Clustered Coloring of Graphs Excluding a Subgraph and a Minor
Chun-Hung Liu, David R. Wood
[2019+]

H is a minor of G if:

G can be divided into connected groups forming H

H is a minor of G if:

G can be divided into connected groups forming H
$H=P_{3}$

H is a minor of G if:

G can be divided into connected groups forming H

G

H is a minor of G if:

G can be divided into connected groups forming H

H is a minor of G if:

G can be divided into connected groups forming H

$c: V(G) \rightarrow \mathbb{N}$ is a coloring of G

H is a minor of G if:

G can be divided into connected groups forming H

$c: V(G) \rightarrow \mathbb{N}$ is a coloring of G c is proper if $\{u, v\} \in E \Rightarrow c(u) \neq c(v)$

H is a minor of G if:

G can be divided into connected groups forming H

$c: V(G) \rightarrow \mathbb{N}$ is a coloring of G c is proper if $\{u, v\} \in E \Rightarrow c(u) \neq c(v)$
$\chi(G)=$ size of the minimal proper coloring

H is a minor of G if:

G can be divided into connected groups forming H

$c: V(G) \rightarrow \mathbb{N}$ is a coloring of G c is proper if $\{u, v\} \in E \Rightarrow c(u) \neq c(v)$
$\chi(G)=$ size of the minimal proper coloring

Hadwiger's conjecture:
$K_{t+1} \nprec G \Rightarrow \chi(G) \leqslant t$

H is a minor of G if:

G can be divided into connected groups forming H

$c: V(G) \rightarrow \mathbb{N}$ is a coloring of G
c is proper if $\{u, v\} \in E \Rightarrow c(u) \neq c(v)$
$\chi(G)=$ size of the minimal proper coloring

Hadwiger's conjecture:

$$
\begin{array}{ll}
K_{t+1} \nprec G \Rightarrow \chi(G) \leqslant t & t \leqslant 5-\mathrm{OK} \\
& \chi(G) \leqslant C \cdot t \cdot(\log \log t)^{6}
\end{array}
$$

H is a minor of G if:

G can be divided into connected groups forming H

Relax the notion of properness?
$c: V(G) \rightarrow \mathbb{N}$ is a coloring of G
c is proper if $\{u, v\} \in E \Rightarrow c(u) \neq c(v)$
$\chi(G)=$ size of the minimal proper coloring

Hadwiger's conjecture:

$$
\begin{array}{ll}
K_{t+1} \nprec G \Rightarrow \chi(G) \leqslant t & t \leqslant 5-\mathrm{OK} \\
& \chi(G) \leqslant C \cdot t \cdot(\log \log t)^{6}
\end{array}
$$

H is a minor of G if:

G can be divided into connected groups forming H

Relax the notion of properness?
$c: V(G) \rightarrow \mathbb{N}$ is a coloring of G c is proper if $\{u, v\} \in E \Rightarrow c(u) \neq c(v)$
c is η-clustered if the size of
each monochromatic component is bounded by η
$\chi(G)=$ size of the minimal proper coloring

Hadwiger's conjecture:

$$
\begin{array}{ll}
K_{t+1} \nprec G \Rightarrow \chi(G) \leqslant t & t \leqslant 5-\mathrm{OK} \\
& \chi(G) \leqslant C \cdot t \cdot(\log \log t)^{6}
\end{array}
$$

H is a minor of G if:

G can be divided into connected groups forming H

Relax the notion of properness?
$c: V(G) \rightarrow \mathbb{N}$ is a coloring of G
c is proper if $\{u, v\} \in E \Rightarrow c(u) \neq c(v)$
$\chi(G)=$ size of the minimal proper coloring
c is η-clustered if the size of
each monochromatic component is bounded by η \mathcal{G} - graph class
$\chi_{c}(\mathcal{G})=$ size of minimal η-clustered coloring
Hadwiger's conjecture:

$$
H \prec G
$$

$$
\begin{array}{ll}
K_{t+1} \nprec G \Rightarrow \chi(G) \leqslant t & t \leqslant 5-\mathrm{OK} \\
& \chi(G) \leqslant C \cdot t \cdot(\log \log t)^{6}
\end{array}
$$

H is a minor of G if:

G can be divided into connected groups forming H

2-clustered 3 coloring
Relax the notion of properness?
$H=P_{3}$

$c: V(G) \rightarrow \mathbb{N}$ is a coloring of G c is proper if $\{u, v\} \in E \Rightarrow c(u) \neq c(v)$
$\chi(G)=$ size of the minimal proper coloring

Hadwiger's conjecture:

$$
H \prec G
$$

G
each monochromatic component is bounded by η \mathcal{G} - graph class
$\chi_{c}(\mathcal{G})=$ size of minimal η-clustered coloring

$$
\begin{aligned}
& t \leqslant 5-\mathrm{OK} \\
& \chi(G) \leqslant C \cdot t \cdot(\log \log t)^{6}
\end{aligned}
$$

[Norin,Song,Postle 2020]
H is a minor of G if:
G can be divided into connected groups forming H

2-clustered 3 coloring
Relax the notion of properness?

$c: V(G) \rightarrow \mathbb{N}$ is a coloring of G c is proper if $\{u, v\} \in E \Rightarrow c(u) \neq c(v)$
$\underline{\chi}(G)=$ size of the minimal proper coloring
c is η-clustered if the size of
each monochromatic component is bounded by η \mathcal{G} - graph class
$\chi_{c}(\mathcal{G})=$ size of minimal η-clustered coloring
Hadwiger's conjecture:

$$
H \prec G
$$

H is a minor of G if:

G can be divided into connected groups forming H

2-clustered 3 coloring
Relax the notion of properness?

$c: V(G) \rightarrow \mathbb{N}$ is a coloring of G c is proper if $\{u, v\} \in E \Rightarrow c(u) \neq c(v)$
$\chi(G)=$ size of the minimal proper coloring

Hadwiger's conjecture:

$$
H \prec G
$$

G
each monochromatic component is bounded by η \mathcal{G} - graph class
$\chi_{c}(\mathcal{G})=$ size of minimal η-clustered coloring

$$
\begin{aligned}
& t \leqslant 5-\mathrm{OK} \\
& \chi(G) \leqslant C \cdot t \cdot(\log \log t)^{6}
\end{aligned}
$$

[Norin,Song,Postle 2020]

H is a minor of G if:

G can be divided into connected groups forming H

2-clustered 3 coloring
$c: V(G) \rightarrow \mathbb{N}$ is a coloring of G c is proper if $\{u, v\} \in E \Rightarrow c(u) \neq c(v)$
$\chi(G)=$ size of the minimal proper coloring
c is η-clustered if the size of
each monochromatic component is bounded by η \mathcal{G} - graph class
$\chi_{c}(\mathcal{G})=$ size of minimal η-clustered coloring
Hadwiger's conjecture:

$$
\begin{aligned}
& t \leqslant 5-\mathrm{OK} \\
& \chi(G) \leqslant C \cdot t \cdot(\log \log t)^{6}
\end{aligned}
$$

H is a minor of G if:

G can be divided into connected groups forming H
$H=P_{3}$

2-clustered 3 coloring
$c: V(G) \rightarrow \mathbb{N}$ is a coloring of G c is proper if $\{u, v\} \in E \Rightarrow c(u) \neq c(v)$
$\chi(G)=$ size of the minimal proper coloring
c is η-clustered if the size of
each monochromatic component is bounded by η \mathcal{G} - graph class
$\chi_{c}(\mathcal{G})=$ size of minimal η-clustered coloring
Hadwiger's conjecture:

$$
\begin{aligned}
& t \leqslant 5-\mathrm{OK} \\
& \chi(G) \leqslant C \cdot t \cdot(\log \log t)^{6}
\end{aligned}
$$

c is η-clustered if the size of
each monochromatic component is bounded by η
\mathcal{G} - graph class

2-clustered 3 coloring

Hadwiger's conjecture:
$K_{t+1} \nprec G \Rightarrow \chi(G) \leqslant t$
c is η-clustered if the size of
each monochromatic component is bounded by η
\mathcal{G} - graph class
$\chi_{c}(\mathcal{G})=$ size of minimal η-clustered coloring

$$
\text { absolute } \eta=\eta(s)
$$

Hadwiger's clustered conjecture:
$\mathcal{G}_{s}=K_{s+1}$ minor free graphs
$\chi_{c}\left(\mathcal{G}_{s}\right) \leqslant s$
Hadwiger's conjecture:
$K_{t+1} \nprec G \Rightarrow \chi(G) \leqslant t$
c is η-clustered if the size of
each monochromatic component is bounded by η
\mathcal{G} - graph class
$\chi_{c}(\mathcal{G})=$ size of minimal η-clustered coloring

$$
\text { absolute } \eta=\eta(s)
$$

Hadwiger's clustered conjecture:
$\mathcal{G}_{s}=K_{s+1}$ minor free graphs
$\chi_{c}\left(\mathcal{G}_{s}\right) \leqslant 16 \cdot s$
Kawarabayashi, Mohar [2007]
$\chi_{c}\left(\mathcal{G}_{s}\right) \leqslant s$
Hadwiger's conjecture:
$K_{t+1} \nprec G \Rightarrow \chi(G) \leqslant t$
c is η-clustered if the size of
each monochromatic component is bounded by η
\mathcal{G} - graph class
$\chi_{c}(\mathcal{G})=$ size of minimal η-clustered coloring
absolute $\eta=\eta(s)$

