Clustered Coloring of Graphs Excluding a Subgraph and a Minor

Chun-Hung Liu, David R. Wood

[2019+]

 $H = P_3$

 $c: V(G) \to \mathbb{N}$ is a *coloring* of G

 $c: V(G) \to \mathbb{N}$ is a *coloring* of Gc is proper if $\{u, v\} \in E \Rightarrow c(u) \neq c(v)$

 $c: V(G) \to \mathbb{N}$ is a *coloring* of Gc is proper if $\{u, v\} \in E \Rightarrow c(u) \neq c(v)$

 $\chi(G) =$ size of the minimal proper coloring

 $c: V(G) \rightarrow \mathbb{N}$ is a *coloring* of Gc is proper if $\{u, v\} \in E \Rightarrow c(u) \neq c(v)$

 $\chi(G) =$ size of the minimal proper coloring

Hadwiger's conjecture:

 $c: V(G) \to \mathbb{N}$ is a *coloring* of Gc is proper if $\{u, v\} \in E \Rightarrow c(u) \neq c(v)$

 $\chi(G)=$ size of the minimal proper coloring

Hadwiger's conjecture:

 $K_{t+1} \not\prec G \Rightarrow \chi(G) \leqslant t$

 $\begin{array}{l} c: V(G) \rightarrow \mathbb{N} \text{ is a } coloring \text{ of } G \\ c \text{ is proper if } \{u,v\} \in E \Rightarrow c(u) \neq c(v) \end{array}$

 $\chi(G)=\text{size of the minimal proper coloring}$

Hadwiger's conjecture:

 $K_{t+1} \not\prec G \Rightarrow \chi(G) \leqslant t$

 $t \leq 5$ - OK $\chi(G) \leq C \cdot t \cdot (\log \log t)^6$ [Norin,Song,Postle 2020]

Relax the notion of properness?

 $c: V(G) \to \mathbb{N}$ is a *coloring* of G<u>c is proper if $\{u, v\} \in E \Rightarrow c(u) \neq c(v)$ </u>

 $\chi(G)=\text{size of the minimal proper coloring}$

Hadwiger's conjecture:

 $K_{t+1} \not\prec G \Rightarrow \chi(G) \leqslant t$

 $t \leq 5$ - OK $\chi(G) \leq C \cdot t \cdot (\log \log t)^6$ [Norin,Song,Postle 2020]

Relax the notion of properness?

c is $\eta-clustered$ if the size of each monochromatic component is bounded by η

 $\begin{array}{l} c: V(G) \rightarrow \mathbb{N} \text{ is a } coloring \text{ of } G \\ \underline{c \text{ is proper if } \{u,v\} \in E \Rightarrow c(u) \neq c(v)} \end{array}$

 $\chi(G) = \text{size of the minimal proper coloring}$

Hadwiger's conjecture:

 $K_{t+1} \not\prec G \Rightarrow \chi(G) \leqslant t$

Relax the notion of properness?

c is η -clustered if the size of each monochromatic component is bounded by η

 \mathcal{G} - graph class

 $\chi_c(\mathcal{G}) = \text{size of minimal } \eta \text{-clustered coloring}$

2-clustered 3 coloring

 $\begin{array}{l} c:V(G) \rightarrow \mathbb{N} \text{ is a } coloring \text{ of } G \\ \underline{c \text{ is proper if } \{u,v\} \in E \Rightarrow c(u) \neq c(v)} \end{array}$

 $\chi(G) = \text{size of the minimal proper coloring}$

Hadwiger's conjecture:

 $K_{t+1} \not\prec G \Rightarrow \chi(G) \leqslant t$

Relax the notion of properness?

c is η -clustered if the size of each monochromatic component is bounded by η

 ${\mathcal G}$ - graph class

 $\chi_c(\mathcal{G}) = \text{size of minimal } \eta \text{-clustered coloring}$

2-clustered 3 coloring

 $\begin{array}{l} c:V(G) \rightarrow \mathbb{N} \text{ is a } coloring \text{ of } G \\ \underline{c \text{ is proper if } \{u,v\} \in E \Rightarrow c(u) \neq c(v)} \end{array}$

 $\chi(G) = \text{size of the minimal proper coloring}$

Hadwiger's conjecture:

 $K_{t+1} \not\prec G \Rightarrow \chi(G) \leqslant t$

Relax the notion of properness?

c is η -clustered if the size of each monochromatic component is bounded by η

 ${\mathcal G}$ - graph class

 $\chi_c(\mathcal{G}) = \text{size of minimal } \eta \text{-clustered coloring}$

2-clustered 3 coloring

 $\begin{array}{l} c:V(G) \rightarrow \mathbb{N} \text{ is a } coloring \text{ of } G \\ \underline{c \text{ is proper if } \{u,v\} \in E \Rightarrow c(u) \neq c(v)} \end{array}$

 $\chi(G) = \text{size of the minimal proper coloring}$

Hadwiger's conjecture:

 $K_{t+1} \not\prec G \Rightarrow \chi(G) \leqslant t$

Relax the notion of properness?

c is η -clustered if the size of each monochromatic component is bounded by η

 ${\mathcal G}$ - graph class

 $\chi_c(\mathcal{G}) = \text{size of minimal } \eta \text{-clustered coloring}$

$\begin{array}{l} c:V(G) \rightarrow \mathbb{N} \text{ is a } coloring \text{ of } G \\ \underline{c \text{ is proper if } \{u,v\} \in E \Rightarrow c(u) \neq c(v)} \end{array}$

 $\chi(G) = \text{size of the minimal proper coloring}$

Hadwiger's conjecture:

 $K_{t+1} \not\prec G \Rightarrow \chi(G) \leqslant t$

Relax the notion of properness?

