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An RNC algorithm for Search-PM

Let O and [J be vertex partitions of [, let O be a weight function of [I.
Consider the following % O % matrix [ associated with [,

00 i 0 O 00,00,0 O O

00 otherwisel

girio g
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The algorithm for SEARCH-PM computes the determinant of 0. This

determinant is the signed sum over all perfect matchings in [I:
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If O does not have a perfect matching, then 000000 O 0. But such result
can be also an outcome of cancellations due to D000, To avoid this
situation, [] needs to be designed correctly. In particular if [J has a perfect
matching and O is isolating, then 000000 O O (since the term corresponding
to the minimum weight perfect matching cannot be canceled).
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Given an insolating weight assignment for [J, it is possible to construct the
minimum wieght perfect matching in NC.
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Let (1 be the unique minimum weight perfect matching in .

0000 is equal to the highest power of 0 dividing 0000OD.

For every edge U U [0 we can compute UUI00,0, where Uy is matrix
associated with OO O [. If the highest power of U that divides D0I0O 0 is
larget then DD[D][, then 00 CIY. It can be done in parallel to find all

edges of (17,
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The Matching Polytope
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For 000 O O and 0 O 0040, O O°F:
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For general graphs, the polytope described by such conditions can have
vertices which are not perfect matchings.
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Nice Cycles and Circulation
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For any two [0 0O O 000 the edges where they differ form disjoint
cycles.

For a cycle O, 05000 is defined to be the difference of weights of two
perfect matchings which differ exactly on the edges of [I.

Lemma 00, but it is not clear if there exists such a wieght assignment
with small weights.

We use a weight function that has nonzero circulations only for small
cycles.
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We consider the subgraph 0", which is the union of minimum weight
perfect matching in [.

In bipartite case it is not only smaller, but also does not contain any
small cycles.

We show that if graph has no cycles of length O 0, then the number
of cycles of length [J 00 is polynomially bounded.

For 100D rounds: in the [-th round, assign weight which ensure
nonzero circulations for all cycles with length O 0", Since the graph
obtained after 00 O O0-th rounds has no cycles of lenth 0 0"Y, the
number of cycles of length 0 0” is small.

In 1000 rounds, we get a unique minimum weight perfect matching.
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The union of Minimum Weight Perfect Matchings
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Proof. Let the weight of the minimum weight perfect matchings in G be q. Let @1, x2,. .., x;
be all the minimum weight perfect matching points of G, i.e., the corners of PM(G) corre-
sponding to the weight . Consider the average point & € PM(G) of these matching points,

Tt T2+ Ty

B t
Clearly, w(x) = g. Since each edge in £/ participates in a minimum weight perfect matching,
for £ = (z.)e, we have that =, # 0 for all e € E. Now, consider a cycle C' with ¢, (C) # 0.
Let the edges of cycle C be (e1,ea,...,€,) in cyclic order. For the sake of contradiction let us
assume that all the edges of €' lie in Ey. We show that when we move from point x along the
cycle ') we reach a point in the perfect matching polytope with a weight smaller than . This
technique of moving along the cycle has been used by Mahajan and Varadarajan [MV00]. To
elaborate, consider a new point y = (ye)e such that for all e € E,

{:rﬁ +(=1)e, ife=e¢;, forsomel <i<p,
Ye = .
Te, otherwise,

for some £ # 0. Clearly, the vector & — y has nonzero coordinates only on cycle C', where its
entries are alternating £ and —e. Hence,

w(x —y) = £ - c(C). (5)
As e, (C) # 0, we get w(z —y) = w(x) —w(y) # 0. We choose £ # () such that
e its sign is such that w(y) < w(=x) = g, and
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We argue that y fulfills the conditions of Lemma[2.1] and therefore also lies in the perfect
matching polytope. Because y, > 0 for all e € F, it satisfies inequality () from Lemma 2]
It remains to show that y also satisfies

Y owe=1 wveV (6)

esd(v)
To see this, let v € V. We consider two cases:
1. v & C. Then y. = . for each edge e € §(v). Thus, we get @) from equation @) for x.

2. v € C. Let ¢; and ;41 be the two edges from €' which are incident on v. By definition,
Ye; = Te; (=1 cand ye, , = w¢,, + (—1)*! z. For any other edge e € d(v), we have
Ye = .. Combining this with equation @ for @, we get that y satisfies @ for v.