Hadwiger's clustered conjecture:

$\mathcal{G}_{s}=K_{s+1}$ minor free graphs
$\chi_{c}\left(\mathcal{G}_{s}\right) \leqslant 16 \cdot s$
Kawarabayashi, Mohar [2007]
$\chi_{c}\left(\mathcal{G}_{s}\right) \leqslant s \quad \vdots$ Wood, Edwards, Kang, Kim, Oum, Seymour, Liu, Norin, Van den Heuvel, Dvorak
Hadwiger's conjecture:
$K_{t+1} \nprec G \Rightarrow \chi(G) \leqslant t$
c is η-clustered if the size of
each monochromatic component is bounded by η
\mathcal{G} - graph class
$\chi_{c}(\mathcal{G})=$ size of minimal η-clustered coloring

$$
\text { absolute } \eta=\eta(s)
$$

Hadwiger's clustered conjecture:
$\mathcal{G}_{s}=K_{s+1}$ minor free graphs

$$
\chi_{c}\left(\mathcal{G}_{s}\right) \leqslant \stackrel{2}{1} 6 \cdot s \quad \text { Kawarabayashi, Mohar [2007] }
$$

$\chi_{c}\left(\mathcal{G}_{s}\right) \leqslant s \quad \vdots$ Wood, Edwards, Kang, Kim, Oum, Seymour, Liu, Norin, Van den Heuvel, Dvorak
Hadwiger's conjecture:
$K_{t+1} \nprec G \Rightarrow \chi(G) \leqslant t$
c is η-clustered if the size of
each monochromatic component is bounded by η
\mathcal{G} - graph class
$\chi_{c}(\mathcal{G})=$ size of minimal η-clustered coloring

$$
\text { absolute } \eta=\eta(s)
$$

Hadwiger's clustered conjecture:
$\mathcal{G}_{s}=K_{s+1}$ minor free graphs

$$
\chi_{c}\left(\mathcal{G}_{s}\right) \leqslant \stackrel{2}{1} 6 \cdot s \quad \text { Kawarabayashi, Mohar [2007] }
$$

$\chi_{c}\left(\mathcal{G}_{s}\right) \leqslant s \quad \vdots$ Wood, Edwards, Kang, Kim, Oum, Seymour, Liu, Norin, Van den Heuvel, Dvorak
Hadwiger's conjecture:

$$
\chi_{c}\left(\mathcal{G}_{s}\right) \leqslant s+2 \quad \text { Liu, Wood }[2019+]
$$

$K_{t+1} \nprec G \Rightarrow \chi(G) \leqslant t$
c is η-clustered if the size of
each monochromatic component is bounded by η
\mathcal{G} - graph class
$\chi_{c}(\mathcal{G})=$ size of minimal η-clustered coloring
absolute $\eta=\eta(s)$

Hadwiger's clustered conjecture:
$\mathcal{G}_{s}=K_{s+1}$ minor free graphs

$$
\chi_{c}\left(\mathcal{G}_{s}\right) \leqslant 16 \cdot s \quad \text { Kawarabayashi, Mohar [2007] }
$$

$\chi_{c}\left(\mathcal{G}_{s}\right) \leqslant s \quad \vdots$ Wood, Edwards, Kang, Kim, Oum, Seymour, Liu, Norin, Van den Heuvel, Dvorak

Hadwiger's conjecture:
$K_{t+1} \nprec G \Rightarrow \chi(G) \leqslant t$

$$
\chi_{c}\left(\mathcal{G}_{s}\right) \leqslant s+2
$$

Liu, Wood [2019+]
$\chi_{c}\left(\mathcal{G}_{s}\right) \leqslant s$
Dvorak, Norin [???]
c is η-clustered if the size of
each monochromatic component is bounded by η
\mathcal{G} - graph class
$\chi_{c}(\mathcal{G})=$ size of minimal η-clustered coloring

$$
\text { absolute } \eta=\eta(s)
$$

Hadwiger's clustered conjecture:

Technical statement:

$\mathcal{G}_{s}=K_{s+1}$ minor free graphs
$\chi_{c}\left(\mathcal{G}_{s}\right) \leqslant s$
$\chi_{c}\left(\mathcal{G}_{s}\right) \leqslant s+2$
c is η-clustered if the size of
each monochromatic component is bounded by η
\mathcal{G} - graph class
$\chi_{c}(\mathcal{G})=$ size of minimal η-clustered coloring

$$
\text { absolute } \eta=\eta(s)
$$

Hadwiger's clustered conjecture:

Technical statement:

$\mathcal{G}_{s}=K_{s+1}$ minor free graphs

$$
\chi_{c}\left(\mathcal{G}_{s}\right) \leqslant s
$$

$$
\forall_{s, t, H} \exists_{\eta=\eta(s, t, H)} \forall_{G}
$$

$$
G \text { has no } H \text {-minor }
$$

$$
G \text { has no } K_{s, t} \text {-subgraph }
$$

$$
\chi_{c}\left(\mathcal{G}_{s}\right) \leqslant s+2
$$

c is η-clustered if the size of
each monochromatic component is bounded by η
\mathcal{G} - graph class
$\chi_{c}(\mathcal{G})=$ size of minimal η-clustered coloring

$$
\text { absolute } \eta=\eta(s)
$$

Hadwiger's clustered conjecture:

Technical statement:

$\mathcal{G}_{s}=K_{s+1}$ minor free graphs

$$
\chi_{c}\left(\mathcal{G}_{s}\right) \leqslant s
$$

$$
\forall_{s, t, H} \exists_{\eta=\eta(s, t, H)} \forall_{G}
$$

$$
G \text { has no } H \text {-minor }
$$

$$
G \text { has no } K_{s, t} \text {-subgraph }
$$

$$
\chi_{c}\left(\mathcal{G}_{s}\right) \leqslant s+2
$$

$$
\Rightarrow G \text { is }(s+2) \text {-colorable with clustering } \eta
$$

c is η-clustered if the size of
each monochromatic component is bounded by η
\mathcal{G} - graph class
$\chi_{c}(\mathcal{G})=$ size of minimal η-clustered coloring

$$
\text { absolute } \eta=\eta(s)
$$

Hadwiger's clustered conjecture:

Technical statement: (optimal)

$\mathcal{G}_{s}=K_{s+1}$ minor free graphs

$$
G \text { has no } H \text {-minor }
$$

$$
\chi_{c}\left(\mathcal{G}_{s}\right) \leqslant s
$$

$$
\forall_{s, t, H} \exists_{\eta=\eta(s, t, H)} \forall_{G}
$$

$$
G \text { has no } K_{s, t} \text {-subgraph }
$$

$$
\chi_{c}\left(\mathcal{G}_{s}\right) \leqslant s+2
$$

$$
\Rightarrow G \text { is }(s+2) \text {-colorable with clustering } \eta
$$

c is η-clustered if the size of
each monochromatic component is bounded by η
\mathcal{G} - graph class
$\chi_{c}(\mathcal{G})=$ size of minimal η-clustered coloring
absolute $\eta=\eta(s)$

2-clustered 3 coloring

Hadwiger's clustered conjecture:

Technical statement: (optimal)

$\mathcal{G}_{s}=K_{s+1}$ minor free graphs
$\chi_{c}\left(\mathcal{G}_{s}\right) \leqslant s$
$\chi_{c}\left(\mathcal{G}_{s}\right) \leqslant s+2$

$$
\forall_{s, t, H} \exists_{\eta=\eta(s, t, H)} \forall_{G}
$$

$$
G \text { has no } H \text {-minor }
$$

$$
G \text { has no } K_{s, t}-\text { subgraph }
$$

$\Rightarrow G$ is $(s+2)$-colorable with clustering η
c is η-clustered if the size of
each monochromatic component is bounded by η
\mathcal{G} - graph class
$\chi_{c}(\mathcal{G})=$ size of minimal η-clustered coloring
absolute $\eta=\eta(s)$

2-clustered 3 coloring

Hadwiger's clustered conjecture:

Technical statement: (optimal)
$\mathcal{G}_{s}=K_{s+1}$ minor free graphs
$\chi_{c}\left(\mathcal{G}_{s}\right) \leqslant s$
$\chi_{c}\left(\mathcal{G}_{s}\right) \leqslant s+2$

$$
\forall_{s, t, H} \exists_{\eta=\eta(s, t, H)} \forall_{G}
$$

$$
G \text { has no } H \text {-minor }
$$

$$
G \text { has no } K_{s, t}-\text { subgraph }
$$

$\Rightarrow G$ is $(s+2)$-colorable with clustering η
c is η-clustered if the size of
each monochromatic component is bounded by η
\mathcal{G} - graph class
$\chi_{c}(\mathcal{G})=$ size of minimal η-clustered coloring
absolute $\eta=\eta(s)$

We will prove

Hadwiger's clustered conjecture:

Technical statement: (optimal)

$\mathcal{G}_{s}=K_{s+1}$ minor free graphs
$\chi_{c}\left(\mathcal{G}_{s}\right) \leqslant s$
$\chi_{c}\left(\mathcal{G}_{s}\right) \leqslant s+2$
$\forall_{s, t, H} \exists_{\eta=\eta(s, t, H)} \forall_{G}$
planar $\quad(s+1)$
$\Rightarrow G$ is $(s+2)$-colorable with clustering η
$K_{s, s,}$ has K_{s+1} minor
c is η-clustered if the size of
each monochromatic component is bounded by η
\mathcal{G} - graph class
$\chi_{c}(\mathcal{G})=$ size of minimal η-clustered coloring
absolute $\eta=\eta(s)$

We will prove

Hadwiger's clustered conjecture:

Technical statement: (optimal)

$\mathcal{G}_{s}=K_{s+1}$ minor free graphs
$\chi_{c}\left(\mathcal{G}_{s}\right) \leqslant s$
$\chi_{c}\left(\mathcal{G}_{s}\right) \leqslant s+2$
$\operatorname{tw}(G) \leqslant \omega$

G has-no H-minor
G has no $K_{s, t}$-subgraph
$(s+1)$
$\Rightarrow G$ is $(s+2)$-colorable with clustering η
$K_{s, s,}$ has K_{s+1} minor
c is η-clustered if the size of
each monochromatic component is bounded by η
\mathcal{G} - graph class
$\chi_{c}(\mathcal{G})=$ size of minimal η-clustered coloring
absolute $\eta=\eta(s)$

We will prove

Hadwiger's clustered conjecture:

Technical statement: (optimal)

$\mathcal{G}_{s}=K_{s+1}$ minor free graphs
$\chi_{c}\left(\mathcal{G}_{s}\right) \leqslant s$
$\chi_{c}\left(\mathcal{G}_{s}\right) \leqslant s+2$
$\operatorname{tw}(G) \leqslant \omega$

$$
\forall_{s, t, t, f}{ }^{\omega} \exists \exists_{\eta=\eta\left(s, t, t, f^{\prime}\right)} \forall_{G}
$$

$$
G \text { has no } H \text {-minor }
$$

$$
G \text { has no } K_{s, t^{-}} \text {-subgraph }
$$

$(s+1)$ choosable
$\Rightarrow G$ is $(s+2)$-colorable with clustering η
$K_{s, s}$, has K_{s+1} minor

$$
\begin{aligned}
& \forall_{s, t, \omega} \exists_{\eta=\eta(s, t, \omega)} \forall_{G} \quad \bullet \operatorname{tw}(G) \leqslant \omega \\
& \quad \bullet G \text { has no } K_{s, t} \text {-subgraph } \\
& \quad \Rightarrow G \text { is }(s+1) \text {-choosable with clustering } \eta
\end{aligned}
$$

$$
\begin{array}{cl}
\forall_{s, t, \omega} \exists_{\eta=\eta(s, t, \omega)} \forall_{G} \quad \bullet \operatorname{tw}(G) \leqslant \omega \longleftarrow & \bullet G \text { has no } K_{s, t} \text {-subgraph } \\
\Rightarrow G \text { is }(s+1) \text {-choosable with clustering } \eta & ? ? ? \\
&
\end{array}
$$

$\forall_{s, t, \omega} \exists_{\eta=\eta(s, t, \omega)} \forall_{G} \quad \bullet \operatorname{tw}(G) \leqslant \omega \longleftarrow$
$\quad \bullet G$ has no $K_{s, t}$-subgraph
$\Rightarrow G$ is $(s+1)$-choosable with clustering η
(A, B) is a Separation if $A \cup B=G$ and $E(A) \cap E(B)=\emptyset$. $\operatorname{ord}(A, B):=|V(A \cap B)|$

$$
\forall_{s, t, \omega} \exists_{\eta=\eta(s, t, \omega)} \forall_{G}
$$

- $\operatorname{tw}(G) \leqslant \omega$
- G has no $K_{s, t}$-subgraph
$\Rightarrow G$ is $(s+1)$-choosable with clustering η
(A, B) is a Separation if $A \cup B=G$ and $E(A) \cap E(B)=\emptyset$. $\operatorname{ord}(A, B):=|V(A \cap B)|$

$$
\forall_{s, t, \omega} \exists_{\eta=\eta(s, t, \omega)} \forall_{G}
$$

- $\operatorname{tw}(G) \leqslant \omega$
- G has no $K_{s, t}$-subgraph
$\Rightarrow G$ is $(s+1)$-choosable with clustering η
(A, B) is a Separation if $A \cup B=G$ and $E(A) \cap E(B)=\emptyset$.
$\operatorname{ord}(A, B):=|V(A \cap B)|$
\mathcal{T} - set of some separation of order $<\theta$

$$
\forall_{s, t, \omega} \exists_{\eta=\eta(s, t, \omega)} \forall_{G}
$$

- $\operatorname{tw}(G) \leqslant \omega$
- G has no $K_{s, t}$-subgraph
$\Rightarrow G$ is $(s+1)$-choosable with clustering η
(A, B) is a Separation if $A \cup B=G$ and $E(A) \cap E(B)=\emptyset$.
$\operatorname{ord}(A, B):=|V(A \cap B)|$

${ }_{B} \quad \mathcal{T}$ is a Tangle of order θ if:
(T1) $\operatorname{ord}(A, B)<\theta$, either $(A, B) \in \mathcal{T}$ or $(B, A) \in \mathcal{T}$
\mathcal{T} - set of some separation of order $<\theta$

$$
\forall_{s, t, \omega} \exists_{\eta=\eta(s, t, \omega)} \forall_{G}
$$

- $\operatorname{tw}(G) \leqslant \omega$
$\Rightarrow G$ is $(s+1)$-choosable with clustering η
(A, B) is a Separation if $A \cup B=G$ and $E(A) \cap E(B)=\emptyset$.
$\operatorname{ord}(A, B):=|V(A \cap B)|$

$$
\mathcal{T} \text { - set of some separation of order }<\theta
$$

$B \quad \quad \mathcal{T}$ is a Tangle of order θ if:
(T1) $\operatorname{ord}(A, B)<\theta$, either $(A, B) \in \mathcal{T}$ or $(B, A) \in \mathcal{T}$
(T2) $\left(A_{1}, B_{1}\right),\left(A_{2}, B_{2}\right),\left(A_{3}, B_{3}\right) \in \mathcal{T}$, then $A_{1} \cup A_{2} \cup A_{3} \neq G$
$\forall_{s, t, \omega} \exists_{\eta=\eta(s, t, \omega)} \forall_{G}$

- $\operatorname{tw}(G) \leqslant \omega$
- G has no $K_{s, t}$-subgraph
$\Rightarrow G$ is $(s+1)$-choosable with clustering η
(A, B) is a Separation if $A \cup B=G$ and $E(A) \cap E(B)=\emptyset$.
$\operatorname{ord}(A, B):=|V(A \cap B)|$

$$
\mathcal{T} \text { - set of some separation of order }<\theta
$$

${ }_{B} \quad \mathcal{T}$ is a Tangle of order θ if:
(T1) $\operatorname{ord}(A, B)<\theta$, either $(A, B) \in \mathcal{T}$ or $(B, A) \in \mathcal{T}$
(T2) $\left(A_{1}, B_{1}\right),\left(A_{2}, B_{2}\right),\left(A_{3}, B_{3}\right) \in \mathcal{T}$, then $A_{1} \cup A_{2} \cup A_{3} \neq G$
(T3) $(A, B) \in \mathcal{T}$, then $V(A) \neq V(G)$
$\forall_{s, t, \omega} \exists_{\eta=\eta(s, t, \omega)} \forall_{G}$