c is η -clustered if the size of each monochromatic component is bounded by η

 ${\mathcal G}$ - graph class

 $\chi_c(\mathcal{G}) = \text{size of minimal } \eta\text{-clustered coloring}$

2-clustered 3 coloring

$\begin{array}{l} c:V(G) \rightarrow \mathbb{N} \text{ is a } coloring \text{ of } G \\ \underline{c \text{ is proper if } \{u,v\} \in E \Rightarrow c(u) \neq c(v)} \end{array}$

 $\chi(G) = \text{size of the minimal proper coloring}$

Hadwiger's conjecture:

 $K_{t+1} \not\prec G \Rightarrow \chi(G) \leqslant t$

Relax the notion of properness?

c is η -clustered if the size of each monochromatic component is bounded by η

 ${\mathcal G}$ - graph class

 $\chi_c(\mathcal{G}) = \text{size of minimal } \eta \text{-clustered coloring}$

 ${\mathcal G}$ - graph class

 $\chi_c(\mathcal{G}) = \text{size of minimal } \eta\text{-clustered coloring}$ absolute

2-clustered 3 coloring

Hadwiger's conjecture:

 \mathcal{G} - graph class $\chi_c(\mathcal{G}) =$ size of minimal η -clustered coloring absolute $\eta = \eta(s)$

2-clustered 3 coloring

Hadwiger's clustered conjecture:

 $\mathcal{G}_s = K_{s+1}$ minor free graphs

 $\chi_c(\mathcal{G}_s) \leqslant s$

Hadwiger's conjecture:

 \mathcal{G} - graph class $\chi_c(\mathcal{G}) = \text{size of minimal } \eta\text{-clustered coloring}$ absolute $\eta = \eta(s)$

2-clustered 3 coloring

Hadwiger's clustered conjecture:

 $\mathcal{G}_s = K_{s+1}$ minor free graphs $\chi_c(\mathcal{G}_s) \leq 16 \cdot s$ Kawarabayashi, Mohar [2007] $\chi_c(\mathcal{G}_s) \leq s$

Hadwiger's conjecture:

 \mathcal{G} - graph class $\chi_c(\mathcal{G}) =$ size of minimal η -clustered coloring absolute $\eta = \eta(s)$

2-clustered 3 coloring

Hadwiger's clustered conjecture:

 $\mathcal{G}_s = K_{s+1}$ minor free graphs $\chi_c(\mathcal{G}_s) \leq 16 \cdot s$ Kawarabayashi, Mohar [2007] $\chi_c(\mathcal{G}_s) \leq s$: Wood, Edwards, Kang, Kim, Oum, Seymour, Liu, Norin, Van den Heuvel, Dvorak

Hadwiger's conjecture:

 \mathcal{G} - graph class $\chi_c(\mathcal{G}) =$ size of minimal η -clustered coloring absolute $\eta = \eta(s)$

2-clustered 3 coloring

Hadwiger's clustered conjecture:

and $\eta(s) = \left\lceil \frac{s-2}{2} \right\rceil$ $\chi_c(\mathcal{G}_s) \leqslant \frac{2}{16} \cdot s$ Kawarabayashi, Mohar [2007]

 $\chi_c(\mathcal{G}_s)\leqslant s$: Wood, Edwards, Kang, Kim, Oum, Seymour, Liu, Norin, Van den Heuvel, Dvorak

Hadwiger's conjecture:

 $\mathcal{G}_s = K_{s+1}$ minor free graphs

 \mathcal{G} - graph class $\chi_c(\mathcal{G}) =$ size of minimal η -clustered coloring absolute $\eta = \eta(s)$

Hadwiger's clustered conjecture:

and $\eta(s) = \left\lfloor \frac{s-2}{2} \right\rfloor$ $\chi_c(\mathcal{G}_s) \leq \frac{2}{16} \cdot s$ Kawarabayashi, Mohar [2007]

 $\chi_c(\mathcal{G}_s) \leqslant s$: Wood, Edwards, Kang, Kim, O

Wood, Edwards, Kang, Kim, Oum, Seymour, Liu, Norin, Van den Heuvel, Dvorak

Hadwiger's conjecture:

 $\mathcal{G}_s = K_{s+1}$ minor free graphs

$$\chi_c(\mathcal{G}_s) \leqslant s+2$$
 Liu, Wood [2019+

 \mathcal{G} - graph class $\chi_c(\mathcal{G}) =$ size of minimal η -clustered coloring absolute $\eta = \eta(s)$

Hadwiger's clustered conjecture:

and $\eta(s) = \left\lfloor \frac{s-2}{2} \right\rfloor$ $\chi_c(\mathcal{G}_s) \leqslant \frac{2}{16} \cdot s$ Kawarabayashi, Mohar [2007]

 $\chi_c(\mathcal{G}_s) \leqslant s$ Wood, Edwards, Kang, Kim, Oum, Seymour, Liu, Norin, Van den Heuvel, Dvorak

Hadwiger's conjecture:

 $\mathcal{G}_s = K_{s+1}$ minor free graphs

 $K_{t+1} \not\prec G \Rightarrow \chi(G) \leqslant t$

 $\chi_c(\mathcal{G}_s) \leqslant s+2$ Liu, Wood [2019+] $\chi_c(\mathcal{G}_s) \leqslant s$ Dvorak, Norin [???]

