The Hats game. On max degree and diameter.

Szymon Salabura

20th January 2022

Table of Contents

(1) Introduction
(2) Constructors
(3) Independence polynomials and maximal games
(4) Hat guessing number and the maximal degree
(5) Hat guessing number and diameter

Introduction

In the hat guessing game, the sages, located at graph vertices, try to guess colors of their own hats. They can see the colors of hats on sages at the adjacent vertices only. The sages act as a team using the deterministic strategy, fixed at the beginning. If at least one of them guesses a color of his own hat correctly, we say that the sages win.

Introduction

In the hat guessing game, the sages, located at graph vertices, try to guess colors of their own hats. They can see the colors of hats on sages at the adjacent vertices only. The sages act as a team using the deterministic strategy, fixed at the beginning. If at least one of them guesses a color of his own hat correctly, we say that the sages win.

The maximum number of possible colors, for which the sages can guarantee the win, is called the hat guessing number of graph G and denoted $H G(G)$.

Introduction

In the hat guessing game, the sages, located at graph vertices, try to guess colors of their own hats. They can see the colors of hats on sages at the adjacent vertices only. The sages act as a team using the deterministic strategy, fixed at the beginning. If at least one of them guesses a color of his own hat correctly, we say that the sages win.

The maximum number of possible colors, for which the sages can guarantee the win, is called the hat guessing number of graph G and denoted $H G(G)$.

Computation of the hat guessing number for an arbitrary graph is a hard problem. Currently it is solved only for few classes of graphs: for complete graphs, trees, cycles, etc.

Notations

We use the following notations:

Notations

We use the following notations:

- $G=(V, E)$ is a visibility graph. We identify the sages with the graph vertices.

Notations

We use the following notations:

- $G=(V, E)$ is a visibility graph. We identify the sages with the graph vertices.
- $h: V \rightarrow \mathbb{N}$ is a "hatness" function, which means the number of different hat colors a sage can get. We may assume that the hat color of sage A is the number from the set $[h(A)]=\{0,1, \ldots, h(A)-1\}$.

Notations

We use the following notations:

- $G=(V, E)$ is a visibility graph. We identify the sages with the graph vertices.
- $h: V \rightarrow \mathbb{N}$ is a "hatness" function, which means the number of different hat colors a sage can get. We may assume that the hat color of sage A is the number from the set $[h(A)]=\{0,1, \ldots, h(A)-1\}$.
- $g: V \rightarrow \mathbb{N}$ is a "guessing" function that determines the number of guesses each sage is allowed to make.

Notations

We use the following notations:

- $G=(V, E)$ is a visibility graph. We identify the sages with the graph vertices.
- $h: V \rightarrow \mathbb{N}$ is a "hatness" function, which means the number of different hat colors a sage can get. We may assume that the hat color of sage A is the number from the set $[h(A)]=\{0,1, \ldots, h(A)-1\}$.
- $g: V \rightarrow \mathbb{N}$ is a "guessing" function that determines the number of guesses each sage is allowed to make.
We will denote a function that is equal to a constant m as $\star m$.

Definition

A hat guessing game or Hats for short is a pair $\mathcal{G}=\langle G, h\rangle$, where G is a visibility graph and h is a hatness function.

Definition

A hat guessing game or Hats for short is a pair $\mathcal{G}=\langle G, h\rangle$, where G is a visibility graph and h is a hatness function.

We also consider a generalized hat guessing game $\mathcal{G}=\langle G, h, g\rangle$ in which multiple guesses are allowed. The sages win if for at least one of sages the color of his hat matches with one of his guesses.

Definition

A hat guessing game or Hats for short is a pair $\mathcal{G}=\langle G, h\rangle$, where G is a visibility graph and h is a hatness function.

We also consider a generalized hat guessing game $\mathcal{G}=\langle G, h, g\rangle$ in which multiple guesses are allowed. The sages win if for at least one of sages the color of his hat matches with one of his guesses.

It is clear that game $\langle G, h\rangle$ is the same as generalized game $\langle G, h, \star 1\rangle$.

Table of Contents

(1) Introduction

(2) Constructors
(3) Independence polynomials and maximal games
4. Hat guessing number and the maximal degree
(5) Hat guessing number and diameter

Sum of games

Definition.

Let $G_{1}=\left(V_{1}, E_{1}\right), G_{2}=\left(V_{2}, E_{2}\right)$ be two graphs, $S \subseteq G_{1}$ be a clique, and $v \in V_{2}$. Set $G=(V, E)$ to be clique join of graphs G_{1} and G_{2} with respect to S and v. We say that G is a sum of graphs G_{1}, G_{2} with respect to S and v and denote it by $G=G_{1}+s, v G_{2}$.