- $\operatorname{tw}(G) \leqslant \omega$
- G has no $K_{s, t}$-subgraph
$\Rightarrow G$ is $(s+1)$-choosable with clustering η
(A, B) is a Separation if $A \cup B=G$ and $E(A) \cap E(B)=\emptyset$.
$\operatorname{ord}(A, B):=|V(A \cap B)|$
\mathcal{T} - set of some separation of order $<\theta$

$B \quad \mathcal{T}$ is a Tangle of order θ if:
(T1) $\operatorname{ord}(A, B)<\theta$, either $(A, B) \in \mathcal{T}$ or $(B, A) \in \mathcal{T}$
(T2) $\left(A_{1}, B_{1}\right),\left(A_{2}, B_{2}\right),\left(A_{3}, B_{3}\right) \in \mathcal{T}$, then $A_{1} \cup A_{2} \cup A_{3} \neq G$
(T3) $(A, B) \in \mathcal{T}$, then $V(A) \neq V(G)$
Example: C fixed cycle in G
$\mathcal{T}=\{(A, B):$ ord $=1, C \subset B\}$

$$
\forall_{s, t, \omega} \exists_{\eta=\eta(s, t, \omega)} \forall_{G}
$$

- $\operatorname{tw}(G) \leqslant \omega$
- G has no $K_{s, t}$-subgraph
$\Rightarrow G$ is $(s+1)$-choosable with clustering η
(A, B) is a Separation if $A \cup B=G$ and $E(A) \cap E(B)=\emptyset$.
$\operatorname{ord}(A, B):=|V(A \cap B)|$

B
(T1) $\operatorname{ord}(A, B)<\theta$, either $(A, B) \in \mathcal{T}$ or $(B, A) \in \mathcal{T}$
(T2) $\left(A_{1}, B_{1}\right),\left(A_{2}, B_{2}\right),\left(A_{3}, B_{3}\right) \in \mathcal{T}$, then $A_{1} \cup A_{2} \cup A_{3} \neq G$
(T3) $(A, B) \in \mathcal{T}$, then $V(A) \neq V(G)$
Example: C fixed cycle in G
$\mathcal{T}=\{(A, B):$ ord $=1, C \subset B\}$
\mathcal{T} - set of some separation of order $<\theta$ \mathcal{T} is a Tangle of order θ if:

$$
\forall_{s, t, \omega} \exists_{\eta=\eta(s, t, \omega)} \forall_{G}
$$

- $\operatorname{tw}(G) \leqslant \omega$
- G has no $K_{s, t}$-subgraph
$\Rightarrow G$ is $(s+1)$-choosable with clustering η
(A, B) is a Separation if $A \cup B=G$ and $E(A) \cap E(B)=\emptyset$.
$\operatorname{ord}(A, B):=|V(A \cap B)|$

B
(T1) $\operatorname{ord}(A, B)<\theta$, either $(A, B) \in \mathcal{T}$ or $(B, A) \in \mathcal{T}$
(T2) $\left(A_{1}, B_{1}\right),\left(A_{2}, B_{2}\right),\left(A_{3}, B_{3}\right) \in \mathcal{T}$, then $A_{1} \cup A_{2} \cup A_{3} \neq G$
(T3) $(A, B) \in \mathcal{T}$, then $V(A) \neq V(G)$
Example: C fixed cycle in G
$\mathcal{T}=\{(A, B):$ ord $=1, C \subset B\}$
\mathcal{T} - tangle of order 2

$$
\forall_{s, t, \omega} \exists_{\eta=\eta(s, t, \omega)} \forall_{G}
$$

- $\operatorname{tw}(G) \leqslant \omega$
- G has no $K_{s, t}$-subgraph
$\Rightarrow G$ is $(s+1)$-choosable with clustering η

Advanced example: $G=\boxplus_{k}$ $\mathcal{T}=\{(A, B):$ ord $<k$, full row $\subset B\}$
(A, B) is a Separation if $A \cup B=G$ and $E(A) \cap E(B)=\emptyset$.
$\operatorname{ord}(A, B):=|V(A \cap B)|$
\mathcal{T} - set of some separation of order $<\theta$

B \mathcal{T} is a Tangle of order θ if:
(T1) $\operatorname{ord}(A, B)<\theta$, either $(A, B) \in \mathcal{T}$ or $(B, A) \in \mathcal{T}$
(T2) $\left(A_{1}, B_{1}\right),\left(A_{2}, B_{2}\right),\left(A_{3}, B_{3}\right) \in \mathcal{T}$, then $A_{1} \cup A_{2} \cup A_{3} \neq G$
(T3) $(A, B) \in \mathcal{T}$, then $V(A) \neq V(G)$
Example: C fixed cycle in G
$\mathcal{T}=\{(A, B):$ ord $=1, C \subset B\}$
\mathcal{T} - tangle of order 2

$$
\begin{aligned}
& \forall_{s, t, \omega} \exists_{\eta=\eta(s, t, \omega)} \forall_{G} \\
& \text { - } \operatorname{tw}(G) \leqslant \omega \\
& \text { - } G \text { has no } K_{s, t} \text {-subgraph } \\
& :=|V(A \cap B)| \\
& \Rightarrow G \text { is }(s+1) \text {-choosable with clustering } \eta \\
& \mathcal{T} \text { - ...order }<\theta \\
& \text { (T1) }(A, B) \in \mathcal{T} \text { or }(B, A) \in \mathcal{T} \\
& \text { (T2) } A_{1} \cup A_{2} \cup A_{3} \neq G \\
& \text { (T3) } V(A) \neq V(G)
\end{aligned}
$$

$$
\forall_{s, t, \omega} \exists_{\eta=\eta(s, t, \omega)} \forall_{G}
$$

- $\operatorname{tw}(G) \leqslant \omega$
- G has no $K_{s, t}$-subgraph

$$
:=|V(A \cap B)|
$$

$\Rightarrow G$ is $(s+1)$-choosable with clustering η

- $\operatorname{tw}(G) \leqslant \omega$
\mathcal{T} - ...order $<\theta$
(T1) $(A, B) \in \mathcal{T}$ or $(B, A) \in \mathcal{T}$
(T2) $A_{1} \cup A_{2} \cup A_{3} \neq G$
(T3) $V(A) \neq V(G)$

$$
:=\text { no tangle of order } \omega+2
$$

$$
\begin{aligned}
& \forall_{s, t, \omega} \exists_{\eta=\eta(s, t, \omega)} \forall_{G} \\
& \text { - } \operatorname{tw}(G) \leqslant \omega \quad(:=\text { no tangle of or der } \omega+2) \\
& \text { - } G \text { has no } K_{s, t} \text {-subgraph } \\
& \Rightarrow G \text { is }(s+1) \text {-choosable with clustering } \eta \\
& \operatorname{ord}(A, B) \\
& :=|V(A \cap B)| \\
& \mathcal{T} \text { - ...order }<\theta \\
& \text { (T1) }(A, B) \in \mathcal{T} \text { or }(B, A) \in \mathcal{T} \\
& \text { (T2) } A_{1} \cup A_{2} \cup A_{3} \neq G \\
& \text { (T3) } V(A) \neq V(G)
\end{aligned}
$$

$$
\begin{aligned}
& \forall_{s, t, \omega} \exists_{\eta=\eta(s, t, \omega)} \forall_{G} \quad \bullet \operatorname{tw}(G) \leqslant \omega \quad(:=\text { no tangle of or oder } \omega+2) \\
& \Rightarrow G \text { is }(s+1) \text {-choosable with clustering } \eta \\
& \mathcal{T} \text { - ...order }<\theta \\
& \text { (T1) }(A, B) \in \mathcal{T} \text { or }(B, A) \in \mathcal{T} \\
& \text { (T2) } A_{1} \cup A_{2} \cup A_{3} \neq G \\
& \text { (T3) } V(A) \neq V(G)
\end{aligned}
$$

$$
\begin{aligned}
& \forall_{s, t, \omega} \exists_{\eta=\eta(s, t, \omega)} \forall_{G} \quad \bullet \operatorname{tw}(G) \leqslant \omega \quad(:=\text { no tangle of or der } \omega+2) \\
& \text { - } G \text { has no } K_{s, t} \text {-subgraph } \\
& \Rightarrow G \text { is }(s+1) \text {-choosable with clustering } \eta \\
& \text { (T1) }(A, B) \in \mathcal{T} \text { or }(B, A) \in \mathcal{T} \\
& \text { (T2) } A_{1} \cup A_{2} \cup A_{3} \neq G \\
& \text { (T3) } V(A) \neq V(G)
\end{aligned}
$$