 \mathcal{G} - graph class $\chi_c(\mathcal{G}) =$ size of minimal η -clustered coloring absolute $\eta = \eta(s)$

2-clustered 3 coloring

Hadwiger's clustered conjecture:

Technical statement:

 $\mathcal{G}_s = K_{s+1}$ minor free graphs

 $\chi_c(\mathcal{G}_s) \leqslant s$

$$\chi_c(\mathcal{G}_s) \leqslant s+2$$

 \mathcal{G} - graph class $\chi_c(\mathcal{G}) =$ size of minimal η -clustered coloring absolute $\eta = \eta(s)$

2-clustered 3 coloring

Hadwiger's clustered conjecture:

Technical statement:

 $\mathcal{G}_s = K_{s+1}$ minor free graphs

 $\chi_c(\mathcal{G}_s) \leqslant s$

$$\forall_{s,t,H} \exists_{\eta=\eta(s,t,H)} \forall_G$$

Ghas noH-minor
Ghas no $K_{s,t}\text{-subgraph}$

 \mathcal{G} - graph class $\chi_c(\mathcal{G}) =$ size of minimal η -clustered coloring absolute $\eta = \eta(s)$

Hadwiger's clustered conjecture:

Technical statement:

 $\mathcal{G}_s = K_{s+1}$ minor free graphs

 $\chi_c(\mathcal{G}_s) \leqslant s$

 $\chi_c(\mathcal{G}_s) \leqslant s+2$

$$\forall_{s,t,H} \exists_{\eta=\eta(s,t,H)} \forall_G \qquad G \text{ has no } H\text{-minor} \\ G \text{ has no } K_{s,t}\text{-subgraph}$$

 $\Rightarrow G$ is (s+2)-colorable with clustering η

 \mathcal{G} - graph class $\chi_c(\mathcal{G}) =$ size of minimal η -clustered coloring absolute $\eta = \eta(s)$

2-clustered 3 coloring

Hadwiger's clustered conjecture:

Technical statement: (optimal)

 $\mathcal{G}_s = K_{s+1}$ minor free graphs $\chi_c(\mathcal{G}_s) \leqslant s$

 $\chi_c(\mathcal{G}_s) \leqslant s+2$

 $\forall_{s,t,H} \exists_{\eta=\eta(s,t,H)} \forall_G \qquad G \text{ has no } H\text{-minor} \\ G \text{ has no } K_{s,t}\text{-subgraph}$

 $\Rightarrow G$ is (s+2)-colorable with clustering η

 \mathcal{G} - graph class $\chi_c(\mathcal{G}) =$ size of minimal η -clustered coloring absolute $\eta = \eta(s)$

2-clustered 3 coloring

Hadwiger's clustered conjecture:

Technical statement: (optimal)

 $\mathcal{G}_s = K_{s+1}$ minor free graphs

 $\chi_c(\mathcal{G}_s) \leqslant s$

$$\forall_{s,t,H} \exists_{\eta=\eta(s,t,H)} \forall_G \qquad G \text{ has } f$$

G has no H-minor G has no $K_{s,t}$ -subgraph

 $\Rightarrow G$ is (s+2)-colorable with clustering η

 $K_{s,s}$, has K_{s+1} minor

 \mathcal{G} - graph class $\chi_c(\mathcal{G}) =$ size of minimal η -clustered coloring absolute $\eta = \eta(s)$

2-clustered 3 coloring

Hadwiger's clustered conjecture:

Technical statement: (optimal)

 $\mathcal{G}_s = K_{s+1}$ minor free graphs

 $\chi_c(\mathcal{G}_s) \leqslant s$

$$\chi_c(\mathcal{G}_s) \leqslant s+2$$

 $\forall_{s,t,H} \exists_{\eta=\eta(s,t,H)} \forall_G$

G has no H-minor G has no $K_{s,t}$ -subgraph

 $\Rightarrow G$ is (s+2)-colorable with clustering η

 $\stackrel{\bullet}{\longrightarrow} K_{s,s,}$ has K_{s+1} minor

 \mathcal{G} - graph class $\chi_c(\mathcal{G}) =$ size of minimal η -clustered coloring absolute $\eta = \eta(s)$

2-clustered 3 coloring

We will prove

Hadwiger's clustered conjecture:

Technical statement: (optimal)

 $\begin{array}{c} \mathcal{G}_{s} = K_{s+1} \text{ minor free graphs} \\ \chi_{c}(\mathcal{G}_{s}) \leqslant s \end{array} \qquad \qquad \forall s, t, H \exists_{\eta = \eta(s, t, H)} \forall G \qquad G \text{ has no } H\text{-minor} \\ G \text{ has no } K_{s,t}\text{-subgraph} \\ \downarrow \\ \chi_{c}(\mathcal{G}_{s}) \leqslant s + 2 \end{array} \qquad \qquad \forall s, t, H \exists_{\eta = \eta(s, t, H)} \forall G \qquad G \text{ has no } K_{s,t}\text{-subgraph} \\ \downarrow \\ \varphi G \text{ is } (s+1) \\ \Rightarrow G \text{ is } (s+2)\text{-colorable with clustering } \eta \\ K_{s,s} \text{ has } K_{s+1} \text{ minor} \end{array}$

 \mathcal{G} - graph class $\chi_c(\mathcal{G}) = \text{size of minimal } \eta\text{-clustered coloring}$ absolute $\eta = \eta(s)$

2-clustered 3 coloring

We will prove

Hadwiger's clustered conjecture:

Technical statement: (optimal)

 $\mathcal{G}_{s} = K_{s+1} \text{ minor free graphs}$ $\chi_{c}(\mathcal{G}_{s}) \leq s$ $\chi_{c}(\mathcal{G}_{s}) \leq s+2$ $K_{s,s} \text{ has } K_{s+1} \text{ minor}$ $(c) = K_{s,t}(\mathcal{G}) \leq \omega$ G has no H -minor $G \text{ has no } K_{s,t} \text{-subgraph}$ (s+1) $\Rightarrow G \text{ is } (s+2) \text{-colorable with clustering } \eta$

 \mathcal{G} - graph class $\chi_c(\mathcal{G}) = \text{size of minimal } \eta\text{-clustered coloring}$ absolute $\eta = \eta(s)$

2-clustered 3 coloring

We will prove

Hadwiger's clustered conjecture:

Technical statement: (optimal)

$$\forall_{s,t,\omega} \exists_{\eta=\eta(s,t,\omega)} \forall_G$$

• $\operatorname{tw}(G) \leq \omega$

 $\bullet~G$ has no $K_{s,t}\mbox{-subgraph}$

 $\Rightarrow G$ is (s+1)-choosable with clustering η

$$\forall_{s,t,\omega} \exists_{\eta=\eta(s,t,\omega)} \forall_G \quad \stackrel{\bullet \text{ tw}}{\bullet} G$$

tw(G) ≤ ω
G has no K_{s,t}-subgraph

???

