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⇒ G is (s+ 1)-choosable with clustering η
(T1) (A,B) ∈ T or (B,A) ∈ T
(T2) A1 ∪A2 ∪A3 6= G
(T3) V (A) 6= V (G)

A B

ord(A,B)
:= |V (A ∩B)|

T - ...order < θ

(:= no tangle of order ω + 2)

X ⊂ V (G)



∀s,t,ω∃η=η(s,t,ω)∀G • tw(G) ¬ ω

• G has no Ks,t-subgraph

⇒ G is (s+ 1)-choosable with clustering η
(T1) (A,B) ∈ T or (B,A) ∈ T
(T2) A1 ∪A2 ∪A3 6= G
(T3) V (A) 6= V (G)

A B

ord(A,B)
:= |V (A ∩B)|

T - ...order < θ

(:= no tangle of order ω + 2)

X ⊂ V (G)

X

Ns(X)



∀s,t,ω∃η=η(s,t,ω)∀G • tw(G) ¬ ω

• G has no Ks,t-subgraph

⇒ G is (s+ 1)-choosable with clustering η
(T1) (A,B) ∈ T or (B,A) ∈ T
(T2) A1 ∪A2 ∪A3 6= G
(T3) V (A) 6= V (G)

A B

ord(A,B)
:= |V (A ∩B)|

T - ...order < θ

(:= no tangle of order ω + 2)

X ⊂ V (G)

X

Ns(X) s



∀s,t,ω∃η=η(s,t,ω)∀G • tw(G) ¬ ω

• G has no Ks,t-subgraph

⇒ G is (s+ 1)-choosable with clustering η
(T1) (A,B) ∈ T or (B,A) ∈ T
(T2) A1 ∪A2 ∪A3 6= G
(T3) V (A) 6= V (G)

A B

ord(A,B)
:= |V (A ∩B)|

T - ...order < θ

(:= no tangle of order ω + 2)

|Ns(X)| ¬ (t− 1) ·
(|X|
s

)
+ 1

X ⊂ V (G)

X

Ns(X) s



∀s,t,ω∃η=η(s,t,ω)∀G • tw(G) ¬ ω

• G has no Ks,t-subgraph

⇒ G is (s+ 1)-choosable with clustering η
(T1) (A,B) ∈ T or (B,A) ∈ T
(T2) A1 ∪A2 ∪A3 6= G
(T3) V (A) 6= V (G)

A B

ord(A,B)
:= |V (A ∩B)|

T - ...order < θ

(:= no tangle of order ω + 2)

We start with |L(v)| = s+ 1

|Ns(X)| ¬ f(|X|, s, t)



∀s,t,ω∃η=η(s,t,ω)∀G • tw(G) ¬ ω

• G has no Ks,t-subgraph

⇒ G is (s+ 1)-choosable with clustering η
(T1) (A,B) ∈ T or (B,A) ∈ T
(T2) A1 ∪A2 ∪A3 6= G
(T3) V (A) 6= V (G)

A B

ord(A,B)
:= |V (A ∩B)|

T - ...order < θ

(:= no tangle of order ω + 2)

We start with |L(v)| = s+ 1
Iteratively we enlarge colored set Y (until not too big)

|Ns(X)| ¬ f(|X|, s, t)



∀s,t,ω∃η=η(s,t,ω)∀G • tw(G) ¬ ω

• G has no Ks,t-subgraph

⇒ G is (s+ 1)-choosable with clustering η
(T1) (A,B) ∈ T or (B,A) ∈ T
(T2) A1 ∪A2 ∪A3 6= G
(T3) V (A) 6= V (G)

A B

ord(A,B)
:= |V (A ∩B)|

T - ...order < θ

(:= no tangle of order ω + 2)

We start with |L(v)| = s+ 1
Iteratively we enlarge colored set Y

Invariant:

(until not too big)

|Ns(X)| ¬ f(|X|, s, t)



∀s,t,ω∃η=η(s,t,ω)∀G • tw(G) ¬ ω

• G has no Ks,t-subgraph

⇒ G is (s+ 1)-choosable with clustering η
(T1) (A,B) ∈ T or (B,A) ∈ T
(T2) A1 ∪A2 ∪A3 6= G
(T3) V (A) 6= V (G)

A B

ord(A,B)
:= |V (A ∩B)|

T - ...order < θ

(:= no tangle of order ω + 2)

We start with |L(v)| = s+ 1
Iteratively we enlarge colored set Y

Invariant: Y

N<s(Y )

