Graph Coloring Game

Krzysztof Pióro January 27, 2022

Theoretical Computer Science

Definition

Graph coloring game

In the *graph coloring game* two players Alice and Bob are given graph **G** and a set of **k** colors. Alice and Bob take turns, **coloring properly** an uncolored vertex.

- Alice wins when graph is completely colored
- Bob wins otherwise

Graph coloring game

In the *graph coloring game* two players Alice and Bob are given graph **G** and a set of **k** colors. Alice and Bob take turns, **coloring properly** an uncolored vertex.

- Alice wins when graph is completely colored
- Bob wins otherwise

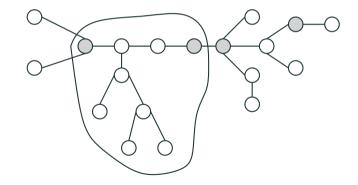
Game chromatic number

The game chromatic number of a graph **G**, denoted by $\chi_{g}(\mathbf{G})$, is the minimum number of colors needed for Alice to win the graph coloring game on **G**.

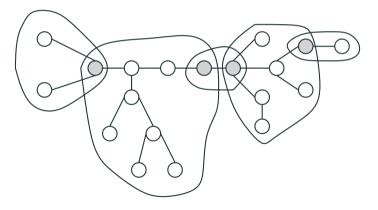
 $\bigcirc - \bigcirc - \bigcirc - \bigcirc \bigcirc$

If **G** is a tree, then $\chi_{g}(\mathbf{G}) \leq 4$.

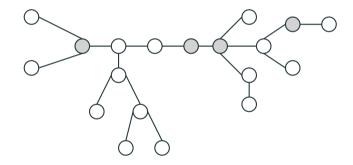
If **G** is a tree, then $\chi_{m{g}}(\mathbf{G}) \leq$ 4.



If **G** is a tree, then $\chi_{g}(\mathbf{G}) \leq 4$.

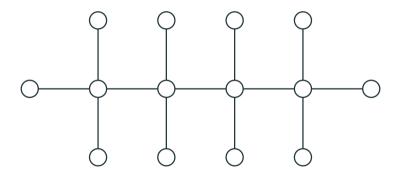


If **G** is a tree, then $\chi_{g}(\mathbf{G}) \leq$ 4.



Lower bound [Bodlaender 1991]

There exists a tree **T**, such that $\chi_g(\mathbf{T}) = 4$



Game coloring number

Marking game

In the *marking game* two players Alice and Bob are given graph **G**. During the game they create linear order *L* of vertices of graph **G**. They alternate turns with Alice playing first. In each move player selects a vertex from the reamining vertices and puts it at the end of *L*.

- Alice's goal is to minimize back degree of L
- Bob's goal is to maximize back degree of L

Marking game

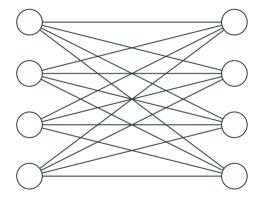
In the *marking game* two players Alice and Bob are given graph **G**. During the game they create linear order *L* of vertices of graph **G**. They alternate turns with Alice playing first. In each move player selects a vertex from the reamining vertices and puts it at the end of *L*.

- Alice's goal is to minimize back degree of L
- Bob's goal is to maximize back degree of L

Game coloring number

The game coloring number of a graph **G**, denoted by $col_g(G)$, is equal to k + 1, where k is back degree of a linear order L, which is produced by playing the **marking game** with both players using their **optimal** strategies.

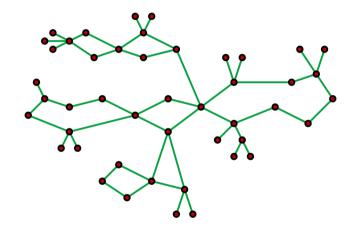
Game coloring number



$${f col_g(G)=n+1}\ \chi_{m g}(G)=3$$

Lemma

Suppose G = (V, E) and $E = E_1 \cup E_2$. Let $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$. Then $col_g(G) \le col_g(G_1) + \Delta(G_2)$. Cactuses

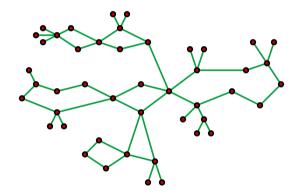


8

Cactuses

Lemma

If **G** is a cactus then there is a matching **M** such that $\mathbf{K} - \mathbf{M}$ is an acyclic graph.



Lemma

If **G** is a cactus then there is a matching **M** such that $\mathbf{K} - \mathbf{M}$ is an acyclic graph.