 $\Rightarrow G$ is (s+1)-choosable with clustering η

$$\forall_{s,t,\omega} \exists_{\eta=\eta(s,t,\omega)} \forall_G \quad \bullet \operatorname{tw}(G) \leqslant \omega \quad \bullet G \text{ has no } K \text{ -subgraph}$$

???

 \Rightarrow G is (s+1)-choosable with clustering η

(A, B) is a Separation if $A \cup B = G$ and $E(A) \cap E(B) = \emptyset$. $\operatorname{ord}(A, B) := |V(A \cap B)|$

$$\forall_{s,t,\omega} \exists_{\eta=\eta(s,t,\omega)} \forall_G \quad \bullet \operatorname{tw}(G) \leqslant \omega \quad \bullet \\ \bullet G \text{ has no } K_{s,t} \text{-subgraph} \quad ???$$

 \Rightarrow G is (s+1)-choosable with clustering η

(A, B) is a Separation if $A \cup B = G$ and $E(A) \cap E(B) = \emptyset$. ord $(A, B) := |V(A \cap B)|$

$$\forall_{s,t,\omega} \exists_{\eta=\eta(s,t,\omega)} \forall_G \quad \bullet \operatorname{tw}(G) \leqslant \omega \quad \bullet G \text{ has no } K \text{ -subgraph} \quad ???$$

 \Rightarrow G is (s+1)-choosable with clustering η

(A, B) is a Separation if $A \cup B = G$ and $E(A) \cap E(B) = \emptyset$. $\operatorname{ord}(A, B) := |V(A \cap B)|$ \mathcal{T} - set of some separation of order $< \theta$

$$\forall_{s,t,\omega} \exists_{\eta=\eta(s,t,\omega)} \forall_G \quad \bullet \operatorname{tw}(G) \leqslant \omega \quad \bullet G \text{ has no } K \text{ (-subgraph)}$$
???

 \Rightarrow G is (s+1)-choosable with clustering η

(A, B) is a Separation if $A \cup B = G$ and $E(A) \cap E(B) = \emptyset$. $\operatorname{ord}(A, B) := |V(A \cap B)|$

 \mathcal{T} - set of some separation of order $< \theta$ \mathcal{T} is a Tangle of order θ if: (T1) $\operatorname{ord}(A, B) < \theta$, either $(A, B) \in \mathcal{T}$ or $(B, A) \in \mathcal{T}$

• $\operatorname{tw}(G) \leq \omega$??? $\forall_{s,t,\omega} \exists_{n=n(s,t,\omega)} \forall_G$

• G has no $K_{s,t}$ -subgraph

 \Rightarrow G is (s+1)-choosable with clustering η

В

(A, B) is a Separation if $A \cup B = G$ and $E(A) \cap E(B) = \emptyset$. $\operatorname{ord}(A, B) := |V(A \cap B)|$

 \mathcal{T} - set of some separation of order $< \theta$ \mathcal{T} is a Tangle of order θ if: (T1) $\operatorname{ord}(A, B) < \theta$, either $(A, B) \in \mathcal{T}$ or $(B, A) \in \mathcal{T}$ (T2) $(A_1, B_1), (A_2, B_2), (A_3, B_3) \in \mathcal{T}$, then $A_1 \cup A_2 \cup A_3 \neq G$

• $\operatorname{tw}(G) \leq \omega$??? $\forall_{s,t,\omega} \exists_{n=n(s,t,\omega)} \forall_G$

• G has no $K_{s,t}$ -subgraph

 \Rightarrow G is (s+1)-choosable with clustering η

В

(A, B) is a Separation if $A \cup B = G$ and $E(A) \cap E(B) = \emptyset$. $\operatorname{ord}(A, B) := |V(A \cap B)|$

 \mathcal{T} - set of some separation of order $< \theta$ \mathcal{T} is a Tangle of order θ if: (T1) $\operatorname{ord}(A, B) < \theta$, either $(A, B) \in \mathcal{T}$ or $(B, A) \in \mathcal{T}$ (T2) $(A_1, B_1), (A_2, B_2), (A_3, B_3) \in \mathcal{T}$, then $A_1 \cup A_2 \cup A_3 \neq G$ (T3) $(A, B) \in \mathcal{T}$, then $V(A) \neq V(G)$

$$\forall_{s,t,\omega} \exists_{\eta=\eta(s,t,\omega)} \forall_G \quad \bullet \operatorname{tw}(G) \leqslant \omega \quad \bullet \text{ resubgraph}$$
???

• G has no $K_{s,t}$ -subgraph

 \Rightarrow G is (s+1)-choosable with clustering η

B

(A, B) is a Separation if $A \cup B = G$ and $E(A) \cap E(B) = \emptyset$. $\operatorname{ord}(A, B) := |V(A \cap B)|$

 \mathcal{T} - set of some separation of order $< \theta$ \mathcal{T} is a Tangle of order θ if: (T1) $\operatorname{ord}(A, B) < \theta$, either $(A, B) \in \mathcal{T}$ or $(B, A) \in \mathcal{T}$ (T2) $(A_1, B_1), (A_2, B_2), (A_3, B_3) \in \mathcal{T}$, then $A_1 \cup A_2 \cup A_3 \neq G$ (T3) $(A, B) \in \mathcal{T}$, then $V(A) \neq V(G)$

Example: C fixed cycle in G $\mathcal{T} = \{ (A, B) : \text{ord} = 1, C \subset B \}$

$$\forall_{s,t,\omega} \exists_{\eta=\eta(s,t,\omega)} \forall_G \quad \bullet \operatorname{tw}(G) \leq \omega \quad \bullet G \text{ has no } K_{s,t}\text{-subgraph} \quad ???$$