Ns(Y )

(until not too big)

|Ns(X)| ¬ f(|X|, s, t)



∀s,t,ω∃η=η(s,t,ω)∀G • tw(G) ¬ ω

• G has no Ks,t-subgraph

⇒ G is (s+ 1)-choosable with clustering η
(T1) (A,B) ∈ T or (B,A) ∈ T
(T2) A1 ∪A2 ∪A3 6= G
(T3) V (A) 6= V (G)

A B

ord(A,B)
:= |V (A ∩B)|

T - ...order < θ

(:= no tangle of order ω + 2)

We start with |L(v)| = s+ 1
Iteratively we enlarge colored set Y

Invariant: Y
|L(v)| = 1

|L(v)|  2

N<s(Y )

removed nbrs colors!

Ns(Y )

|L(v)|  2

|L(v)| = s+ 1

(until not too big)

|Ns(X)| ¬ f(|X|, s, t)



∀s,t,ω∃η=η(s,t,ω)∀G • tw(G) ¬ ω

• G has no Ks,t-subgraph

⇒ G is (s+ 1)-choosable with clustering η
(T1) (A,B) ∈ T or (B,A) ∈ T
(T2) A1 ∪A2 ∪A3 6= G
(T3) V (A) 6= V (G)

A B

ord(A,B)
:= |V (A ∩B)|

T - ...order < θ

(:= no tangle of order ω + 2)

We start with |L(v)| = s+ 1
Iteratively we enlarge colored set Y

Invariant: Y
|L(v)| = 1

|L(v)|  2

N<s(Y )

removed nbrs colors!

Ns(Y )

|L(v)|  2

|L(v)| = s+ 1

(until not too big)

Start with Y = {v} and any color

|Ns(X)| ¬ f(|X|, s, t)



∀s,t,ω∃η=η(s,t,ω)∀G • tw(G) ¬ ω

• G has no Ks,t-subgraph

⇒ G is (s+ 1)-choosable with clustering η
(T1) (A,B) ∈ T or (B,A) ∈ T
(T2) A1 ∪A2 ∪A3 6= G
(T3) V (A) 6= V (G)

A B

ord(A,B)
:= |V (A ∩B)|

T - ...order < θ

(:= no tangle of order ω + 2)

We start with |L(v)| = s+ 1
Iteratively we enlarge colored set Y

Invariant: Y
|L(v)| = 1

|L(v)|  2

N<s(Y )

removed nbrs colors!

Ns(Y )

|L(v)|  2

|L(v)| = s+ 1

(until not too big)

Start with Y = {v} and any color

|Ns(X)| ¬ f(|X|, s, t)

If Ns(Y ) = ∅ color some z ∈ N<s(Y )



∀s,t,ω∃η=η(s,t,ω)∀G • tw(G) ¬ ω

• G has no Ks,t-subgraph

⇒ G is (s+ 1)-choosable with clustering η
(T1) (A,B) ∈ T or (B,A) ∈ T
(T2) A1 ∪A2 ∪A3 6= G
(T3) V (A) 6= V (G)

A B

ord(A,B)
:= |V (A ∩B)|

T - ...order < θ

(:= no tangle of order ω + 2)

We start with |L(v)| = s+ 1
Iteratively we enlarge colored set Y (until not too big)

Start with Y = {v} and any color

|Ns(X)| ¬ f(|X|, s, t)

If Ns(Y ) = ∅ color some z ∈ N<s(Y )

Otherwise:



∀s,t,ω∃η=η(s,t,ω)∀G • tw(G) ¬ ω

• G has no Ks,t-subgraph

⇒ G is (s+ 1)-choosable with clustering η
(T1) (A,B) ∈ T or (B,A) ∈ T
(T2) A1 ∪A2 ∪A3 6= G
(T3) V (A) 6= V (G)

A B

ord(A,B)
:= |V (A ∩B)|

T - ...order < θ

(:= no tangle of order ω + 2)

We start with |L(v)| = s+ 1
Iteratively we enlarge colored set Y (until not too big)

Start with Y = {v} and any color

|Ns(X)| ¬ f(|X|, s, t)

If Ns(Y ) = ∅ color some z ∈ N<s(Y )

Otherwise:

Y

N<s

Ns



∀s,t,ω∃η=η(s,t,ω)∀G • tw(G) ¬ ω

• G has no Ks,t-subgraph

⇒ G is (s+ 1)-choosable with clustering η
(T1) (A,B) ∈ T or (B,A) ∈ T
(T2) A1 ∪A2 ∪A3 6= G
(T3) V (A) 6= V (G)