Thus edges of cactus **G** can be splitted into two graphs G_1, G_2 , such that G_1 is a forest and $\Delta(G_2) \leq 1$.

Lemma

If **G** is a cactus then there is a matching **M** such that $\mathbf{K} - \mathbf{M}$ is an acyclic graph.

Thus edges of cactus G can be splitted into two graphs $G_1,G_2,$ such that G_1 is a forest and $\Delta(G_2)\leq$ 1.

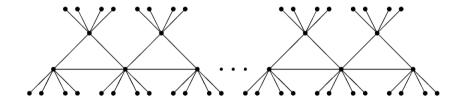
Upper bound [Sidorowicz 2006]

If **G** is a cactus, then $\chi_{g}(\mathbf{G}) \leq 5$.

Cactuses

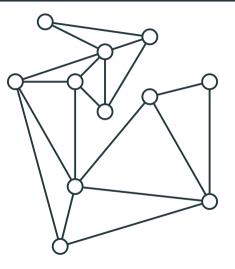
Lower bound [Sidorowicz 2006]

There exists a cactus **K**, such that $\chi_g(\mathbf{K}) = 5$



G contains 7 triangles

Outerplanar graphs



Theorem

For every maximal outerplanar graph there exists ordering of vertices $\{v_1, v_2, \dots v_n\}$ such that:

- v_1v_2 is an edge on the outer face,
- ∀_{i>2} v_i has exactly 2 neighbors on left. Let i₁ < i₂ be the indices of these neighbors.

Theorem

For every maximal outerplanar graph there exists ordering of vertices $\{v_1, v_2, \dots v_n\}$ such that:

- v_1v_2 is an edge on the outer face,
- ∀_{i>2} v_i has exactly 2 neighbors on left. Let i₁ < i₂ be the indices of these neighbors.

Properties

- v_{i_1} is adjacent to v_{i_2}
- $i \neq j \Rightarrow \{i_1, i_2\} \neq \{j_1, j_2\}$

Lemma

For any vertex v_k , there are at most two vertices v_i , v_j such that $i_2 = j_2 = k$.

Collary

Edges of every outerplanar graph can be splitted into two trees T_1,T_2 such that $\Delta(T_2)\leq 3$

Collary

Edges of every outerplanar graph can be splitted into two trees T_1,T_2 such that $\Delta(T_2)\leq 3$,

Upper bound [Guan, Zhu 1999]

If **G** is an outerplanar graph, then $\chi_{g}(\mathbf{G}) \leq 7$.

Collary

Edges of every outerplanar graph can be splitted into two trees T_1,T_2 such that $\Delta(T_2)\leq 3$,

Upper bound [Guan, Zhu 1999]

If **G** is an outerplanar graph, then $\chi_{g}(\mathbf{G}) \leq 7$.

Lower bound [Kierstead, Trotter 1994]

There exists an outerplanar graph **T**, such that $\chi_g(\mathbf{T}) = 6$

Class	Lower bound	Upper bound
Forests	4	4
Cactuses	5	5
Outerplanar graphs	6	7
Planar graphs	7	17
Interval graphs	2ω	$3\omega-2$

Open problem 1

Suppose Alice has a winning strategy for the vertex coloring game on a graph **G** with *k* colors. Does she have one for k + 1 colors?

Open problem 1

Suppose Alice has a winning strategy for the vertex coloring game on a graph **G** with *k* colors. Does she have one for k + 1 colors?

Open problem 2

Is there a function f such that, if Alice has a winning strategy for the vertex coloring game on a graph **G** with k colors, then Alice has a winning strategy on **G** with f(k).

References

- Hans Bodlaender. "On the Complexity of Some Coloring Games.". In: Jan. 1990, pp. 30–40.
- U. Faigle et al. "On the game chromatic number of some classes of graphs". Undefined. In: Ars combinatoria 35 (1993), pp. 143–150. ISSN: 0381-7032.
- **D. J. Guan and Xuding Zhu. "Game chromatic number of outerplanar graphs".** In: *J. Graph Theory* 30 (1999), pp. 67–70.
- Hal A. Kierstead and William T. Trotter. "Planar graph coloring with an uncooperative partner". In: *Journal of Graph Theory* 18 (1991), pp. 569–584.
- Elżbieta Sidorowicz. "The game chromatic number and the game colouring number of cactuses". In: Information Processing Letters 102.4 (2007), pp. 147–151. ISSN: 0020-0190. DOI: https://doi.org/10.1016/j.ipl.2006.12.003.