 \Rightarrow G is (s+1)-choosable with clustering η

(A, B) is a Separation if $A \cup B = G$ and $E(A) \cap E(B) = \emptyset$. ord $(A, B) := |V(A \cap B)|$ \mathcal{T} - set of some separation of order $< \theta$

 $\mathcal{T} \text{ - set of some separation of order } < \theta$ $\mathcal{T} \text{ is a Tangle of order } \theta \text{ if:}$ $(T1) \text{ ord}(A, B) < \theta, \text{ either } (A, B) \in \mathcal{T} \text{ or } (B, A) \in \mathcal{T}$ $(T2) (A_1, B_1), (A_2, B_2), (A_3, B_3) \in \mathcal{T}, \text{ then } A_1 \cup A_2 \cup A_3 \neq G$ $(T3) (A, B) \in \mathcal{T}, \text{ then } V(A) \neq V(G)$

Example: C fixed cycle in G $\mathcal{T} = \{(A, B) : \text{ord} = 1, C \subset B\}$

$$\forall s,t,\omega \exists \eta = \eta(s,t,\omega) \forall G \qquad \bullet \text{ tw}(G) \leqslant \omega \qquad \bullet \text{ of has no } K_{s,t}\text{-subgraph}$$

$$\Rightarrow G \text{ is } (s+1)\text{-choosable with clustering } \eta$$

$$(A,B) \text{ is a Separation if } A \cup B = G \text{ and } E(A) \cap E(B) = \emptyset.$$

 $\begin{array}{ll} \operatorname{ord}(A,B) := |V(A \cap B)| & \mathcal{T} \text{ - set of some separation of order } < \theta \\ & \mathcal{T} \text{ - set of some separation of order } < \theta \\ & \mathcal{T} \text{ is a Tangle of order } \theta \text{ if:} \\ & (T1) \operatorname{ord}(A,B) < \theta, \text{ either } (A,B) \in \mathcal{T} \text{ or } (B,A) \in \mathcal{T} \\ & (T2) \ (A_1,B_1), (A_2,B_2), (A_3,B_3) \in \mathcal{T}, \text{ then } A_1 \cup A_2 \cup A_3 \neq G \\ & (T3) \ (A,B) \in \mathcal{T}, \text{ then } V(A) \neq V(G) \end{array}$

 \mathcal{T} - tangle of order 2

Example: C fixed cycle in G $\mathcal{T} = \{(A, B) : \text{ord} = 1, C \subset B\}$

$$\forall s,t,\omega \exists \eta = \eta(s,t,\omega) \forall G \qquad \bullet \text{ tw}(G) \leq \omega \qquad ??? \\ \bullet \text{ G has no } K_{s,t} \text{-subgraph} \\ \Rightarrow G \text{ is } (s+1) \text{-choosable with clustering } \eta \qquad Advanced example: G = \boxplus_k \\ \mathcal{T} = \{(A,B): \text{ ord } < k, \text{ full row } \subset B\} \\ \end{cases}$$

$$(A, B) \text{ is a Separation if } A \cup B = G \text{ and } E(A) \cap E(B) = \emptyset. \\ \text{ord}(A, B) := |V(A \cap B)| \qquad \mathcal{T} \text{ - set of some separation of order } < \theta \\ \qquad \qquad \mathcal{T} \text{ is a Tangle of order } \theta \text{ if:} \\ (T1) \text{ ord}(A, B) < \theta, \text{ either } (A, B) \in \mathcal{T} \text{ or } (B, A) \in \mathcal{T} \\ (T2) (A_1, B_1), (A_2, B_2), (A_3, B_3) \in \mathcal{T}, \text{ then } A_1 \cup A_2 \cup A_3 \neq G \\ (T3) (A, B) \in \mathcal{T}, \text{ then } V(A) \neq V(G) \\ \end{array}$$
Example: C fixed cycle in G

 \mathcal{T} - tangle of order 2

 $\mathcal{T} = \{(A, B) : \text{ord} = 1, C \subset B\}$

$$\forall_{s,t,\omega} \exists_{\eta=\eta(s,t,\omega)} \forall_G$$

•
$$\operatorname{tw}(G) \leq \omega$$

 \Rightarrow G is (s+1)-choosable with clustering η

 $\begin{array}{c} ???\\ \text{ord}(A,B)\\ := |V(A \cap B)|\\ \mathcal{T} - \dots \text{order} < \theta\\ (T1) \ (A,B) \in \mathcal{T} \text{ or } (B,A) \in \mathcal{T}\\ (T2) \ A_1 \cup A_2 \cup A_3 \neq G\\ (T3) \ V(A) \neq V(G) \end{array}$

B

$$\forall_{s,t,\omega} \exists_{\eta=\eta(s,t,\omega)} \forall_G$$

•
$$\operatorname{tw}(G) \leq \omega$$

 $\Rightarrow G$ is (s+1)-choosable with clustering η

 $\begin{array}{l} ???\\ \text{ord}(A,B)\\ := |V(A \cap B)|\\ \mathcal{T} - \dots \text{order} < \theta\\ (T1) \ (A,B) \in \mathcal{T} \text{ or } (B,A) \in \mathcal{T}\\ (T2) \ A_1 \cup A_2 \cup A_3 \neq G\\ (T3) \ V(A) \neq V(G) \end{array}$

B

• $\operatorname{tw}(G) \leq \omega$

:= no tangle of order $\omega + 2$

$$\forall_{s,t,\omega} \exists_{\eta=\eta(s,t,\omega)} \forall_G$$

• G has no $K_{s,t}$ -subgraph

 \Rightarrow G is (s+1)-choosable with clustering η

ord(A, B) $:= |V(A \cap B)|$ \mathcal{T} - ...order $< \theta$ (T1) $(A, B) \in \mathcal{T}$ or $(B, A) \in \mathcal{T}$ (T2) $A_1 \cup A_2 \cup A_3 \neq G$ (T3) $V(A) \neq V(G)$ B

$$\forall_{s,t,\omega} \exists_{\eta=\eta(s,t,\omega)} \forall_G$$

•
$$\operatorname{tw}(G) \leq \omega$$
 (:= no tangle of order $\omega + 2$)