A B

ord(A,B)
:= |V (A ∩B)|

T - ...order < θ

(:= no tangle of order ω + 2)

We start with |L(v)| = s+ 1
Iteratively we enlarge colored set Y (until not too big)

Start with Y = {v} and any color

|Ns(X)| ¬ f(|X|, s, t)

If Ns(Y ) = ∅ color some z ∈ N<s(Y )

Otherwise:

Y

N<s

Ns

Nsforbid c1



∀s,t,ω∃η=η(s,t,ω)∀G • tw(G) ¬ ω

• G has no Ks,t-subgraph

⇒ G is (s+ 1)-choosable with clustering η
(T1) (A,B) ∈ T or (B,A) ∈ T
(T2) A1 ∪A2 ∪A3 6= G
(T3) V (A) 6= V (G)

A B

ord(A,B)
:= |V (A ∩B)|

T - ...order < θ

(:= no tangle of order ω + 2)

We start with |L(v)| = s+ 1
Iteratively we enlarge colored set Y (until not too big)

Start with Y = {v} and any color

|Ns(X)| ¬ f(|X|, s, t)

If Ns(Y ) = ∅ color some z ∈ N<s(Y )

Otherwise:

Y

N<s

Ns

Nsforbid c1

Nsforbid c2



∀s,t,ω∃η=η(s,t,ω)∀G • tw(G) ¬ ω

• G has no Ks,t-subgraph

⇒ G is (s+ 1)-choosable with clustering η
(T1) (A,B) ∈ T or (B,A) ∈ T
(T2) A1 ∪A2 ∪A3 6= G
(T3) V (A) 6= V (G)

A B

ord(A,B)
:= |V (A ∩B)|

T - ...order < θ

(:= no tangle of order ω + 2)

We start with |L(v)| = s+ 1
Iteratively we enlarge colored set Y (until not too big)

Start with Y = {v} and any color

|Ns(X)| ¬ f(|X|, s, t)

If Ns(Y ) = ∅ color some z ∈ N<s(Y )

Otherwise:

Y

N<s

Ns

Nsforbid c1

Nsforbid c2

forbid c3 Ns



∀s,t,ω∃η=η(s,t,ω)∀G • tw(G) ¬ ω

• G has no Ks,t-subgraph

⇒ G is (s+ 1)-choosable with clustering η
(T1) (A,B) ∈ T or (B,A) ∈ T
(T2) A1 ∪A2 ∪A3 6= G
(T3) V (A) 6= V (G)

A B

ord(A,B)
:= |V (A ∩B)|

T - ...order < θ

(:= no tangle of order ω + 2)

We start with |L(v)| = s+ 1
Iteratively we enlarge colored set Y (until not too big)

Start with Y = {v} and any color

|Ns(X)| ¬ f(|X|, s, t)

If Ns(Y ) = ∅ color some z ∈ N<s(Y )

Otherwise:

Y

N<s

Ns

Nsforbid c1

Nsforbid c2

forbid c3 Ns

. . .

Invariant preserved
Size of new Y controlled
Monochromatic components

in Y controlled



∀s,t,ω∃η=η(s,t,ω)∀G • tw(G) ¬ ω

• G has no Ks,t-subgraph

⇒ G is (s+ 1)-choosable with clustering η
(T1) (A,B) ∈ T or (B,A) ∈ T
(T2) A1 ∪A2 ∪A3 6= G
(T3) V (A) 6= V (G)

A B

ord(A,B)
:= |V (A ∩B)|

T - ...order < θ

(:= no tangle of order ω + 2)

We start with |L(v)| = s+ 1
Iteratively we enlarge colored set Y (until not too big)

Start with Y = {v} and any color

|Ns(X)| ¬ f(|X|, s, t)

If Ns(Y ) = ∅ color some z ∈ N<s(Y )

Otherwise: Y

N<s

Ns

Nsc1
Nsc2

c3 Ns

. . .



∀s,t,ω∃η=η(s,t,ω)∀G • tw(G) ¬ ω

• G has no Ks,t-subgraph

⇒ G is (s+ 1)-choosable with clustering η
(T1) (A,B) ∈ T or (B,A) ∈ T
(T2) A1 ∪A2 ∪A3 6= G
(T3) V (A) 6= V (G)

A B

ord(A,B)
:= |V (A ∩B)|

T - ...order < θ

(:= no tangle of order ω + 2)

We start with |L(v)| = s+ 1
Iteratively we enlarge colored set Y (until not too big)

Start with Y = {v} and any color

|Ns(X)| ¬ f(|X|, s, t)

If Ns(Y ) = ∅ color some z ∈ N<s(Y )

Otherwise: Y

N<s

Ns

Nsc1
Nsc2

c3 Ns

. . .