$$
\begin{aligned}
& \forall_{s, t, \omega} \exists_{\eta=\eta(s, t, \omega)} \forall_{G} \quad \bullet \operatorname{tw}(G) \leqslant \omega \quad(:=\text { no tangle of or der } \omega+2) \\
& \text { - } G \text { has no } K_{s, t} \text {-subgraph } \\
& \Rightarrow G \text { is }(s+1) \text {-choosable with clustering } \eta \\
& \operatorname{ord}(A, B) \\
& :=|V(A \cap B)| \\
& \mathcal{T} \text { - ...order }<\theta \\
& \text { (T1) }(A, B) \in \mathcal{T} \text { or }(B, A) \in \mathcal{T} \\
& \text { (T2) } A_{1} \cup A_{2} \cup A_{3} \neq G \\
& \text { (T3) } V(A) \neq V(G)
\end{aligned}
$$

$$
\begin{aligned}
& \forall_{s, t, \omega} \exists_{\eta=\eta(s, t, \omega)} \forall_{G} \\
& \text { - } \operatorname{tw}(G) \leqslant \omega \quad(:=\text { no tangle of order } \omega+2) \\
& \Rightarrow G \text { is }(s+1) \text {-choosable with clustering } \eta \\
& X \subset V(G) \\
& \text { ord }(A, B) \\
& :=|V(A \cap B)| \\
& \text { (T1) }(A, B) \in \mathcal{T} \text { or }(B, A) \in \mathcal{T} \\
& \text { (T2) } A_{1} \cup A_{2} \cup A_{3} \neq G \\
& \text { (T3) } V(A) \neq V(G)
\end{aligned}
$$

$$
\left|N^{\geqslant s}(X)\right| \leqslant(t-1) \cdot\binom{|X|}{s}+1
$$

$$
\forall_{s, t, \omega} \exists_{\eta=\eta(s, t, \omega)} \forall_{G}
$$

- $\operatorname{tw}(G) \leqslant \omega \quad(:=$ no tangle of of der $\omega+2)$
$\Rightarrow G$ is $(s+1)$-choosable with clustering η
We start with $|L(v)|=s+1$
$\operatorname{ord}(A, B)$

$$
:=|V(A \cap B)|
$$

\mathcal{T} - ...order $<\theta$
(T1) $(A, B) \in \mathcal{T}$ or $(B, A) \in \mathcal{T}$
(T2) $A_{1} \cup A_{2} \cup A_{3} \neq G$
(T3) $V(A) \neq V(G)$

$$
\left|N^{\geqslant s}(X)\right| \leqslant f(|X|, s, t)
$$

$\forall_{s, t, \omega} \exists_{\eta=\eta(s, t, \omega)} \forall_{G}$

- $\operatorname{tw}(G) \leqslant \omega \quad(:=$ no tangle of order $\omega+2)$
$\Rightarrow G$ is $(s+1)$-choosable with clustering η
We start with $|L(v)|=s+1$
Iteratively we enlarge colored set Y (until not too big)
$\operatorname{ord}(A, B)$

$$
:=|V(A \cap B)|
$$

\mathcal{T} - ...order $<\theta$
(T1) $(A, B) \in \mathcal{T}$ or $(B, A) \in \mathcal{T}$
(T2) $A_{1} \cup A_{2} \cup A_{3} \neq G$
(T3) $V(A) \neq V(G)$

$$
\left|N^{\geqslant s}(X)\right| \leqslant f(|X|, s, t)
$$

$\forall_{s, t, \omega} \exists_{\eta=\eta(s, t, \omega)} \forall_{G}$

- $\operatorname{tw}(G) \leqslant \omega \quad(:=$ no tangle of order $\omega+2)$
$\Rightarrow G$ is $(s+1)$-choosable with clustering η
We start with $|L(v)|=s+1$
Iteratively we enlarge colored set Y (until not too big) Invariant:
- G has no $K_{s, t}$-subgraph $\operatorname{ord}(A, B)$

$$
:=|V(A \cap B)|
$$

\mathcal{T} - ...order $<\theta$
(T1) $(A, B) \in \mathcal{T}$ or $(B, A) \in \mathcal{T}$
(T2) $A_{1} \cup A_{2} \cup A_{3} \neq G$
(T3) $V(A) \neq V(G)$
$\left|N^{\geqslant s}(X)\right| \leqslant f(|X|, s, t)$
$\forall_{s, t, \omega} \exists_{\eta=\eta(s, t, \omega)} \forall_{G}$

- $\operatorname{tw}(G) \leqslant \omega \quad(:=$ no tangle of or der $\omega+2)$
$\Rightarrow G$ is $(s+1)$-choosable with clustering η
We start with $|L(v)|=s+1$
Iteratively we enlarge colored set Y (until not too big) Invariant:
- G has no $K_{s, t}$-subgraph $\operatorname{ord}(A, B)$

$$
:=|V(A \cap B)|
$$

$$
\mathcal{T}-\ldots \text { order }<\theta
$$

(T1) $(A, B) \in \mathcal{T}$ or $(B, A) \in \mathcal{T}$
(T2) $A_{1} \cup A_{2} \cup A_{3} \neq G$
(T3) $V(A) \neq V(G)$

$$
\left|N^{\geqslant s}(X)\right| \leqslant f(|X|, s, t)
$$

$\forall_{s, t, \omega} \exists_{\eta=\eta(s, t, \omega)} \forall_{G}$

- $\operatorname{tw}(G) \leqslant \omega \quad(:=$ no tangle of order $\omega+2)$
- G has no $K_{s, t}$-subgraph $\operatorname{ord}(A, B)$

$$
:=|V(A \cap B)|
$$

$\Rightarrow G$ is $(s+1)$-choosable with clustering η
We start with $|L(v)|=s+1$
Iteratively we enlarge colored set Y (until not too big) Invariant:

$$
|L(v)|=1 \quad N^{\geqslant s}(Y)
$$

removed nbs colors!

$$
|L(v)| \geqslant 2
$$

$N^{<s}(Y)$

$$
|L(v)|=s+1
$$

$\forall_{s, t, \omega} \exists_{\eta=\eta(s, t, \omega)} \forall_{G}$

- $\operatorname{tw}(G) \leqslant \omega \quad(:=$ no tangle of order $\omega+2)$
- G has no $K_{s, t}$-subgraph $\operatorname{ord}(A, B)$

$$
:=|V(A \cap B)|
$$

$\Rightarrow G$ is $(s+1)$-choosable with clustering η
We start with $|L(v)|=s+1$
Iteratively we enlarge colored set Y (until not too big)
Invariant:

$$
N^{\geqslant s}(Y) \quad \text { Start with } Y=\{v\} \text { and any color }
$$

removed nbs colors!

$$
|L(v)| \geqslant 2
$$

$N^{<s}(Y)$

$$
|L(v)|=s+1
$$

$\forall_{s, t, \omega} \exists_{\eta=\eta(s, t, \omega)} \forall_{G}$

- $\operatorname{tw}(G) \leqslant \omega \quad(:=$ no tangle of order $\omega+2)$
- G has no $K_{s, t}$-subgraph $\operatorname{ord}(A, B)$

$$
:=|V(A \cap B)|
$$

$\Rightarrow G$ is $(s+1)$-choosable with clustering η
We start with $|L(v)|=s+1$
Iteratively we enlarge colored set Y (until not too big)
Invariant:

$$
N^{\geqslant s}(Y)
$$

Start with $Y=\{v\}$ and any color
removed nbs colors!

$$
\text { If } N^{\geqslant s}(Y)=\emptyset \text { color some } z \in N^{<s}(Y)
$$

$$
|L(v)| \geqslant 2
$$

$$
|L(v)|=1
$$

$N^{<s}(Y)$

$$
|L(v)|=s+1
$$

$\forall_{s, t, \omega} \exists_{\eta=\eta(s, t, \omega)} \forall_{G}$

- $\operatorname{tw}(G) \leqslant \omega \quad(:=$ no tangle of order $\omega+2)$
$\Rightarrow G$ is $(s+1)$-choosable with clustering η
We start with $|L(v)|=s+1$
Iteratively we enlarge colored set Y (until not too big)

$$
\begin{aligned}
& \operatorname{ord}(A, B) \\
& \quad:=|V(A \cap B)|
\end{aligned}
$$

$$
\mathcal{T}-\ldots \text { order }<\theta
$$

(T1) $(A, B) \in \mathcal{T}$ or $(B, A) \in \mathcal{T}$
(T2) $A_{1} \cup A_{2} \cup A_{3} \neq G$
(T3) $V(A) \neq V(G)$

$$
\left|N^{\geqslant s}(X)\right| \leqslant f(|X|, s, t)
$$

Start with $Y=\{v\}$ and any color If $N^{\geqslant s}(Y)=\emptyset$ color some $z \in N^{<s}(Y)$