 $\operatorname{ord}(A, B) \\ := |V(A \cap B)|$

B

 \Rightarrow G is (s+1)-choosable with clustering η

 $X \subset V(G)$

 \mathcal{T} - ...order < θ

(T1) $(A, B) \in \mathcal{T}$ or $(B, A) \in \mathcal{T}$ (T2) $A_1 \cup A_2 \cup A_3 \neq G$ (T3) $V(A) \neq V(G)$

$$\forall_{s,t,\omega} \exists_{\eta=\eta(s,t,\omega)} \forall_G$$

•
$$\operatorname{tw}(G) \leq \omega$$
 (:= no tangle of order $\omega + 2$)

 $\Rightarrow G$ is (s+1)-choosable with clustering η

 $X \subset V(G)$

B

(T3) $V(A) \neq V(G)$

$$\forall_{s,t,\omega} \exists_{\eta=\eta(s,t,\omega)} \forall_G$$

•
$$\operatorname{tw}(G) \leq \omega$$
 (:= no tangle of order $\omega + 2$)

 \Rightarrow G is (s+1)-choosable with clustering η

 $X \subset V(G)$

(T3) $V(A) \neq V(G)$

$$\forall_{s,t,\omega} \exists_{\eta=\eta(s,t,\omega)} \forall_G$$

•
$$\operatorname{tw}(G) \leq \omega$$
 (:= no tangle of order $\omega + 2$)

 \Rightarrow G is (s+1)-choosable with clustering η

 $X \subset V(G)$

B

$$\forall_{s,t,\omega} \exists_{\eta=\eta(s,t,\omega)} \forall_G$$

• G has no $K_{s,t}$ -subgraph

 $\Rightarrow G$ is (s+1)-choosable with clustering η

We start with |L(v)| = s + 1

der $\omega + 2$) ord(A, B) $:= |V(A \cap B)|$ \mathcal{T} - ...order $< \theta$ (T1) $(A, B) \in \mathcal{T}$ or $(B, A) \in \mathcal{T}$ (T2) $A_1 \cup A_2 \cup A_3 \neq G$ (T3) $V(A) \neq V(G)$

$$|N^{\geqslant s}(X)| \leqslant f(|X|, s, t)$$

$$\forall_{s,t,\omega} \exists_{\eta=\eta(s,t,\omega)} \forall_G$$

• G has no $K_{s,t}$ -subgraph

 $\Rightarrow G$ is (s+1)-choosable with clustering η

We start with |L(v)| = s + 1

Iteratively we enlarge colored set Y (until not too big)

 $ext{ler } \omega + 2) \qquad A \qquad B$ $rightarrow red (A, B) \\
ightarrow red (A, B) \\$

$$\forall_{s,t,\omega} \exists_{\eta=\eta(s,t,\omega)} \forall_G$$

• G has no $K_{s,t}$ -subgraph

 $\Rightarrow G$ is (s+1)-choosable with clustering η

We start with |L(v)| = s + 1

Iteratively we enlarge colored set Y (until not too big)

Invariant:

$$\forall_{s,t,\omega} \exists_{\eta=\eta(s,t,\omega)} \forall_G$$

• G has no $K_{s,t}$ -subgraph

 $\Rightarrow G$ is (s+1)-choosable with clustering η

We start with |L(v)| = s + 1

Iteratively we enlarge colored set Y (until not too big)

 $er \ \omega + 2) \qquad A \qquad B$ $i=|V(A \cap B)| \qquad B$ $\mathcal{T} - \dots order < \theta$ $(T1) \ (A, B) \in \mathcal{T} \text{ or } (B, A) \in \mathcal{T}$ $(T2) \ A_1 \cup A_2 \cup A_3 \neq G$ $(T3) \ V(A) \neq V(G)$ $|N^{\geqslant s}(X)| \leqslant f(|X|, s, t)$

$$\forall_{s,t,\omega} \exists_{\eta=\eta(s,t,\omega)} \forall_G$$

• G has no $K_{s,t}$ -subgraph

 $\Rightarrow G$ is (s+1)-choosable with clustering η

We start with |L(v)| = s + 1

Iteratively we enlarge colored set Y (until not too big)

$$\forall_{s,t,\omega} \exists_{\eta=\eta(s,t,\omega)} \forall_G$$

• G has no $K_{s,t}$ -subgraph

 $\Rightarrow G$ is (s+1)-choosable with clustering η

We start with |L(v)| = s + 1

Iteratively we enlarge colored set Y (until not too big)

 $\begin{aligned} & \text{ler } \omega + 2) & & & & & & \\ & \text{ord}(A, B) & & & & \\ & & \vdots = |V(A \cap B)| & & & & \\ & \mathcal{T} - \dots \text{order} < \theta & & \\ & & (\text{T1}) \ (A, B) \in \mathcal{T} \text{ or } (B, A) \in \mathcal{T} \\ & & (\text{T2}) \ A_1 \cup A_2 \cup A_3 \neq G \\ & & (\text{T3}) \ V(A) \neq V(G) \end{aligned}$ $\begin{aligned} & & \left| N^{\geqslant s}(X) \right| \leqslant f(|X|, s, t) \end{aligned}$

Start with $Y = \{v\}$ and any color If $N^{\geqslant s}(Y) = \emptyset$ color some $z \in N^{<s}(Y)$

