Recap

List coloring - Given a graph G and a set $\mathrm{L}(\mathrm{v})$ of colors for each vertex v , a list coloring is a choice function that maps every vertex v to a color in the list $L(v)$, and no two adjacent vertices receive the same color.
k-choosability - A graph is k-choosable if it has a proper list coloring no matter how one assigns a list of k colors to each vertex.

Minor - A graph H is called a minor of the graph G if H can be formed from G by deleting edges and vertices and by contracting edges.
Wagner's theorem - A finite graph is planar if and only if it does not have K_{5} or $K_{3,3}$ as a minor.

Theorems

Theorem 1 (Thomassen, 1994) All planar graphs are 5-choosable.

Theorem 2 (Skrekovski, 1998) All K_{5}-minor free graphs are 5-choosable.

Proof of the theorem 1

Lemma 1. Let G be a near-triangulation with an outer cycle C : $v_{1} v_{2} \ldots v_{p}$ and L be a list assignment of G such that $|L(v)| \geq 3$ for $v \in C$ and $|L(v)| \geq 5$ for $v \in V \backslash C$. Suppose that λ is a coloring of $\left\{v_{1}, v_{2}\right\}$. Then λ can be extended to a coloring of G

Case 1. Outer cycle has a chord $-v_{j} v_{i}$.

WLOG $v 1$ and v_{2} are in the right part.
We can apply the induction hypothesis to color the right part.
This fixes colors for v_{i} and v_{j}, so we can apply the induction hypothesis to color the left part.

Proof of the theorem 1

Case 2. Outer cycle doesn't have a chord.
Let $v_{1}, u_{1}, u_{2}, \ldots, u_{k}, v_{p-1}$ be the neighbors of v_{p}, in that order.

Let $c_{1}, c_{2} \in L\left(v_{p}\right)$ be colors different from the one fixed for v_{1}.
Let's remove c_{1}, c_{2} from $L\left(u_{i}\right)$ for all i.
Let's apply the induction hypothesis to the graph without the v_{p}.
We can color v_{p} with either c_{1} or c_{2} depending on which color is assigned to the vertex v_{p-1}.

Lemma 2. . Let G be a near-triangulation and L be a list assignment of G such that $|L(v)| \geq 5$ for every $v \in V(G)$. Suppose that H is a subgraph of G isomorphic to K_{3} or K_{2} and λ is a coloring of H . Then λ can be extended to a coloring of G.
Case 1. $H \cong K_{2}$
We may assume that H lies on the outer cycle of G and G is near-triangulation. In that case we can use lemma 1 to extend the λ.
Case 2. H is not a separating cycle.
We may assume that H is an outer face and that G is a near-triangulation.

Let $v_{2}, x_{1}, x_{2}, \ldots, x_{k}, v_{1}$ be the neighbors of v_{3}, in that order.

Let's remove $\lambda\left(v_{3}\right)$ from $L\left(x_{i}\right)$'s.
We can use lemma 1 to color $G \backslash\left\{v_{3}\right\}$.

Case 3. H is a separating cycle.
Let H_{1} be the outer part, and H_{2} be the inner part.
Let $G_{1}=H_{1} \cup H$ and $G_{2}=H_{2} \cup H$.
We can apply the same logic as in case 2 to both G_{1} and G_{2}.

K_{5}-minor-free graphs characterization

Clique-sum is a way of combining two graphs by gluing them together at a clique.
Wagner graph (V_{8}) - the graph obtained from a cycle of length 8 by connecting opposite nodes.

Theorem 3. (Wagner) A graph G has no K_{5} minor if and only if it can be obtained by 0 -, 1-, 2- and 3-clique-sum operations from planar graphs and V_{8}.

Theorem 2, Proof 1

Lemma 3. Let G be an edge-maximal K_{5}-minor-free graph and let L be a list assignment of G such that $|L(v)| \geq 5$ for every vertex $v \in V(G)$. Suppose that H is a subgraph of G isomorphic to K_{2} or K_{3}, and λ is a coloring of H . Then λ can be extended to a coloring of G .

Case 1. G is planar
It follows from lemma 2.
Case 2. $G \cong V_{8}$
Degree of every vertex is 3 , so λ can be greedily extended to G.

Case 3.