We conclude that y lies in the polytope PM(G). Since w(y) < ¢, there must be a corner
point of the polytope, which corresponds to a perfect matching in ¢ with weight < g. This
gives a contradiction. O
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Proof. Let C' = (vg,vq,...,v4—1) be acycleoflength £ < »"in G. Let f = £/4. We successively
choose four nodes on €' with distance < [f]| < r/2 and associate them with . We start
with wg = vy and define w; = vy, for @ = 1,2,3. Note that the distance between wug
and uy is also < [f]. Since we could choose any node of C as starting point wug, the four
nodes (ug, wy, 9, uz) associated with €' are not uniquely defined. However, they uniquely
describe C'.

Claim 1. Cycle C is the only cycle in H of length < v’ that is associated with (ug, ui, ug, us).
Proof. Suppose €' # C would be another such cycle. Let p # p’ be paths of €' and (',

respectively, that connect the same u-nodes. Note that p and p’ create a cycle in H of length
at most

pl+1p] < 5+5 <
) -+ = r
piripl = 5373 ="
which is a contradiction. This proves the claim. O

There are < n? ways to choose 4 nodes and their order. By Claim , this gives a bound
on the number of cycles of length < ¢’ O
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Constructing the Weight Assignment

Let OO0 D00 O Oy be bipartite graph with n nodes that has perfect
matchings. Define U (I [00 0 O 0. Note that the shortest cycles have length

4. Define
0;: a weight function such that all cycles in [0, of length 00 0°°Y have

nonzero circulations.
Oynp: the union of minimum weight perfect matchings in [J; according to

weight [;.
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By the definition of [, any two perfect matchings in [J; have the same
weight, not only according to [;, but also to U5 for all I O [l for any
oooogon.

By Lemma [0, graph [, does not have any cycles of length 00 0" for
each 0O 0 OO In particular, O does not have any cycles, since

0959 0 0. Therefore Oy has a unique perfect matching.
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Final weight function O will be a combination of Ul U I O I0;55. We
combine them in a way that the weight assignment in a later round does
not interfere with the order of perfect matchings given by earlier round
weights. Let [0 be a number greater than the weight of any edge under
any of these weight assignments. Then, define

00 0,0°0% 00,0°°° 00 0 Oyyp0%

In the definition of 0, the precedence decreases from Uy to Upp.
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For any two perfect matchings [J; and [y in 050 we have
000O,0 O 00000 if and only if there exists an 0 O 0 0 0 O U such that

0,00,0 0 000,00 j < i,

0,00,0 0 O,00,0

The perfect matchings left in U, have a strictly smaller weight with
respect to U than the ones in Uy that did not make ;.
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00000 0000 000 000 0 00 O 00 000 O, 00 0 0000000 0000000 10 O, 000
O, 00 O 0000000 C0000000 10 Oyny 00000 10 000 00 0,0 0000
0000 O 000,

Proof. Since [J; and [l are perfect matching in Oy, we have
0,00,0 O O,00,00 for all D O 0O 0. From the definition of [l; and
Corollary 0000 it follows that U000 O Uyqp00 0. Hence we get that
00050 O 0000
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It follows that the unique perfect matching in Uy has a strictly smaller
weight with respect to [ than all other perfect matchings.

Ho0onao
101 A M

0 0 0,080 0 0,0%° 0 0 0 Oy O°

(0 (00I00IOC Doo gl
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It remains to bound the values of the weights assigned. In the first round
we give nonzero circulation to all cycles of length . The number of such
cycles is 0 0. In the [-th round, we have graph [0, that does not have
any cycles of length 00 0"7Y. For 0.0 we give nonzero circulation to all
cycles of length 0 0°79. By Lemma 0000 the number of sych cycles is 0 0",
Therefore, each [J; needs to give nonzero circulations to [0 0" cycles, for
ogoogo.

Jedrzej Kula 27 stycznia 2022 32/51



Now we apply Lemma 010 with 0 O O". This yields a set of 0000 weight
assignments with weights bounded by (0000 Recall that the number O
used in definition of [ is the highest weight assigned by any [;, so

0 O O00%0. Therefore the weights in the assignment O are bounded by
0% O O00%P090, That is, the weights have 0000”00 bits.
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For each [0; we have 00”0 possibilities and we need to try all of them. In
total, we need to try 0000 O 000" Y0 weight assignments in parallel.

