Graph Coloring Game

Krzysztof Pióro
January 27, 2022
Theoretical Computer Science

Definition

Graph coloring game

In the graph coloring game two players Alice and Bob are given graph \mathbf{G} and a set of \mathbf{k} colors. Alice and Bob take turns, coloring properly an uncolored vertex.

- Alice wins when graph is completely colored
- Bob wins otherwise

Definition

Graph coloring game

In the graph coloring game two players Alice and Bob are given graph \mathbf{G} and a set of \mathbf{k} colors. Alice and Bob take turns, coloring properly an uncolored vertex.

- Alice wins when graph is completely colored
- Bob wins otherwise

Game chromatic number

The game chromatic number of a graph \mathbf{G}, denoted by $\chi_{\mathbf{g}}(\mathbf{G})$, is the minimum number of colors needed for Alice to win the graph coloring game on \mathbf{G}.

Example

Trees

Upper bound [Faigle, Kern, Kierstead, Trotter 1993]

If \mathbf{G} is a tree, then $\chi_{g}(\mathbf{G}) \leq 4$.

Trees

Upper bound [Faigle, Kern, Kierstead, Trotter 1993]

If \mathbf{G} is a tree, then $\chi_{g}(\mathbf{G}) \leq 4$.

Trees

Upper bound [Faigle, Kern, Kierstead, Trotter 1993]

If \mathbf{G} is a tree, then $\chi_{\mathbf{g}}(\mathbf{G}) \leq 4$.

Trees

Upper bound [Faigle, Kern, Kierstead, Trotter 1993]

If \mathbf{G} is a tree, then $\chi_{g}(\mathbf{G}) \leq 4$.

Trees

Lower bound [Bodlaender 1991]

There exists a tree \mathbf{T}, such that $\chi_{g}(\mathbf{T})=4$

Game coloring number

Marking game

In the marking game two players Alice and Bob are given graph G. During the game they create linear order L of vertices of graph \mathbf{G}. They alternate turns with Alice playing first. In each move player selects a vertex from the reamining vertices and puts it at the end of L.

- Alice's goal is to minimize back degree of L
- Bob's goal is to maximize back degree of L

Game coloring number

Marking game

In the marking game two players Alice and Bob are given graph G. During the game they create linear order L of vertices of graph \mathbf{G}. They alternate turns with Alice playing first. In each move player selects a vertex from the reamining vertices and puts it at the end of L.

- Alice's goal is to minimize back degree of L
- Bob's goal is to maximize back degree of L

Game coloring number

The game coloring number of a graph \mathbf{G}, denoted by $\operatorname{col}_{\mathbf{g}}(\mathbf{G})$, is equal to $k+1$, where k is back degree of a linear order L, which is produced by playing the marking game with both players using their optimal strategies.

Game coloring number

$$
\begin{aligned}
& \operatorname{col}_{\mathbf{g}}(\mathbf{G})=n+1 \\
& \chi_{\mathbf{g}}(\mathbf{G})=3
\end{aligned}
$$

Helpful lemma

Lemma

Suppose $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ and $\mathbf{E}=\mathbf{E}_{\mathbf{1}} \cup \mathbf{E}_{\mathbf{2}}$. Let $\mathbf{G}_{\mathbf{1}}=\left(\mathbf{V}, \mathbf{E}_{\mathbf{1}}\right)$ and $\mathbf{G}_{\mathbf{2}}=\left(\mathbf{V}, \mathbf{E}_{\mathbf{2}}\right)$.
Then $\operatorname{col}_{\mathbf{g}}(\mathbf{G}) \leq \operatorname{col}_{\mathbf{g}}\left(\mathbf{G}_{\mathbf{1}}\right)+\Delta\left(\mathbf{G}_{\mathbf{2}}\right)$.

Cactuses

Cactuses

Lemma

If \mathbf{G} is a cactus then there is a matching \mathbf{M} such that $\mathbf{K}-\mathbf{M}$ is an acyclic graph.

Cactuses

Lemma

If \mathbf{G} is a cactus then there is a matching \mathbf{M} such that $\mathbf{K}-\mathbf{M}$ is an acyclic graph.
Thus edges of cactus \mathbf{G} can be splitted into two graphs $\mathbf{G}_{\mathbf{1}}, \mathbf{G}_{\mathbf{2}}$, such that \mathbf{G}_{1} is a forest and $\Delta\left(\mathbf{G}_{\mathbf{2}}\right) \leq 1$.

Cactuses

Lemma

If \mathbf{G} is a cactus then there is a matching \mathbf{M} such that $\mathbf{K}-\mathbf{M}$ is an acyclic graph.
Thus edges of cactus \mathbf{G} can be splitted into two graphs $\mathbf{G}_{\mathbf{1}}, \mathbf{G}_{\mathbf{2}}$, such that \mathbf{G}_{1} is a forest and $\Delta\left(\mathbf{G}_{\mathbf{2}}\right) \leq 1$.