From theorem 3 it follows that $G=G_{1} \cup G_{2}$ where G_{1}, G_{2} are proper subgraphs of G such that $G_{1} \cap G_{2}=K_{2}$ or K_{3}.
WLOG $H \subseteq G 1$. By the induction hypothesis applied to G_{1}, λ can be extended to a coloring of G_{1}.

By the induction hypothesis applied to G_{2} with $H^{\prime}=G_{1} \cap G_{2}, \lambda$ can be extended to a coloring of G_{2}.

Theorem 2, Proof 2

Another proof of lemma 3 from the Skrekovski's paper.
Lemma 4 (Halin). Every 4-connected non-planar graph contains K_{5} as a minor.

Lemma 5. Let G be a 3-connected non-planar graph with only one 3-cut T. Suppose that $G \backslash T$ has exactly two components. Then G contains K_{5} as a minor.

Proof sketch for both: Assume that G contains $K_{3,3}$ as a minor. Use 4-connectivity or unique 3-cut to get the K_{5} minor from the $K_{3,3}$ minor.

Lemma 3. Let G be an edge-maximal K_{5}-minor-free graph and let L be a list assignment of G such that $|L(v)| \geq 5$ for every vertex $v \in V(G)$. Suppose that H is a subgraph of G isomorphic to K_{2} or K_{3}, and λ is a coloring of H . Then λ can be extended to a coloring of G .

Theorem 2, Proof 2

Proof by contradiction: Let the G be a counterexample with minimal $|V|$.
Let $T=\left\{x_{1}, x_{2}, \ldots, x_{t}\right\}$ be a minimal cut of G. Let G_{1}, G_{2} be subgraphs of G such that $G_{1} \cup G_{2}=G$ and $G_{1} \cap G_{2}=T$. WLOG $H \subseteq G_{1}$.

Case 1. G is not 3 connected.
Case $t=1$ is trivial. Let $t=2$. Let $H_{1}=G_{1} \cup\left\{x_{1} x_{2}\right\}$ and $H_{2}=G_{2} \cup\left\{x_{1} x_{2}\right\}$. Both H_{1}, H_{2} are K_{5}-minor-free. We can apply "induction" to color the H_{1} and then do the same to H_{2} with $H^{\prime}=T$.

Theorem 2, Proof 2

Case 2. G is planar.
Contradiciton follows from lemma 2.
Case 3. $G_{2} \not \neq K_{3,1}$ and $G_{1} \not \neq K_{3,1}$
Claim 1. G_{i} can be contracted to K_{3} whose vertecies are $\left\{x_{1}, x_{2}, x_{3}\right\}$.
G_{i} contains a cycyle C. From max-flow min-cut it follows that there exist 3 vertex-disjoint paths from C to x_{1}, x_{2}, x_{3}. We can contract those paths, and then contract the cycle to K_{3}.

Theorem 2, Proof 2

Let $H_{1}=G_{1} \cup\left\{x_{1} x_{2}, x_{1} x_{3}, x_{2} x_{3}\right\}$ and $H_{2}=G_{2} \cup\left\{x_{1} x_{2}, x_{1} x_{3}, x_{2} x_{3}\right\}$. From claim 1 it follows that both H_{1}, H_{2} are K_{5}-minor-free. We can apply "induction" to color the H_{1} and then do the same to H_{2} with $H^{\prime}=T$.

Theorem 2, Proof 2

Case 4. $G_{2} \cong K_{3,1}$.

Let's remove v and then apply the "induction" to get the coloring for G_{1}. Then we can color v with $c \in L(v) \backslash\left\{\lambda\left(x_{1}\right), \lambda\left(x_{2}\right), \lambda\left(x_{3}\right)\right\}$. Contradiction.

Theorem 2, Proof 2

Case 5. $G_{1} \cong K_{3,1}$.

We can assume that $G_{2} \backslash T$ has only one connected component because otherwise we could " move" one of the G_{2} 's component to G_{1}. Let's assume that there exists another 3-cut T^{\prime}. Then if we take T^{\prime} instead of T then $G_{1} \neq K_{3,1}$. Contradiction.
Combining those two properties we have that T is the only 3-cut of G and $G \backslash T$ has only 2 connected components. That contradicts lemma 5.