Figure 1: Game $G_{1}+_{S, v} G_{2}$

Sum of games

Definition.

We say that function f is a gluing of functions f_{1} and f_{2} and denote it by $f=f_{1}+s, v f_{2}$, if

$$
f(u)= \begin{cases}f_{1}(u) & u \in V_{1} \backslash S \\ f_{2}(u) & u \in V_{2} \backslash\{v\} \\ f_{1}(u) \cdot f_{2}(v) & u \in S\end{cases}
$$

Sum of games

Definition.

We say that function f is a gluing of functions f_{1} and f_{2} and denote it by $f=f_{1}+s, v f_{2}$, if

$$
f(u)= \begin{cases}f_{1}(u) & u \in V_{1} \backslash S \\ f_{2}(u) & u \in V_{2} \backslash\{v\} \\ f_{1}(u) \cdot f_{2}(v) & u \in S\end{cases}
$$

Let $\mathcal{G}_{1}=\left\langle G_{1}, h_{1}\right\rangle, \mathcal{G}_{2}=\left\langle G_{2}, h_{2}\right\rangle$ be two games. A sum of games $\mathcal{G}_{1}, \mathcal{G}_{2}$ with respect to S and v is a game $\mathcal{G}=\left\langle G_{1}+s, v G_{2}, h_{1}+s, v h_{2}\right\rangle$.

The sum of generalized hat guessing games is defined similarly.

Sum of games

Theorem 2.1.
Let $\mathcal{G}_{1}=\left\langle G_{1}, h_{1}, g_{1}\right\rangle, \mathcal{G}_{2}=\left\langle G_{2}, h_{2}, g_{2}\right\rangle$ be two winning games, $S \subseteq G_{1}$ be a clique, and $v \in V_{2}$. Then the game $\mathcal{G}=\mathcal{G}_{1}+s, v \mathcal{G}_{2}$ is also winning.

Product of games

Definition.

Let $\mathcal{G}_{1}=\left\langle G_{1}, h_{1}\right\rangle, \mathcal{G}_{2}=\left\langle G_{2}, h_{2}\right\rangle$ be two games, and let one vertex in G_{1} and one vertex in G_{2} are marked A. A product of games $\mathcal{G}_{1}, \mathcal{G}_{2}$ with respect to vertex A is just $\mathcal{G}_{1}+{ }_{\{A\}, A} \mathcal{G}_{2}$. We will denote it by $\mathcal{G}=\mathcal{G}_{1} \times{ }_{A} \mathcal{G}_{2}$.

Figure 2: Game $G_{1} \times{ }_{v} G_{2}$

Product of games

Corollary 2.1.1.

Let $\mathcal{G}_{1}=\left\langle G_{1}, h_{1}\right\rangle$ and $\mathcal{G}_{2}=\left\langle G_{2}, h_{2}\right\rangle$ be two games such that $V\left(G_{1}\right) \cap V\left(G_{2}\right)=\{A\}$. If the sages win in games \mathcal{G}_{1} and \mathcal{G}_{2}, then they win also in game $\mathcal{G}=\mathcal{G}_{1} \times{ }_{A} \mathcal{G}_{2}$.

Substitution

Definition.

By the substitution of graph G_{1} to graph G_{2} on the place of vertex v we call the graph $G_{1} \cup\left(G_{2} \backslash\{v\}\right)$ with adding of all edges that connect each vertex of G_{1} with each neighbor of v.

Figure 3: A substitution.

Substitution

Corollary 2.1.2.

Let the sages win in games $\mathcal{G}_{1}=\left\langle G_{1}, h_{1}\right\rangle$ and $\mathcal{G}_{2}=\left\langle G_{2}, h_{2}\right\rangle$, where G_{1} is a complete graph. Let $v \in V\left(G_{2}\right)$ be an arbitrary vertex and G be the graph of substitution G_{1} on place v. Then the game $\mathcal{G}=\langle G, h\rangle$ is winning, where

$$
h(u)= \begin{cases}h_{2}(u) & u \in G_{2} \\ h_{1}(u) \cdot h_{2}(v) & u \in G_{1}\end{cases}
$$

Hats on complete graphs

Theorem 2.4.