Tθ := {(A,B)θ : |V (A) ∩ Y | ¬ 3θ} θ := ω + 2|Y | > 9θ



∀s,t,ω∃η=η(s,t,ω)∀G • tw(G) ¬ ω

• G has no Ks,t-subgraph

⇒ G is (s+ 1)-choosable with clustering η
(T1) (A,B) ∈ T or (B,A) ∈ T
(T2) A1 ∪A2 ∪A3 6= G
(T3) V (A) 6= V (G)

A B

ord(A,B)
:= |V (A ∩B)|

T - ...order < θ

(:= no tangle of order ω + 2)

We start with |L(v)| = s+ 1
Iteratively we enlarge colored set Y (until not too big)

Start with Y = {v} and any color

|Ns(X)| ¬ f(|X|, s, t)

If Ns(Y ) = ∅ color some z ∈ N<s(Y )

Otherwise: Y

N<s

Ns

Nsc1
Nsc2

c3 Ns

. . .

Tθ := {(A,B)θ : |V (A) ∩ Y | ¬ 3θ} θ := ω + 2

is not a tangle!

|Y | > 9θ

But:

A

B

< θ



∀s,t,ω∃η=η(s,t,ω)∀G • tw(G) ¬ ω

• G has no Ks,t-subgraph

⇒ G is (s+ 1)-choosable with clustering η
(T1) (A,B) ∈ T or (B,A) ∈ T
(T2) A1 ∪A2 ∪A3 6= G
(T3) V (A) 6= V (G)

A B

ord(A,B)
:= |V (A ∩B)|

T - ...order < θ

(:= no tangle of order ω + 2)

We start with |L(v)| = s+ 1
Iteratively we enlarge colored set Y (until not too big)

Start with Y = {v} and any color

|Ns(X)| ¬ f(|X|, s, t)

If Ns(Y ) = ∅ color some z ∈ N<s(Y )

Otherwise: Y

N<s

Ns

Nsc1
Nsc2

c3 Ns

. . .

Tθ := {(A,B)θ : |V (A) ∩ Y | ¬ 3θ} θ := ω + 2

is not a tangle!

|Y | > 9θ

But: (T2), (T3) - OK

A

B

< θ



∀s,t,ω∃η=η(s,t,ω)∀G • tw(G) ¬ ω

• G has no Ks,t-subgraph

⇒ G is (s+ 1)-choosable with clustering η
(T1) (A,B) ∈ T or (B,A) ∈ T
(T2) A1 ∪A2 ∪A3 6= G
(T3) V (A) 6= V (G)

A B

ord(A,B)
:= |V (A ∩B)|

T - ...order < θ

(:= no tangle of order ω + 2)

We start with |L(v)| = s+ 1
Iteratively we enlarge colored set Y (until not too big)

Start with Y = {v} and any color

|Ns(X)| ¬ f(|X|, s, t)

If Ns(Y ) = ∅ color some z ∈ N<s(Y )

Otherwise: Y

N<s

Ns

Nsc1
Nsc2

c3 Ns

. . .

Tθ := {(A,B)θ : |V (A) ∩ Y | ¬ 3θ} θ := ω + 2

is not a tangle!

|Y | > 9θ

But: (T2), (T3) - OK

A

B

< θ

⇒ ∼(T1)



∀s,t,ω∃η=η(s,t,ω)∀G • tw(G) ¬ ω

• G has no Ks,t-subgraph

⇒ G is (s+ 1)-choosable with clustering η
(T1) (A,B) ∈ T or (B,A) ∈ T
(T2) A1 ∪A2 ∪A3 6= G
(T3) V (A) 6= V (G)

A B

ord(A,B)
:= |V (A ∩B)|

T - ...order < θ

(:= no tangle of order ω + 2)

We start with |L(v)| = s+ 1
Iteratively we enlarge colored set Y (until not too big)

Start with Y = {v} and any color

|Ns(X)| ¬ f(|X|, s, t)

If Ns(Y ) = ∅ color some z ∈ N<s(Y )

Otherwise: Y

N<s

Ns

Nsc1
Nsc2

c3 Ns

. . .