Upper bound [Sidorowicz 2006]
If \mathbf{G} is a cactus, then $\chi_{\mathbf{g}}(\mathbf{G}) \leq 5$.

Cactuses

Lower bound [Sidorowicz 2006]

There exists a cactus \mathbf{K}, such that $\chi_{g}(\mathbf{K})=5$

G contains 7 triangles

Outerplanar graphs

Outerplanar graphs

Theorem

For every maximal outerplanar graph there exists ordering of vertices $\left\{v_{1}, v_{2}, \ldots v_{n}\right\}$ such that:

- $v_{1} v_{2}$ is an edge on the outer face,
- $\forall_{i>2} v_{i}$ has exactly 2 neighbors on left. Let $i_{1}<i_{2}$ be the indices of these neighbors.

Outerplanar graphs

Theorem

For every maximal outerplanar graph there exists ordering of vertices $\left\{v_{1}, v_{2}, \ldots v_{n}\right\}$ such that:

- $v_{1} v_{2}$ is an edge on the outer face,
- $\forall_{i>2} v_{i}$ has exactly 2 neighbors on left. Let $i_{1}<i_{2}$ be the indices of these neighbors.

Properties

- $v_{i_{1}}$ is adjacent to $v_{i_{2}}$
- $i \neq j \Rightarrow\left\{i_{1}, i_{2}\right\} \neq\left\{j_{1}, j_{2}\right\}$

Outerplanar graphs

Lemma

For any vertex v_{k}, there are at most two vertices v_{i}, v_{j} such that $i_{2}=j_{2}=k$.

Outerplanar graphs

Collary

Edges of every outerplanar graph can be splitted into two trees $\mathbf{T}_{\mathbf{1}}, \mathbf{T}_{\mathbf{2}}$ such that $\Delta\left(\mathbf{T}_{\mathbf{2}}\right) \leq 3$,

Outerplanar graphs

Collary

Edges of every outerplanar graph can be splitted into two trees $\mathbf{T}_{\mathbf{1}}, \mathbf{T}_{\mathbf{2}}$ such that $\Delta\left(\mathbf{T}_{\mathbf{2}}\right) \leq 3$,

Upper bound [Guan, Zhu 1999]

If \mathbf{G} is an outerplanar graph, then $\chi_{\boldsymbol{g}}(\mathbf{G}) \leq 7$.

Outerplanar graphs

Collary

Edges of every outerplanar graph can be splitted into two trees $\mathbf{T}_{\mathbf{1}}, \mathbf{T}_{\mathbf{2}}$ such that $\Delta\left(\mathbf{T}_{\mathbf{2}}\right) \leq 3$,

Upper bound [Guan, Zhu 1999]

If \mathbf{G} is an outerplanar graph, then $\chi_{\mathbf{g}}(\mathbf{G}) \leq 7$.

Lower bound [Kierstead, Trotter 1994]

There exists an outerplanar graph \mathbf{T}, such that $\chi_{g}(\mathbf{T})=6$

Results

Class	Lower bound	Upper bound
Forests	4	4
Cactuses	5	5
Outerplanar graphs	6	7
Planar graphs	7	17
Interval graphs	2ω	$3 \omega-2$

Open problems

Open problem 1

Suppose Alice has a winning strategy for the vertex coloring game on a graph \mathbf{G} with k colors. Does she have one for $k+1$ colors?

Open problems

Open problem 1

Suppose Alice has a winning strategy for the vertex coloring game on a graph \mathbf{G} with k colors. Does she have one for $k+1$ colors?

Open problem 2

Is there a function f such that, if Alice has a winning strategy for the vertex coloring game on a graph \mathbf{G} with k colors, then Alice has a winning strategy on \mathbf{G} with $f(k)$.

References

Hans Bodlaender. "On the Complexity of Some Coloring Games.". In: Jan. 1990, pp. 30-40.
U. Faigle et al. "On the game chromatic number of some classes of graphs". Undefined. In: Ars combinatoria 35 (1993), pp. 143-150. ISSN: 0381-7032.
D. J. Guan and Xuding Zhu. "Game chromatic number of outerplanar graphs". In: J. Graph Theory 30 (1999), pp. 67-70.

Hal A. Kierstead and William T. Trotter. "Planar graph coloring with an uncooperative partner". In: Journal of Graph Theory 18 (1991), pp. 569-584.

Elżbieta Sidorowicz. "The game chromatic number and the game colouring number of cactuses". In: Information Processing Letters 102.4 (2007), pp. 147-151. ISSN: 0020-0190. DoI: https://doi.org/10.1016/j.ipl.2006.12.003.