Every weight assignment can be constructed in quasi-00 0" with circut size
0
noooo® oo
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With this construction of weight functions, we can decide the existence of
a perfect matching in a bipartite graph in quasi-000" as follows:
Recall the bi-adjacency matrix [ which has entry 09000 for edge .
Compute 000000 for each of the constructed weight functions in
parallel.
If the given graph has a perfect matching, then one of the weight
funtions isolates a perfect matching (for this D000 will be nonzero).

When there is no perfect matching, then OUJOO0 will be zero for any
weight funtion.
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Weights constructed in this way have 0000”00 bits, so the determinant
entries have quasi-polynomial bits. The determinant can be computed in
parallel, with circuits of quasi-polynomial size 1799 07 We need to

compute pooo” O"_many determinants in parallel, so the algorithm is in

o
quasi-0J 0" with circuit size 09-00 52,
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To construct a perfect matching we want to follow algorithm presented at
the beginning with each of weight functions.

For a weight funtion [0 which is isolating, the algorithm outputs the unique
minimum weight perfect matching [J. If we have a weight funtion O°
which is not isolating, still 000000 might be non-zero with respect to 00°.
Then the algorithm computes a set of edges [1° that might or might not
be a perfect matching. We can verify if [1° is perfect matching, and in
this case, we will output [1”. As the algorithm involves computation of
similar determinants as in the decision algorithm, it is in quasi-[] 09 with

. . N L
circut size 0PEE U
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Decision Version

Theorem 4.1. For bipartite graphs, there is an RNC?-algorithm for PM which uses O(log” n)
random bits.

To prove Theorem [I1], consider our algorithm from Section[§. There are two reasons that
we need quasi-polynomially large circuits: (i) we need to try quasi-polynomially many different
weight assignments and (ii) each weight assignment has quasi-polynomially large weights. We
show how to come down to polynomial bounds in both cases by using randomization.

To solve the first problem, we modify Lemma to get a random weight assignment
which works with high probability.
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Lemma 4.2 ([CRS95. [KSO1)). Let G be a graph with n nodes and s = 1. There is a ran-
dom weight assignment w which uses O(logns) random bits and assigns weights bounded
by O(n3slogns), i.e., with O(logns) bits, such that for any set of s cycles, w gives nonzero
circulation to each of the s eyeles with probability at least 1 — 1/n.

Proof. We follow the construction of Lemma [Z7J and give exponential weights modulo small
numbers. Here, we use only prime numbers as moduli. Recall the weight function w defined
by w(e;) = 2. Let us choose a random number p among the first £ prime numbers. We take
our random weight assignment to be w mod p. We want to show that with high probability
this weight function gives nonzero circulation to every eycle in {C',Cs,....C}. In other
words, [[i_, ew(Ci) # 0 (mod p). As the product is bounded by 27%5 it has at most n2s
prime factors. Let us choose ¢+ = n®s. This would mean that a random prime works with
probability at least (1 —1/n). As the ¢-th prime can only be as large as 2t logt, the weights
are bounded by 2tlogt = O(n®slogns), and hence have O(logns) bits. A random prime
with O(logns) bits can be constructed using O(log ns) random bits (see [KSOT]). O

Jedrzej Kula 27 stycznia 2022 41 /51



Recall from Section[3.9 that for a bipartite graph G with n nodes, we had k = [logn] — 1
rounds and constructed one weight function in each round. We do the same here, how-
ever, we use the random scheme from Lemma [IF to choose each of the weight functions
Wy, Wi, . . ., we_1 independently. The probability that all of them provide nonzero circulation
on their respective set of cyeles > 1 — k/n > 1 — logn/n using the union bound.

Now, instead of combining them to form a single weight assignment, we use a different
variable for each weight assignment. We modify the construction of matrix A from Section[Z.2]
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Let L = {ui,uz2,... 1,2} and R = {v1,v2,... ,v,2} be the vertex partition of G. For

variables gy, ..., 21, define an n/2 x n/2 matrix A by
Ay = [0 a1 i e = (ug,vy) € B,
) 0, otherwise.