Otherwise:

$$\forall_{s,t,\omega} \exists_{\eta=\eta(s,t,\omega)} \forall_G$$

• G has no $K_{s,t}$ -subgraph

 $\Rightarrow G$ is (s+1)-choosable with clustering η

We start with |L(v)| = s + 1

Iteratively we enlarge colored set Y (until not too big)

der $\omega + 2$) ord(A, B) $:= |V(A \cap B)|$ \mathcal{T} - ...order $< \theta$ (T1) $(A, B) \in \mathcal{T}$ or $(B, A) \in \mathcal{T}$ (T2) $A_1 \cup A_2 \cup A_3 \neq G$ (T3) $V(A) \neq V(G)$ $|N^{\geqslant s}(X)| \leqslant f(|X|, s, t)$

Start with $Y = \{v\}$ and any color If $N^{\geqslant s}(Y) = \emptyset$ color some $z \in N^{<s}(Y)$

Otherwise:

$$\forall_{s,t,\omega} \exists_{\eta=\eta(s,t,\omega)} \forall_G$$

• G has no $K_{s,t}$ -subgraph

 $\Rightarrow G$ is (s+1)-choosable with clustering η

We start with |L(v)| = s + 1

Iteratively we enlarge colored set Y (until not too big)

Start with $Y = \{v\}$ and any color If $N^{\geqslant s}(Y) = \emptyset$ color some $z \in N^{<s}(Y)$

Otherwise:

• $\operatorname{tw}(G) \leq \omega$ (:= no tangle of order $\omega + 2$) B $\forall_{s,t,\omega} \exists_{\eta=\eta(s,t,\omega)} \forall_G$ $\operatorname{ord}(A, B)$ • G has no $K_{s,t}$ -subgraph $:= |V(A \cap B)|$ \mathcal{T} - ...order < θ \Rightarrow G is (s+1)-choosable with clustering η (T1) $(A, B) \in \mathcal{T}$ or $(B, A) \in \mathcal{T}$ We start with |L(v)| = s + 1(T2) $A_1 \cup A_2 \cup A_3 \neq G$ (T3) $V(A) \neq V(G)$ Iteratively we enlarge colored set Y (until not too big) $|N^{\geq s}(X)| \leq f(|X|, s, t)$ Start with $Y = \{v\}$ and any color If $N^{\geq s}(Y) = \emptyset$ color some $z \in N^{\leq s}(Y)$ Otherwise: N < s

$$\forall s,t,\omega \exists \eta = \eta(s,t,\omega) \forall G \quad \bullet \text{ tw}(G) \leqslant \omega \quad (:= \text{ no tangle of order } \omega + 2) \\ \bullet G \text{ has no } K_{s,t} \text{-subgraph} \\ \Rightarrow G \text{ is } (s+1) \text{-choosable with clustering } \eta \\ \text{We start with } |L(v)| = s+1 \\ \text{Iteratively we enlarge colored set } Y \text{ (until not too big)} \\ \mathcal{T}_{\theta} := \{(A,B)_{\theta} : |V(A) \cap Y| \leqslant 3\theta\} \quad |Y| > 9\theta \quad \theta := \omega + 2 \\ \text{Is not a tangle!} \\ \text{But:} \\ A \quad \underbrace{\bullet \\ \theta} \\ \text{But:} \\ A \quad \underbrace{\bullet \\ \theta} \\ \text{Start with } Y = \{v\} \text{ and any color} \\ \text{If } N^{\geqslant s}(Y) = \emptyset \text{ color some } z \in N^{$$

$$\forall s, t, \omega \exists \eta = \eta(s, t, \omega) \forall G \quad \bullet \operatorname{tw}(G) \leqslant \omega \quad (:= \text{ no tangle of order } \omega + 2) \\ \bullet G \text{ has no } K_{s,t} \text{-subgraph} \\ \Rightarrow G \text{ is } (s+1) \text{-choosable with clustering } \eta \\ \hline We \text{ start with } |L(v)| = s+1 \\ \text{Iteratively we enlarge colored set } Y \quad (\text{until not too big)} \\ \mathcal{T}_{\theta} := \{(A, B)_{\theta} : |V(A) \cap Y| \leqslant 3\theta\} \quad |Y| > 9\theta \quad \theta := \omega + 2 \\ \hline \text{Is not a tangle!} \\ \text{But: (T2), (T3) - OK} \\ A \quad \textcircled{\theta} \quad B \\ \hline \\ A \quad \textcircled{\theta} \quad B \\ \hline \\ \end{bmatrix} \quad \begin{array}{l} \bullet \operatorname{tw}(G) \leqslant \omega \quad (:= \text{ no tangle of order } \omega + 2) \\ \operatorname{ord}(A, B) \\ := |V(A \cap B)| \\ \mathcal{T} - \dots \text{order } < \theta \\ (T1) \quad (A, B) \in \mathcal{T} \text{ or } (B, A) \in \mathcal{T} \\ (T2) \quad A_1 \cup A_2 \cup A_3 \neq G \\ (T3) \quad V(A) \neq V(G) \\ \hline \\ |N^{\geqslant s}(X)| \leqslant f(|X|, s, t) \\ \hline \\ \text{Start with } Y = \{v\} \text{ and any color} \\ \text{If } N^{\geqslant s}(Y) = \emptyset \text{ color some } z \in N^{$$

$$\forall s,t,\omega \exists \eta = \eta(s,t,\omega) \forall G \quad \bullet \operatorname{tw}(G) \leqslant \omega \quad (:= \text{ no tangle of order } \omega + 2) \\ \bullet G \text{ has no } K_{s,t} \text{-subgraph} \\ \Rightarrow G \text{ is } (s+1) \text{-choosable with clustering } \eta \\ \hline We \text{ start with } |L(v)| = s+1 \\ \text{Iteratively we enlarge colored set } Y \quad (\text{until not too big)} \\ \mathcal{T}_{\theta} := \{(A, B)_{\theta} : |V(A) \cap Y| \leqslant 3\theta\} \quad |Y| > 9\theta \quad \theta := \omega + 2 \\ \hline \text{Is not a tangle!} \\ \text{But: (T2), (T3) - OK } \Rightarrow \sim (T1) \\ A \quad (= \theta) \\ \hline B \quad (= \theta) \\ \hline \theta \quad (= \theta) \\$$