Otherwise:

$$
\forall_{s, t, \omega} \exists_{\eta=\eta(s, t, \omega)} \forall_{G}
$$

- $\operatorname{tw}(G) \leqslant \omega \quad(:=$ no tangle of or der $\omega+2)$
- G has no $K_{s, t}$-subgraph $\operatorname{ord}(A, B)$

$$
:=|V(A \cap B)|
$$

$\Rightarrow G$ is $(s+1)$-choosable with clustering η
We start with $|L(v)|=s+1$
Iteratively we enlarge colored set Y (until not too big)

$$
\mathcal{T}-\ldots \text { order }<\theta
$$

(T1) $(A, B) \in \mathcal{T}$ or $(B, A) \in \mathcal{T}$
(T2) $A_{1} \cup A_{2} \cup A_{3} \neq G$
(T3) $V(A) \neq V(G)$

$$
\left|N^{\geqslant s}(X)\right| \leqslant f(|X|, s, t)
$$

Start with $Y=\{v\}$ and any color
If $N^{\geqslant s}(Y)=\emptyset$ color some $z \in N^{<s}(Y)$

Otherwise:

$N^{<s}$
$\forall_{s, t, \omega} \exists_{\eta=\eta(s, t, \omega)} \forall_{G}$

- $\operatorname{tw}(G) \leqslant \omega \quad(:=$ no tangle of order $\omega+2)$
$\Rightarrow G$ is $(s+1)$-choosable with clustering η
We start with $|L(v)|=s+1$
Iteratively we enlarge colored set Y (until not too big)

$$
\begin{aligned}
& \operatorname{ord}(A, B) \\
& \quad:=|V(A \cap B)|
\end{aligned}
$$

$$
\mathcal{T}-\ldots \text { order }<\theta
$$

(T1) $(A, B) \in \mathcal{T}$ or $(B, A) \in \mathcal{T}$
(T2) $A_{1} \cup A_{2} \cup A_{3} \neq G$
(T3) $V(A) \neq V(G)$

$$
\left|N^{\geqslant s}(X)\right| \leqslant f(|X|, s, t)
$$

Start with $Y=\{v\}$ and any color If $N^{\geqslant s}(Y)=\emptyset$ color some $z \in N^{<s}(Y)$

Otherwise:

$$
\forall_{s, t, \omega} \exists_{\eta=\eta(s, t, \omega)} \forall_{G}
$$

- $\operatorname{tw}(G) \leqslant \omega \quad(:=$ no tangle of or der $\omega+2)$
$\Rightarrow G$ is $(s+1)$-choosable with clustering η

We start with $|L(v)|=s+1$
Iteratively we enlarge colored set Y (until not too big)

$$
\begin{aligned}
& \operatorname{ord}(A, B) \\
& \quad:=|V(A \cap B)|
\end{aligned}
$$

- G has no $K_{s, t}$-subgraph

$$
\mathcal{T}-\ldots \text { order }<\theta
$$

(T1) $(A, B) \in \mathcal{T}$ or $(B, A) \in \mathcal{T}$
(T2) $A_{1} \cup A_{2} \cup A_{3} \neq G$
(T3) $V(A) \neq V(G)$

$$
\left|N^{\geqslant s}(X)\right| \leqslant f(|X|, s, t)
$$

Start with $Y=\{v\}$ and any color
If $N^{\geqslant s}(Y)=\emptyset$ color some $z \in N^{<s}(Y)$

Otherwise:

$$
\forall_{s, t, \omega} \exists_{\eta=\eta(s, t, \omega)} \forall_{G}
$$

- $\operatorname{tw}(G) \leqslant \omega \quad(:=$ no tangle of or der $\omega+2)$
$\Rightarrow G$ is $(s+1)$-choosable with clustering η
We start with $|L(v)|=s+1$
Iteratively we enlarge colored set Y (until not too big)

$$
\begin{aligned}
& \operatorname{ord}(A, B) \\
& \quad:=|V(A \cap B)|
\end{aligned}
$$

\mathcal{T} - ...order $<\theta$
(T1) $(A, B) \in \mathcal{T}$ or $(B, A) \in \mathcal{T}$
(T2) $A_{1} \cup A_{2} \cup A_{3} \neq G$
(T3) $V(A) \neq V(G)$

$$
\left|N^{\geqslant s}(X)\right| \leqslant f(|X|, s, t)
$$

Start with $Y=\{v\}$ and any color
If $N^{\geqslant s}(Y)=\emptyset$ color some $z \in N^{<s}(Y)$

Otherwise:

$\forall_{s, t, \omega} \exists_{\eta=\eta(s, t, \omega)} \forall_{G}$

- $\operatorname{tw}(G) \leqslant \omega \quad(:=$ no tangle of order $\omega+2)$
- G has no $K_{s, t}$-subgraph
$\operatorname{ord}(A, B)$

$$
:=|V(A \cap B)|
$$

$\Rightarrow G$ is $(s+1)$-choosable with clustering η
We start with $|L(v)|=s+1$
Iteratively we enlarge colored set Y (until not too big)

$$
\mathcal{T}-\ldots \text { order }<\theta
$$

(T1) $(A, B) \in \mathcal{T}$ or $(B, A) \in \mathcal{T}$
(T2) $A_{1} \cup A_{2} \cup A_{3} \neq G$
(T3) $V(A) \neq V(G)$

$$
\left|N^{\geqslant s}(X)\right| \leqslant f(|X|, s, t)
$$

Start with $Y=\{v\}$ and any color
If $N^{\geqslant s}(Y)=\emptyset$ color some $z \in N^{<s}(Y)$
Otherwise:

$$
\begin{aligned}
& \forall_{s, t, \omega} \exists_{\eta=\eta(s, t, \omega)} \forall_{G} \\
& \text { - } \operatorname{tw}(G) \leqslant \omega \quad(:=\text { no tangle of order } \omega+2) \\
& \Rightarrow G \text { is }(s+1) \text {-choosable with clustering } \eta \\
& \text { We start with }|L(v)|=s+1 \\
& \text { Iteratively we enlarge colored set } Y \text { (until not too big) } \\
& \mathcal{T}_{\theta}:=\left\{(A, B)_{\theta}:|V(A) \cap Y| \leqslant 3 \theta\right\}|Y|>9 \theta \quad \theta:=\omega+2 \\
& \operatorname{ord}(A, B) \\
& :=|V(A \cap B)| \\
& \mathcal{T} \text { - ...order }<\theta \\
& \text { (T1) }(A, B) \in \mathcal{T} \text { or }(B, A) \in \mathcal{T} \\
& \text { (T2) } A_{1} \cup A_{2} \cup A_{3} \neq G \\
& \text { (T3) } V(A) \neq V(G) \\
& \left|N^{\geqslant s}(X)\right| \leqslant f(|X|, s, t)
\end{aligned}
$$

Start with $Y=\{v\}$ and any color
If $N^{\geqslant s}(Y)=\emptyset$ color some $z \in N^{<s}(Y)$
Otherwise:

$\forall_{s, t, \omega} \exists_{\eta=\eta(s, t, \omega)} \forall_{G}$

- $\operatorname{tw}(G) \leqslant \omega \quad(:=$ no tangle of order $\omega+2)$
- G has no $K_{s, t}$-subgraph $\operatorname{ord}(A, B)$

$$
:=|V(A \cap B)|
$$

$\Rightarrow G$ is $(s+1)$-choosable with clustering η
We start with $|L(v)|=s+1$
Iteratively we enlarge colored set Y (until not too big)
$\mathcal{T}_{\theta}:=\left\{(A, B)_{\theta}:|V(A) \cap Y| \leqslant 3 \theta\right\}|Y|>9 \theta \quad \theta:=\omega+2$
is not a tangle!
But:

Start with $Y=\{v\}$ and any color
If $N^{\geqslant s}(Y)=\emptyset$ color some $z \in N^{<s}(Y)$

Otherwise:

$$
\forall_{s, t, \omega} \exists_{\eta=\eta(s, t, \omega)} \forall_{G}
$$

- $\operatorname{tw}(G) \leqslant \omega \quad(:=$ no tangle of order $\omega+2)$
- G has no $K_{s, t}$-subgraph $\operatorname{ord}(A, B)$

$$
:=|V(A \cap B)|
$$

$\Rightarrow G$ is $(s+1)$-choosable with clustering η
We start with $|L(v)|=s+1$
Iteratively we enlarge colored set Y (until not too big)
$\mathcal{T}_{\theta}:=\left\{(A, B)_{\theta}:|V(A) \cap Y| \leqslant 3 \theta\right\}|Y|>9 \theta \quad \theta:=\omega+2$
\mathcal{T} - ...order $<\theta$
(T1) $(A, B) \in \mathcal{T}$ or $(B, A) \in \mathcal{T}$
(T2) $A_{1} \cup A_{2} \cup A_{3} \neq G$
(T3) $V(A) \neq V(G)$

$$
\left|N^{\geqslant s}(X)\right| \leqslant f(|X|, s, t)
$$

is not a tangle!
But: (T2), (T3) - OK

Start with $Y=\{v\}$ and any color
If $N^{\geqslant s}(Y)=\emptyset$ color some $z \in N^{<s}(Y)$

