outer face and that G is a
near-triangulation.

Let vy, x1,29,...,2%,v1 be the
neighbors of vs, in that order.

Let's remove A(vs3) from L(x;)’s.

We can use lemma 1 to color G \ {v3}.




Case 3. H is a separating cycle.

Let H; be the outer part, and Hy be the inner part.
Let Gl :H1UHand GQ :HQUH.

We can apply the same logic as in case 2 to both G; and G>.




Ks-minor-free graphs characterization

Clique-sum is a way of combining two graphs by gluing them together at
a clique.

Wagner graph (V3) - the graph obtained from a cycle of length 8 by
connecting opposite nodes.

Theorem 3. (Wagner) A graph G has no K5 minor if and only if it can
be obtained by 0-, 1-, 2- and 3-clique-sum operations from planar graphs
and Vg.



heorem 2, Proof 1

Lemma 3. Let G be an edge-maximal K5-minor-free graph and let L be
a list assignment of G such that |L(v)| > 5 for every vertex v € V(G).
Suppose that H is a subgraph of G isomorphic to K5 or K3, and X is a
coloring of H. Then A can be extended to a coloring of G.

Case 1. GG is planar

It follows from lemma 2.

Case 2. G = V4

Degree of every vertex is 3, so A can be greedily extended to G.

Case 3.

From theorem 3 it follows that G = G1 U G5 where G1, Gy are proper
subgraphs of G such that G1 N Gy = K5 or Ks3.

WLOG H C (G1. By the induction hypothesis applied to G1, A can be
extended to a coloring of (Gy.

By the induction hypothesis applied to G with H' = G; N Ga, X can be
extended to a coloring of Go.



heorem 2, Proof 2

Another proof of lemma 3 from the Skrekovski's paper.

Lemma 4 (Halin). Every 4-connected non-planar graph contains K5 as a
minor.

Lemma 5. Let G be a 3-connected non-planar graph with only one 3-cut
T. Suppose that G \ T has exactly two components. Then G contains
K5 as a minor.

Proof sketch for both: Assume that G contains K3 3 as a minor. Use
4-connectivity or unique 3-cut to get the K5 minor from the K3 3 minor.

Lemma 3. Let G be an edge-maximal K5-minor-free graph and let L be
a list assignment of G such that |L(v)| > 5 for every vertex v € V(G).
Suppose that H is a subgraph of G isomorphic to K5 or K3, and X is a
coloring of H. Then A can be extended to a coloring of G.



heorem 2, Proof 2

Proof by contradiction: Let the G be a counterexample with minimal |V].

Let T = {x1,22,...,2¢} be a minimal cut of G. Let G1, G5 be subgraphs
of GG such that G; UGy =G and G1 NGy =T. WLOG H C (.

Case 1. (G is not 3 connected.

Case t = 1 is trivial. Let t = 2. Let H; = Gy U{x122} and
Hy = Gy U{x122}. Both Hy, Hy are K5-minor-free. We can apply
"induction” to color the H; and then do the same to Hy with H' =T.

Contradiction.



heorem 2, Proof 2
Case 2. (G is planar.

Contradiciton follows from lemma 2.

Case 3. G2 7% Kg)l and Gl 7% Kg’l
Claim 1. G; can be contracted to K3 whose vertecies are {x1, T3, x3}.

(G; contains a cycyle C'. From max-flow min-cut it follows that there exist
3 vertex-disjoint paths from C to x1,x2,x3. We can contract those
paths, and then contract the cycle to K3.




heorem 2, Proof 2

Let H1 — Gl U {51315132,331563,332333} and H2 — GQ U {51315132,5131333,5132[133}.
From claim 1 it follows that both Hi, Hy are K5-minor-free. We can
apply "induction” to color the H;y and then do the same to Hy with

H =T.

Contradiction.



heorem 2, Proof 2

Case 4. Gy = K3 5.

Let's remove v and then apply the "induction” to get the coloring for GG;.
Then we can color v with ¢ € L(v) \ {\(x1), AM(x2), A(x3)}.
Contradiction.



heorem 2, Proof 2

Case 5. G; = K3 ;5.

We can assume that G5 \ T" has only one connected component because
otherwise we could "move’ one of the G3's component to GGy.

Let's assume that there exists another 3-cut 7”. Then if we take T”
instead of T' then G; 22 K3 ;. Contradiction.

Combining those two properties we have that 1" is the only 3-cut of GG
and G \ T has only 2 connected components. That contradicts lemma 5.
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