The Hats game $\left\langle K_{n}, h, g\right\rangle$ is winning if and only if

$$
\sum_{v \in V} \frac{g(v)}{h(v)} \geqslant 1
$$

HATS on complete graphs

Theorem 2.4.

The Hats game $\left\langle K_{n}, h, g\right\rangle$ is winning if and only if

$$
\sum_{v \in V} \frac{g(v)}{h(v)} \geqslant 1
$$

We say that a game $\left\langle K_{n}, h, g\right\rangle$ is precise if $\sum_{v \in V} \frac{g(v)}{h(v)}=1$.

Table of Contents

(1) Introduction

(2) Constructors
(3) Independence polynomials and maximal games

4 Hat guessing number and the maximal degree
(5) Hat guessing number and diameter

Independence polynomials

Let $G=\langle V, E\rangle$ be a graph. For the set of variables $\mathbf{x}=\left(x_{v}\right)_{v \in V}$ we define independence polynomials of G as

$$
P_{G}(\mathbf{x})=\sum_{\substack{I \subseteq V \\ \text { I-independent set }}} \prod_{v \in I} x_{v}
$$

Independence polynomials

Let $G=\langle V, E\rangle$ be a graph. For the set of variables $\mathbf{x}=\left(x_{v}\right)_{v \in V}$ we define independence polynomials of G as

$$
P_{G}(\mathbf{x})=\sum_{\substack{I \subseteq V \\ \text { I-independent set }}} \prod_{v \in I} x_{v}
$$

We also consider the signed independence polynomial.

$$
Z_{G}(\mathbf{x})=P_{G}(-\mathbf{x})
$$

Independence polynomials

Let $G=\langle V, E\rangle$ be a graph. For the set of variables $\mathbf{x}=\left(x_{v}\right)_{v \in V}$ we define independence polynomials of G as

$$
P_{G}(\mathbf{x})=\sum_{\substack{I \subseteq V \\ \text { l-independent set }}} \prod_{v \in I} x_{v}
$$

We also consider the signed independence polynomial.

$$
Z_{G}(\mathbf{x})=P_{G}(-\mathbf{x})
$$

The monovariate signed independence polynomial $U_{G}(x)$ is obtained by plugging $-x$ for each variable x_{v} of P_{G}.

Fractional hat chromatic number

Definition.

We define fractional hat chromatic number $\hat{\mu}(G)$ as

$$
\hat{\mu}(G)=\sup \left\{\left.\frac{h}{g} \right\rvert\,\langle G, \star h, \star g\rangle \text { is a winning game }\right\} .
$$

Fractional hat chromatic number

Definition.

We define fractional hat chromatic number $\hat{\mu}(G)$ as

$$
\hat{\mu}(G)=\sup \left\{\left.\frac{h}{g} \right\rvert\,\langle G, \star h, \star g\rangle \text { is a winning game }\right\} .
$$

Lemma.

For chordal graphs $G \hat{\mu}(G)=1 / r$, where r is the smallest positive root of $U_{G}(x)$.

Maximal games

Lemma.

$\langle G, h, g\rangle$ is losing whenever $Z_{G}(\mathbf{r})>0$, where $\mathbf{r}=\left(g_{v} / h_{v}\right)_{v \in V}$.

Maximal games

Lemma.

$\langle G, h, g\rangle$ is losing whenever $Z_{G}(\mathbf{r})>0$, where $\mathbf{r}=\left(g_{v} / h_{v}\right)_{v \in V}$.

Definition.

We say that a game on an arbitrary graph G is maximal if:

- $Z_{G}(\mathbf{r})=0$, where $\mathbf{r}=\left(g_{v} / h_{v}\right)_{v \in V}$,
- $Z_{G}(\mathbf{x})>0$, for every $\mathbf{0} \leqslant \mathbf{x}<\mathbf{r}$.

Maximal games

Lemma.

$\langle G, h, g\rangle$ is losing whenever $Z_{G}(\mathbf{r})>0$, where $\mathbf{r}=\left(g_{v} / h_{v}\right)_{v \in V}$.

Definition.

We say that a game on an arbitrary graph G is maximal if:

- $Z_{G}(\mathbf{r})=0$, where $\mathbf{r}=\left(g_{v} / h_{v}\right)_{v \in V}$,
- $Z_{G}(\mathbf{x})>0$, for every $\mathbf{0} \leqslant \mathbf{x}<\mathbf{r}$.

The maximal game can be winning or losing, but if we increase the hatness function (or decrease the number of guesses), the game becomes losing due to positivity of Z_{G}.