Tθ := {(A,B)θ : |V (A) ∩ Y | ¬ 3θ} θ := ω + 2

is not a tangle!

|Y | > 9θ

But: (T2), (T3) - OK ⇒ ∼(T1)

A B< θ
Y

> 3θ
> 3θ



∀s,t,ω∃η=η(s,t,ω)∀G • tw(G) ¬ ω

• G has no Ks,t-subgraph

⇒ G is (s+ 1)-choosable with clustering η
(T1) (A,B) ∈ T or (B,A) ∈ T
(T2) A1 ∪A2 ∪A3 6= G
(T3) V (A) 6= V (G)

A B

ord(A,B)
:= |V (A ∩B)|

T - ...order < θ

(:= no tangle of order ω + 2)

We start with |L(v)| = s+ 1
Iteratively we enlarge colored set Y (until not too big)

Start with Y = {v} and any color

|Ns(X)| ¬ f(|X|, s, t)

If Ns(Y ) = ∅ color some z ∈ N<s(Y )

Otherwise: Y

N<s

Ns

Nsc1
Nsc2

c3 Ns

. . .

Tθ := {(A,B)θ : |V (A) ∩ Y | ¬ 3θ} θ := ω + 2

is not a tangle!

|Y | > 9θ

But: (T2), (T3) - OK ⇒ ∼(T1)

A B< θ
Y

> 3θ

Do this starting from Y ∪ (A ∩B)

> 3θ



∀s,t,ω∃η=η(s,t,ω)∀G • tw(G) ¬ ω

• G has no Ks,t-subgraph

⇒ G is (s+ 1)-choosable with clustering η
(T1) (A,B) ∈ T or (B,A) ∈ T
(T2) A1 ∪A2 ∪A3 6= G
(T3) V (A) 6= V (G)

A B

ord(A,B)
:= |V (A ∩B)|

T - ...order < θ

(:= no tangle of order ω + 2)

We start with |L(v)| = s+ 1
Iteratively we enlarge colored set Y (until not too big)

Start with Y = {v} and any color

|Ns(X)| ¬ f(|X|, s, t)

If Ns(Y ) = ∅ color some z ∈ N<s(Y )

Otherwise: Y

N<s

Ns

Nsc1
Nsc2

c3 Ns

. . .

Tθ := {(A,B)θ : |V (A) ∩ Y | ¬ 3θ} θ := ω + 2

is not a tangle!

|Y | > 9θ

But: (T2), (T3) - OK ⇒ ∼(T1)

A B< θ
Y

> 3θ

Do this starting from Y ∪ (A ∩B)

> 3θ



∀s,t,ω∃η=η(s,t,ω)∀G • tw(G) ¬ ω

• G has no Ks,t-subgraph

⇒ G is (s+ 1)-choosable with clustering η
(T1) (A,B) ∈ T or (B,A) ∈ T
(T2) A1 ∪A2 ∪A3 6= G
(T3) V (A) 6= V (G)

A B

ord(A,B)
:= |V (A ∩B)|

T - ...order < θ

(:= no tangle of order ω + 2)

We start with |L(v)| = s+ 1
Iteratively we enlarge colored set Y (until not too big)

Start with Y = {v} and any color

|Ns(X)| ¬ f(|X|, s, t)

If Ns(Y ) = ∅ color some z ∈ N<s(Y )

Otherwise: Y

N<s

Ns

Nsc1
Nsc2

c3 Ns

. . .

Tθ := {(A,B)θ : |V (A) ∩ Y | ¬ 3θ} θ := ω + 2

is not a tangle!

|Y | > 9θ

But: (T2), (T3) - OK ⇒ ∼(T1)

A B< θ
Y

> 3θ

Do this starting from Y ∪ (A ∩B)

> 3θc1c1



∀s,t,ω∃η=η(s,t,ω)∀G • tw(G) ¬ ω

• G has no Ks,t-subgraph

⇒ G is (s+ 1)-choosable with clustering η
(T1) (A,B) ∈ T or (B,A) ∈ T
(T2) A1 ∪A2 ∪A3 6= G
(T3) V (A) 6= V (G)

A B

ord(A,B)
:= |V (A ∩B)|

T - ...order < θ

(:= no tangle of order ω + 2)

We start with |L(v)| = s+ 1
Iteratively we enlarge colored set Y (until not too big)

Start with Y = {v} and any color

|Ns(X)| ¬ f(|X|, s, t)

If Ns(Y ) = ∅ color some z ∈ N<s(Y )

Otherwise: Y

N<s

Ns

Nsc1
Nsc2

c3 Ns

. . .