From arguments similar to those in Section 2.2, one can write
o Y wy (M) wy (M) wy_ (M)
det(A) = E sgn( M) x, fiy Y- Pl ]
M perfect matching in

where sgn(M ) is the sign of the corresponding permutation. From the construction of the
weight assignments it follows that if the graph has a perfect matching then the lexicograph-
ically minimum term in det(A), with respect to the exponents of variables g, xy, ..., 25—

in this precedence order, comes from a unique perfect matching. Thus, we get the following
lemma.
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Lemma 4.3. det(A) # 0 <= G has a perfect matching.

Recall that each w; needs to give nonzero circulations to n' cycles. Thus, the weights
obtained by the scheme of Lemma@ will be bounded by O(n" logn). This means the weight
of a matching will be bounded by O(n®logn). Hence det(A) is a polynomial of individual
degree O(n® log n) with log n variables. To test if det(A) is nonzero one can apply the standard
randomized polynomial identity test [DLTH. Thdt is, to plug in random values
for variables m;, independently from {1,2,..., q} If det(A) # 0, then the evaluation is
nonzero with high probability.
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Number of random bits: For a weight assignment w;, we need O(logns) random bits from
Lemma, where s = nt. Thus, the number of random bits required for all w;’s together is
O(klogn) = O(log? n). Finally, we need to plug in O(logn) random bits for each x;. This
again requires Q(log® n) random bits.

Complexity: The weight construction involves taking exponential weights modulo small
primes by Lemma . Primality testing can be done by the brute force algorithm in NC?, as
the numbers involved have O(logn) bits. Thus, the weight assignments can be constructed
in NC2. Moreover, the determinant with polynomially bounded entries can be computed
in NC? [Ber®d].

In summary, we get an RNC’-algorithm that uses O(log” n) random bits as claimed in

Theorem ET]
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Search Version

Theorem 4.4. For bipartite graphs, there is an RNC*-algorithm for SEARCH-PM which
uses Olog? n) random bits.

Let again G(V, E) be the given bipartite graph with vertex partition L = {u1,ug, ..., 4,5}
and R = {vi,v2,...,0n2}. We construct the weight assignments wo,wi,... wp—y as in
Lemma in the randomized decision version. Let M* be the unique minimum weight
perfect matching in G with respect to the combined weight function w. Let w,.(M*) = w},
for 0 <r < k.

Recall from Section the sequence of subgraphs Gy, Ga, ..., G of G = Gy, where G,
consists of the minimum perfect matchings of G, according to weight wy. In order to com-
pute M*, we would like to actually construct all the graphs Gy, G4, ..., G. However, it is
not clear how to achieve this with O(log? n) random bits. Instead, we will construct a se-
quence of graphs Hy, Ho, ..., Hy, such that H, will be a subgraph of G, for each 1 < r < k.
Furthermore, each H, will contain the matching M*. Recall that G, consists of the unique
perfect matching M*. Hence, once we have Hy, = (G, we are done.
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Let Hp = G and 0 < r < k. We describe the r-th round. Suppose we have constructed
the graph H,.(V, E,) and want to compute H,;;. An edge will appear in H,,, only if it
participates in a matching M with w, (M) = w}. Thus, we will have that H, . is a subgraph
of GGr41. For an edge e, let X,t."(e) denote the product

X:"{P'] _ ;a:}f"'(e)xf_;;]‘(ﬁ) . -.'r:.'f]l(é) ]

For a matching M, the term X:.”(""”
which are neighbors of an edge e in G,, i.e. all edges €' # e that share an endpoint with e.
For an edge e € E.., define the n/2 x n/2 matrix A, as

is defined similarly. Let N(e) denote the set of edges

‘-U["-") . r_ e "N
Ae(i,j):{x,. . ife’ = (ug,vy) € By, — Ne),

0, otherwise.

Note that the matrix A, has a zero entry for each neighboring edge of e. Thus, its determinant
is a sum over all perfect matchings which contain e. That is,

det(4,) = > sen(M)XPO

M pm in Hy
ecM

Consider the coefficient ¢ of ‘r::f";(' in det(A.),

e = sen(M) X1
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