Complete graphs

Definition.

We say that a game on an arbitrary graph G is maximal if:

- $Z_{G}(\mathbf{r})=0$, where $\mathbf{r}=\left(g_{v} / h_{v}\right)_{v \in V}$,
- $Z_{G}(\mathbf{x})>0$, for every $\mathbf{0} \leqslant \mathbf{x}<\mathbf{r}$.

Definition.

We say that a game $\left\langle K_{n}, h, g\right\rangle$ is precise if $\sum_{v \in V} g_{v} / h_{v}=1$.
Let G be a complete graph and the game $\langle G, h, g\rangle$ be precise. Then $Z_{G}(\mathbf{x})=1-\sum x_{v}$ and the game is maximal.

Sum of maximal games

Theorem 3.1.

Let $\mathcal{G}_{1}=\left\langle G_{1}, h_{1}, g_{1}\right\rangle$ and $\mathcal{G}_{2}=\left\langle G_{2}, h_{2}, g_{2}\right\rangle$ be two maximal games, $S \subseteq G_{1}$ be a clique, and $v \in V_{2}$. Then the game $\mathcal{G}=\mathcal{G}_{1}+s_{, v} \mathcal{G}_{2}$ is also maximal.

Sum of maximal games

Theorem 3.1.

Let $\mathcal{G}_{1}=\left\langle G_{1}, h_{1}, g_{1}\right\rangle$ and $\mathcal{G}_{2}=\left\langle G_{2}, h_{2}, g_{2}\right\rangle$ be two maximal games, $S \subseteq G_{1}$ be a clique, and $v \in V_{2}$. Then the game $\mathcal{G}=\mathcal{G}_{1}+s_{, v} \mathcal{G}_{2}$ is also maximal.

Corollary 3.1.1.

Let the game $\mathcal{G}=\langle G, \star h\rangle$ be obtained by a sequence of sum operations from a set of precise winning Hats games on complete graphs. Then $H G(G)=h$.

Sum of maximal games

Theorem 3.1.

Let $\mathcal{G}_{1}=\left\langle G_{1}, h_{1}, g_{1}\right\rangle$ and $\mathcal{G}_{2}=\left\langle G_{2}, h_{2}, g_{2}\right\rangle$ be two maximal games, $S \subseteq G_{1}$ be a clique, and $v \in V_{2}$. Then the game $\mathcal{G}=\mathcal{G}_{1}+s_{, v} \mathcal{G}_{2}$ is also maximal.

Corollary 3.1.1.

Let the game $\mathcal{G}=\langle G, \star h\rangle$ be obtained by a sequence of sum operations from a set of precise winning Hats games on complete graphs. Then $H G(G)=h$.

Proof.

By induction based on Theorem $3.1 \mathcal{G}$ is maximal. \mathcal{G} is winning by Theorem 2.1 on sum of games and therefore $H G(G) \geqslant h$.
It follows from maximality condition that $1 / h$ is the smallest positive root of $U_{G}(x) . G$ is a chordal graph, therefore $h=\hat{\mu}(G)$.

$$
H G(G) \leqslant \hat{\mu}(G)=h \leqslant H G(G)
$$

Sum of maximal games

Corollary 3.1.2.

Let the game $\mathcal{G}=\langle G, h, g\rangle$ be obtained by a sequence of sum operations from a set of precise winning games on complete graphs. Let h / g be a constant function, $h / g=h_{0} \in \mathbb{Q}$. Then $\hat{\mu}(G)=h_{0}$.

Table of Contents

(1) Introduction

(2) Constructors
(3) Independence polynomials and maximal games
(4) Hat guessing number and the maximal degree

(5) Hat guessing number and diameter

HG and maximal degree - first example

It is well known that $H G(G) \leqslant e \Delta(G)$ (Lovász Local Lemma), but no examples of graphs for which $H G(G)>\Delta(G)+1$ are known. We start from a nice concrete graph.

HG and maximal degree - first example

It is well known that $H G(G) \leqslant e \Delta(G)$ (Lovász Local Lemma), but no examples of graphs for which $H G(G)>\Delta(G)+1$ are known.
We start from a nice concrete graph.

Figure 4: Graph G for which $\Delta(G)=6$ and $\operatorname{HG}(G)=8$.

HG and maximal degree - first example

Figure 4: Graph G for which $\Delta(G)=6$ and $\operatorname{HG}(G)=8$.
The games on the left are winning precise games by Theorem 2.4 (the value of hatness function is written near each vertex). We combine these graphs by theorem 2.1.1 on game product, and multiply three copies of the obtained graph. We obtain graph G for which the game $\langle G, \star 8\rangle$ is winning. By corollary 3.1.1 $H G(G)=8$.