Tθ := {(A,B)θ : |V (A) ∩ Y | ¬ 3θ} θ := ω + 2

is not a tangle!

|Y | > 9θ

But: (T2), (T3) - OK ⇒ ∼(T1)

A B< θ
Y

> 3θ

Do this starting from Y ∪ (A ∩B)

> 3θc1c1

c2

c2



∀s,t,ω∃η=η(s,t,ω)∀G • tw(G) ¬ ω

• G has no Ks,t-subgraph

⇒ G is (s+ 1)-choosable with clustering η
(T1) (A,B) ∈ T or (B,A) ∈ T
(T2) A1 ∪A2 ∪A3 6= G
(T3) V (A) 6= V (G)

A B

ord(A,B)
:= |V (A ∩B)|

T - ...order < θ

(:= no tangle of order ω + 2)

We start with |L(v)| = s+ 1
Iteratively we enlarge colored set Y (until not too big)

Start with Y = {v} and any color

|Ns(X)| ¬ f(|X|, s, t)

If Ns(Y ) = ∅ color some z ∈ N<s(Y )

Otherwise: Y

N<s

Ns

Nsc1
Nsc2

c3 Ns

. . .

Tθ := {(A,B)θ : |V (A) ∩ Y | ¬ 3θ} θ := ω + 2

is not a tangle!

|Y | > 9θ

But: (T2), (T3) - OK ⇒ ∼(T1)

A B< θ
Y

> 3θ

Do this starting from Y ∪ (A ∩B)

> 3θc1c1

c2

c2
. . .. . .



∀s,t,ω∃η=η(s,t,ω)∀G • tw(G) ¬ ω

• G has no Ks,t-subgraph
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(T3) V (A) 6= V (G)

A B

ord(A,B)
:= |V (A ∩B)|

T - ...order < θ

(:= no tangle of order ω + 2)

We start with |L(v)| = s+ 1
Iteratively we enlarge colored set Y (until not too big)

Start with Y = {v} and any color

|Ns(X)| ¬ f(|X|, s, t)

If Ns(Y ) = ∅ color some z ∈ N<s(Y )

Otherwise: Y

N<s
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⇒ G is (s+ 1)-choosable with clustering η
(T1) (A,B) ∈ T or (B,A) ∈ T
(T2) A1 ∪A2 ∪A3 6= G
(T3) V (A) 6= V (G)

A B

ord(A,B)
:= |V (A ∩B)|

T - ...order < θ

(:= no tangle of order ω + 2)

We start with |L(v)| = s+ 1
Iteratively we enlarge colored set Y (until not too big)

Start with Y = {v} and any color

|Ns(X)| ¬ f(|X|, s, t)

If Ns(Y ) = ∅ color some z ∈ N<s(Y )

Otherwise: Y

N<s

Ns

Nsc1
Nsc2

c3 Ns

. . .

Tθ := {(A,B)θ : |V (A) ∩ Y | ¬ 3θ} θ := ω + 2

is not a tangle!

|Y | > 9θ

But: (T2), (T3) - OK ⇒ ∼(T1)

A B< θ
Y

> 3θ

Do this starting from Y ∪ (A ∩B)

Consider G[A] and G[B] separately Monochromatic components can’t glue!

> 3θc1c1

c2

c2
. . .. . .



Hadwiger’s clustered conjecture:
Gs = Ks+1 minor free graphs

χc(Gs) ¬ s
χc(Gs) ¬ s+ 2

Technical statement:

∀s,t,H∃η=η(s,t,H)∀G G has no H-minor

G has no Ks,t-subgraph

⇒ G is (s+ 2)-colorable with clustering η

(optimal)

Ks,s, has Ks+1 minor

We proved

planar (s+ 1)

ω ω
tw(G) ¬ ω

choosable
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Gs = Ks+1 minor free graphs

χc(Gs) ¬ s
χc(Gs) ¬ s+ 2

Technical statement:

∀s,t,H∃η=η(s,t,H)∀G G has no H-minor

G has no Ks,t-subgraph

⇒ G is (s+ 2)-colorable with clustering η

(optimal)

Ks,s, has Ks+1 minor

We proved

planar (s+ 1)

ω ω
tw(G) ¬ ω

choosable

How to do the general case?
• All tools we already used
• Graph structure theorem

• Results from ∼100 pages
long companion paper

source: Felix Reidl’s website