Otherwise:

$$
\forall_{s, t, \omega} \exists_{\eta=\eta(s, t, \omega)} \forall_{G}
$$

- $\operatorname{tw}(G) \leqslant \omega \quad(:=$ no tangle of order $\omega+2)$
- G has no $K_{s, t}$-subgraph $\operatorname{ord}(A, B)$

$$
:=|V(A \cap B)|
$$

$\Rightarrow G$ is $(s+1)$-choosable with clustering η
We start with $|L(v)|=s+1$
Iteratively we enlarge colored set Y (until not too big)
$\mathcal{T}_{\theta}:=\left\{(A, B)_{\theta}:|V(A) \cap Y| \leqslant 3 \theta\right\}|Y|>9 \theta \quad \theta:=\omega+2$
\mathcal{T} - ...order $<\theta$
(T1) $(A, B) \in \mathcal{T}$ or $(B, A) \in \mathcal{T}$
(T2) $A_{1} \cup A_{2} \cup A_{3} \neq G$
(T3) $V(A) \neq V(G)$

$$
\left|N^{\geqslant s}(X)\right| \leqslant f(|X|, s, t)
$$

But: (T2), (T3) - OK $\Rightarrow \sim(\mathrm{T} 1)$ is not a tangle!

Start with $Y=\{v\}$ and any color
If $N^{\geqslant s}(Y)=\emptyset$ color some $z \in N^{<s}(Y)$

Otherwise:

$$
\forall_{s, t, \omega} \exists_{\eta=\eta(s, t, \omega)} \forall_{G}
$$

- $\operatorname{tw}(G) \leqslant \omega \quad(:=$ no tangle of order $\omega+2)$
$\Rightarrow G$ is $(s+1)$-choosable with clustering η
We start with $|L(v)|=s+1$
Iteratively we enlarge colored set Y (until not too big)
$\mathcal{T}_{\theta}:=\left\{(A, B)_{\theta}:|V(A) \cap Y| \leqslant 3 \theta\right\}|Y|>9 \theta \quad \theta:=\omega+2$
$\operatorname{ord}(A, B)$

$$
:=|V(A \cap B)|
$$

\mathcal{T} - ...order $<\theta$
(T1) $(A, B) \in \mathcal{T}$ or $(B, A) \in \mathcal{T}$
(T2) $A_{1} \cup A_{2} \cup A_{3} \neq G$
(T3) $V(A) \neq V(G)$

$$
\left|N^{\geqslant s}(X)\right| \leqslant f(|X|, s, t)
$$

But: (T2), (T3) - OK $\Rightarrow \sim(\mathrm{T} 1)$ is not a tangle!

Start with $Y=\{v\}$ and any color
If $N^{\geqslant s}(Y)=\emptyset$ color some $z \in N^{<s}(Y)$

Otherwise:

$$
\forall_{s, t, \omega} \exists_{\eta=\eta(s, t, \omega)} \forall_{G}
$$

- $\operatorname{tw}(G) \leqslant \omega \quad(:=$ no tangle of order $\omega+2)$
- G has no $K_{s, t}$-subgraph $\operatorname{ord}(A, B)$

$$
:=|V(A \cap B)|
$$

$\Rightarrow G$ is $(s+1)$-choosable with clustering η
We start with $|L(v)|=s+1$
Iteratively we enlarge colored set Y (until not too big)
$\mathcal{T}_{\theta}:=\left\{(A, B)_{\theta}:|V(A) \cap Y| \leqslant 3 \theta\right\} \quad|Y|>9 \theta \quad \theta:=\omega+2$
\mathcal{T} - ...order $<\theta$
(T1) $(A, B) \in \mathcal{T}$ or $(B, A) \in \mathcal{T}$
(T2) $A_{1} \cup A_{2} \cup A_{3} \neq G$
(T3) $V(A) \neq V(G)$

$$
\left|N^{\geqslant s}(X)\right| \leqslant f(|X|, s, t)
$$

Start with $Y=\{v\}$ and any color
If $N^{\geqslant s}(Y)=\emptyset$ color some $z \in N^{<s}(Y)$

But: (T2), (T3) - OK $\Rightarrow \sim(\mathrm{T} 1)$

Do this starting from $Y \cup(A \cap B)$

is not a tangle!

Otherwise:

$$
\forall_{s, t, \omega} \exists_{\eta=\eta(s, t, \omega)} \forall_{G}
$$

- $\operatorname{tw}(G) \leqslant \omega \quad(:=$ no tangle of order $\omega+2)$
- G has no $K_{s, t}$-subgraph $\operatorname{ord}(A, B)$

$$
:=|V(A \cap B)|
$$

$\Rightarrow G$ is $(s+1)$-choosable with clustering η
We start with $|L(v)|=s+1$
Iteratively we enlarge colored set Y (until not too big)
$\mathcal{T}_{\theta}:=\left\{(A, B)_{\theta}:|V(A) \cap Y| \leqslant 3 \theta\right\} \quad|Y|>9 \theta \quad \theta:=\omega+2$
\mathcal{T} - ...order $<\theta$
(T1) $(A, B) \in \mathcal{T}$ or $(B, A) \in \mathcal{T}$
(T2) $A_{1} \cup A_{2} \cup A_{3} \neq G$
(T3) $V(A) \neq V(G)$

$$
\left|N^{\geqslant s}(X)\right| \leqslant f(|X|, s, t)
$$

Start with $Y=\{v\}$ and any color
If $N^{\geqslant s}(Y)=\emptyset$ color some $z \in N^{<s}(Y)$

But: (T2), (T3) - OK $\Rightarrow \sim(\mathrm{T} 1)$

Do this starting from $Y \cup(A \cap B)$

is not a tangle!

Otherwise:

$$
\forall_{s, t, \omega} \exists_{\eta=\eta(s, t, \omega)} \forall_{G}
$$

- $\operatorname{tw}(G) \leqslant \omega \quad(:=$ no tangle of order $\omega+2)$
- G has no $K_{s, t}$-subgraph $\operatorname{ord}(A, B)$

$$
:=|V(A \cap B)|
$$

$\Rightarrow G$ is $(s+1)$-choosable with clustering η
We start with $|L(v)|=s+1$
Iteratively we enlarge colored set Y (until not too big)
$\mathcal{T}_{\theta}:=\left\{(A, B)_{\theta}:|V(A) \cap Y| \leqslant 3 \theta\right\} \quad|Y|>9 \theta \quad \theta:=\omega+2$
\mathcal{T} - ...order $<\theta$
(T1) $(A, B) \in \mathcal{T}$ or $(B, A) \in \mathcal{T}$
(T2) $A_{1} \cup A_{2} \cup A_{3} \neq G$
(T3) $V(A) \neq V(G)$

$$
\left|N^{\geqslant s}(X)\right| \leqslant f(|X|, s, t)
$$

But: (T2), (T3) - OK $\Rightarrow \sim(\mathrm{T} 1)$ is not a tangle!

Do this starting from $Y \cup(A \cap B)$

Start with $Y=\{v\}$ and any color
If $N^{\geqslant s}(Y)=\emptyset$ color some $z \in N^{<s}(Y)$

Otherwise:

$$
\forall_{s, t, \omega} \exists_{\eta=\eta(s, t, \omega)} \forall_{G}
$$

- $\operatorname{tw}(G) \leqslant \omega \quad(:=$ no tangle of order $\omega+2)$
- G has no $K_{s, t}$-subgraph $\operatorname{ord}(A, B)$

$$
:=|V(A \cap B)|
$$

$\Rightarrow G$ is $(s+1)$-choosable with clustering η
We start with $|L(v)|=s+1$
Iteratively we enlarge colored set Y (until not too big)
$\mathcal{T}_{\theta}:=\left\{(A, B)_{\theta}:|V(A) \cap Y| \leqslant 3 \theta\right\} \quad|Y|>9 \theta \quad \theta:=\omega+2$
\mathcal{T} - ...order $<\theta$
(T1) $(A, B) \in \mathcal{T}$ or $(B, A) \in \mathcal{T}$
(T2) $A_{1} \cup A_{2} \cup A_{3} \neq G$
(T3) $V(A) \neq V(G)$

$$
\left|N^{\geqslant s}(X)\right| \leqslant f(|X|, s, t)
$$

is not a tangle!
But: (T2), (T3) - OK $\Rightarrow \sim(\mathrm{T} 1)$

Do this starting from $Y \cup(A \cap B)$

Start with $Y=\{v\}$ and any color
If $N^{\geqslant s}(Y)=\emptyset$ color some $z \in N^{<s}(Y)$