HG and maximal degree - first example

Lemma 4.2.

(1) For any positive integer k there exists a graph G such that $H G(G)=\Delta(G)+k$.
(2) There exists a sequence of graphs G_{n} such that $\Delta\left(G_{n}\right) \rightarrow+\infty$ and $\lim _{n \rightarrow+\infty} H G\left(G_{n}\right) / \Delta\left(G_{n}\right)=8 / 7$.

HG and maximal degree - first example

Lemma 4.2.

(1) For any positive integer k there exists a graph G such that $H G(G)=\Delta(G)+k$.
(2) There exists a sequence of graphs G_{n} such that $\Delta\left(G_{n}\right) \rightarrow+\infty$ and $\lim _{n \rightarrow+\infty} H G\left(G_{n}\right) / \Delta\left(G_{n}\right)=8 / 7$.

Proof.

We take the previous graph and substitute the games $\left\langle K_{n}, \star n\right\rangle$ in place of each vertex.

- $\forall_{v \in V} h(v)=8 n$
- $H G(G)=8 n$
- $\Delta(G)=7 n-1$

HG and maximal degree - second example

Theorem 4.3.

There exists a sequence of graphs G_{n} such that $\Delta\left(G_{n}\right) \rightarrow+\infty$ and $H G\left(G_{n}\right) / \Delta\left(G_{n}\right)=4 / 3$.

HG and maximal degree - second example

Precise game T_{k} :

- 2^{n-k} top vertices
- $h(k)=2^{n-k+1}$
- bottom vertex A_{k}
- $h\left(A_{k}\right)=2$

HG and maximal degree - second example

Figure 6: Scary example $\tilde{G}_{n}, n=5$

HG and maximal degree - second example

Figure 6: Scary example $\tilde{G}_{n}, n=5$

- $\operatorname{deg} A_{n-1}=2$
- $h\left(A_{n-1}\right)=2$
- $\operatorname{deg} A_{k}=k \cdot 2^{n-k}+2^{n-k-1}$

Maximum degree is reached for $k=1$.

- max deg $A_{k}=2^{n-1}+2^{n-2}=3 / 4 \cdot 2^{n}$
- $h\left(A_{k}\right)=2^{n-k} \cdot 2^{k}=2^{n}$

HG and maximal degree - second example

Let graph G_{n} be a product of n copies of graph \tilde{G}_{n} by vertex A_{n-1}. Then:

- $\operatorname{deg} A_{n-1}=2 n$,
- $h\left(A_{n-1}\right)=2^{n}$.

HG and maximal degree - second example

Let graph G_{n} be a product of n copies of graph \tilde{G}_{n} by vertex A_{n-1}. Then:

- $\operatorname{deg} A_{n-1}=2 n$,
- $h\left(A_{n-1}\right)=2^{n}$.

The degrees and hatnesses of the other vertices remain unchanged. Since the hatness function is constant on the obtained graph, by corollary 3.1.1 $H G\left(G_{n}\right)=2^{n}$ and the following equality holds.

$$
\frac{H G\left(G_{n}\right)}{\Delta\left(G_{n}\right)}=\frac{2^{n}}{\frac{3}{4} 2^{n}}=\frac{4}{3}
$$

Table of Contents

(1) Introduction

(2) Constructors
(3) Independence polynomials and maximal games
4. Hat guessing number and the maximal degree
(5) Hat guessing number and diameter

HG and diameter

Theorem 6.2.
For any odd d and even $h_{0}>3$ there exists graph G with diameter d and $H G(G)=h_{0}$.

HG and diameter

Theorem 6.2.

For any odd d and even $h_{0}>3$ there exists graph G with diameter d and $H G(G)=h_{0}$.

HG and diameter

Theorem 6.2.

For any odd d and even $h_{0}>3$ there exists graph G with diameter d and $H G(G)=h_{0}$.

Hatnesses of the other vertices are equal $2 k$. These games are precise winning by Theorem 2.4. We glue pairs of vertices to the left and to the right of each " \times " sign and multiply their hatnesses. By Corollary 3.1.1 the obtained game $\left\langle G_{n}, \star 2 k\right\rangle$ is maximal winning and $\operatorname{HG}\left(G_{n}\right)=2 k$. Moreover, diameter of the graph equals $2 n-1$.