Otherwise:

$$
\forall_{s, t, \omega} \exists_{\eta=\eta(s, t, \omega)} \forall_{G}
$$

- $\operatorname{tw}(G) \leqslant \omega \quad(:=$ no tangle of order $\omega+2)$
- G has no $K_{s, t}$-subgraph $\operatorname{ord}(A, B)$

$$
:=|V(A \cap B)|
$$

$\Rightarrow G$ is $(s+1)$-choosable with clustering η
We start with $|L(v)|=s+1$
Iteratively we enlarge colored set Y (until not too big)
$\mathcal{T}_{\theta}:=\left\{(A, B)_{\theta}:|V(A) \cap Y| \leqslant 3 \theta\right\} \quad|Y|>9 \theta \quad \theta:=\omega+2$
\mathcal{T} - ...order $<\theta$
(T1) $(A, B) \in \mathcal{T}$ or $(B, A) \in \mathcal{T}$
(T2) $A_{1} \cup A_{2} \cup A_{3} \neq G$
(T3) $V(A) \neq V(G)$

$$
\left|N^{\geqslant s}(X)\right| \leqslant f(|X|, s, t)
$$

But: (T2), (T3) - OK $\Rightarrow \sim(\mathrm{T} 1)$ is not a tangle!

Do this starting from $Y \cup(A \cap B)$

Start with $Y=\{v\}$ and any color
If $N^{\geqslant s}(Y)=\emptyset$ color some $z \in N^{<s}(Y)$

Otherwise:

$$
\forall_{s, t, \omega} \exists_{\eta=\eta(s, t, \omega)} \forall_{G}
$$

- $\operatorname{tw}(G) \leqslant \omega \quad(:=$ no tangle of order $\omega+2)$
- G has no $K_{s, t}$-subgraph $\operatorname{ord}(A, B)$

$$
:=|V(A \cap B)|
$$

$\Rightarrow G$ is $(s+1)$-choosable with clustering η
We start with $|L(v)|=s+1$
Iteratively we enlarge colored set Y (until not too big)
$\mathcal{T}_{\theta}:=\left\{(A, B)_{\theta}:|V(A) \cap Y| \leqslant 3 \theta\right\} \quad|Y|>9 \theta \quad \theta:=\omega+2$
\mathcal{T} - ...order $<\theta$
(T1) $(A, B) \in \mathcal{T}$ or $(B, A) \in \mathcal{T}$
(T2) $A_{1} \cup A_{2} \cup A_{3} \neq G$
(T3) $V(A) \neq V(G)$

$$
\left|N^{\geqslant s}(X)\right| \leqslant f(|X|, s, t)
$$

is not a tangle!
But: (T2), (T3) - OK $\Rightarrow \sim(\mathrm{T} 1)$

Do this starting from $Y \cup(A \cap B)$

Start with $Y=\{v\}$ and any color
If $N^{\geqslant s}(Y)=\emptyset$ color some $z \in N^{<s}(Y)$

Consider $G[A]$ and $G[B]$ separately

$$
\forall_{s, t, \omega} \exists_{\eta=\eta(s, t, \omega)} \forall_{G}
$$

- $\operatorname{tw}(G) \leqslant \omega \quad(:=$ no tangle of order $\omega+2)$
- G has no $K_{s, t}$-subgraph $\operatorname{ord}(A, B)$

$$
:=|V(A \cap B)|
$$

$\Rightarrow G$ is $(s+1)$-choosable with clustering η
We start with $|L(v)|=s+1$
Iteratively we enlarge colored set Y (until not too big)
$\mathcal{T}_{\theta}:=\left\{(A, B)_{\theta}:|V(A) \cap Y| \leqslant 3 \theta\right\} \quad|Y|>9 \theta \quad \theta:=\omega+2$
\mathcal{T} - ...order $<\theta$
(T1) $(A, B) \in \mathcal{T}$ or $(B, A) \in \mathcal{T}$
(T2) $A_{1} \cup A_{2} \cup A_{3} \neq G$
(T3) $V(A) \neq V(G)$

$$
\left|N^{\geqslant s}(X)\right| \leqslant f(|X|, s, t)
$$

is not a tangle!
But: (T2), (T3) - OK $\Rightarrow \sim(\mathrm{T} 1)$

Do this starting from $Y \cup(A \cap B)$
Consider $G[A]$ and $G[B]$ separately

Start with $Y=\{v\}$ and any color
If $N^{\geqslant s}(Y)=\emptyset$ color some $z \in N^{<s}(Y)$

Hadwiger's clustered conjecture:

$\mathcal{G}_{s}=K_{s+1}$ minor free graphs $\chi_{c}\left(\mathcal{G}_{s}\right) \leqslant s$

$$
\chi_{c}\left(\mathcal{G}_{s}\right) \leqslant s+2
$$

$K_{s, s,}$ has K_{s+1} minor

We proved

Technical statement: (optimal)

$$
\begin{aligned}
& (s+1) \text { choosable } \\
& \Rightarrow G \text { is }(s+2) \text {-colorable with clustering } \eta
\end{aligned}
$$

Hadwiger's clustered conjecture:
$\mathcal{G}_{s}=K_{s+1}$ minor free graphs $\chi_{c}\left(\mathcal{G}_{s}\right) \leqslant s$
$K_{s, s,}$ has K_{s+1} minor

We proved

$$
\chi_{c}\left(\mathcal{G}_{s}\right) \leqslant s+2
$$

Technical statement: (optimal)

$$
\begin{aligned}
& \forall s, \stackrel{\omega}{H f} \exists_{\eta=\eta(s, t, H(H)} \forall_{G} \quad G \text { has no } H \text {-minor } \\
& G \text { has no } K_{s, t} \text {-subgraph } \\
& (s+1) \text { choosable } \\
& \Rightarrow G \text { is }(s+2) \text {-colorable with clustering } \eta
\end{aligned}
$$

- All tools we already used

Hadwiger's clustered conjecture:

$\mathcal{G}_{s}=K_{s+1}$ minor free graphs $\chi_{c}\left(\mathcal{G}_{s}\right) \leqslant s$

$$
\chi_{c}\left(\mathcal{G}_{s}\right) \leqslant s+2
$$

$K_{s, s,}$ has K_{s+1} minor

We proved

Technical statement: (optimal)

How to do the general case?

- All tools we already used
- Graph structure theorem

Hadwiger's clustered conjecture:
$\mathcal{G}_{s}=K_{s+1}$ minor free graphs $\chi_{c}\left(\mathcal{G}_{s}\right) \leqslant s$

$$
\chi_{c}\left(\mathcal{G}_{s}\right) \leqslant s+2
$$

$K_{s, s,}$ has K_{s+1} minor

We proved

Technical statement: (optimal)

How to do the general case?

- All tools we already used
- Graph structure theorem

source: Felix Reidl's website
- Results from ~ 100 pages

> culim 2.ses. long companion paper $\left(Y^{(i,-1, k+1)}-Y^{(i,-1, k)}\right) \cap X_{V\left(T_{t}\right)} \subseteq N_{G}\left[W_{0}^{(i,-1, k)}\right] \cap X_{V\left(T_{t}\right)} \subseteq N_{G}\left[\bigcup_{j^{\prime}=1}^{|V|-1} \bigcup_{S \in S_{j^{\prime}}} S\right] \subseteq \bigcup_{j^{\prime}=1}^{|\mathcal{L}|-1} T_{j^{\prime}} \subseteq \bigcup_{j^{\prime}=1}^{|\nu|-1} I_{f^{\prime}}$
So for every $k \in\left[0, w_{0}-1\right]$ and $q \in[0, s+1]$,
$\left(Y^{(i,-1, k, q+1)}-Y^{(i,-1, k, q)}\right) \cap I_{j} \cap X_{V\left(T_{t}\right)}-X_{t} \subseteq A_{L(k,-1, k, 1)}\left(Y_{1}^{(i,-1, k, k)} \cap \overline{I_{j}^{\bar{V}}}\right) \cap I_{j} \cap X_{V\left(T_{t}\right)}-X_{t}$ $\subseteq N_{G}^{\nabla_{0}^{*}}\left(Y^{(i,-1, k, k)} \cap \overline{T_{j}^{5}}\right) \cap I_{j} \cap X_{V\left(T_{t}\right)}-X_{t}$ $\subseteq N_{G}^{s s}\left(Y^{(i,-1, k, a)} \cap \overline{T_{j}^{o}} \cap X_{V\left(T_{t}\right)}\right)$.