 $\mathcal{G}_s = K_{s+1}$ minor free graphs $\chi_c(\mathcal{G}_s) \leqslant s$

$$\chi_c(\mathcal{G}_s) \leqslant s+2$$

 $K_{s,s,}$ has K_{s+1} minor

We proved

Technical statement: (optimal)

 $\begin{array}{c} \forall s,t,\overset{\omega}{H} \exists_{\eta=\eta(s,t,\overset{\omega}{H})} \forall_{G} & \overset{\mathrm{tw}(G) \leqslant \omega}{G \text{ has no } H\text{-minor}} \\ & G \text{ has no } K_{s,t}\text{-subgraph} \\ & \varphi G \text{ is } (s+1) & \text{choosable} \\ & \Rightarrow G \text{ is } (s+2)\text{-colorable with clustering } \eta \end{array}$

 $\mathcal{G}_s = K_{s+1}$ minor free graphs $\chi_c(\mathcal{G}_s) \leqslant s$

$$\chi_c(\mathcal{G}_s) \leqslant s+2$$

 $K_{s,s,}$ has K_{s+1} minor

We proved

Technical statement: (optimal)

 $\forall s, t, H \exists \eta = \eta(s, t, H) \forall G \qquad \begin{array}{c} \operatorname{tw}(G) \leqslant \omega \\ G \text{ has no } H \text{-minor} \\ G \text{ has no } K_{s,t} \text{-subgraph} \\ \\ \Rightarrow G \text{ is } (s+1) \quad \text{choosable} \\ \\ \Rightarrow G \text{ is } (s+2) \text{-colorable with clustering } \eta \end{array}$

How to do the general case?

• All tools we already used

 $\mathcal{G}_s = K_{s+1}$ minor free graphs $\chi_c(\mathcal{G}_s) \leqslant s$

$$\chi_c(\mathcal{G}_s) \leqslant s+2$$

 $K_{s,s,}$ has K_{s+1} minor

We proved

Technical statement: (optimal)

 $\begin{array}{ccc} \forall s,t, \overset{\omega}{H} \exists_{\eta=\eta(s,t, \overset{\omega}{H})} \forall_{G} & \overset{\mathrm{tw}(G) \leqslant \omega}{G \text{ has no } H\text{-minor}} \\ & & G \text{ has no } K_{s,t}\text{-subgraph} \\ & & & \\ & \\ & & \\ & \\ & \\ & &$

How to do the general case?

- All tools we already used
- Graph structure theorem

source: Felix Reidl's website

 $\mathcal{G}_s = K_{s+1}$ minor free graphs $\chi_c(\mathcal{G}_s) \leqslant s$

$$\chi_c(\mathcal{G}_s) \leqslant s+2$$

 $K_{s,s,}$ has K_{s+1} minor

We proved

Technical statement: (optimal)

 $\begin{array}{c} \forall s,t, H \exists \eta = \eta(s,t, H) \forall G & \underset{G \text{ has no } H\text{-minor}}{\overset{\omega}{G} \text{ has no } K_{s,t}\text{-subgraph}} \\ \text{planar} & \underset{(s+1) \text{ choosable}}{\overset{\omega}{G} \text{ is } (s+2)\text{-colorable with clustering } \eta \end{array}$

How to do the general case?

- All tools we already used
- Graph structure theorem

source: Felix Reidl's website

• Results from ~ 100 pages			
Claim 2	1.58. long o	companion	paper
$\left(Y^{(i,-1,k+1)} - Y^{(i,-1,k)}\right) \cap X_{V(T_{l})} \subseteq N_{G}[W_{0}^{(i,-1,k)}] \cap X_{V(T_{l})} \subseteq N_{G}[\bigcup_{j'=1}^{ V -1} \bigcup_{S \in S_{j'}^{ V }} S_{j'} \subseteq \bigcup_{j'=1}^{ V -1} \overline{I_{j'}} \subseteq \bigcup_{j'=1}^{ V -1} I_{j'}.$			
So for every $k \in [0, w_0 - 1]$ and $q \in [0, s + 1]$,			
$(Y^{(i,-1,k,q+1}$	$I_{j} - Y^{(i,-1,k,q)} \cap I_{j} \cap X_{V(T_{t})} - X_{t} \subseteq \subseteq$	$\begin{array}{l} A_{L^{(i,-1,k,1)}}(Y_1^{(i,-1,k,q)} \cap \overline{I_j^o}) \cap I_j \cap X\\ N_G^{\geq s}(Y^{(i,-1,k,q)} \cap \overline{I_j^o}) \cap I_j \cap X_{V(T_i)}\\ N_G^{\geq s}(Y^{(i,-1,k,q)} \cap \overline{I_j^o} \cap X_{V(T_i)}). \end{array}$	
Hence for ever $ N_G^{\geq s}(Y^{(i,-1,k,q)}) $	$y \ k \in [0, w_0 - 1] \text{ and } q \in [0, s + 1],$ $ \cap \overline{I_j^\circ} \cap X_{V(T_i)} \leq f(Y^{(i, -1, k, q)} \cap I_j)$	$ (Y^{(i,-1,k,q+1)} - Y^{(i,-1,k,q)}) \cap I_j \cap X \cap X_{V(T_i)})$, so	$ \zeta_{V(T_t)} - X_t \leq$
$ (Y^{(i,-1,k,q+1)} -$	$Y^{(i,-1,k,q)} \cap I_j \cap X_{V(T_i)} \leq (Y^{(i,-1)}) \leq (Y^{(i,-1)}) \leq f(Y^{(i,-1)}) \leq f(Y^{(i,-1)}) $	$^{(k,q+1)} - Y^{(i,-1,k,q)} \cap I_j \cap X_{V(T_i)} - ^{(1,k,q)} \cap I_j \cap X_{V(T_i)}) + w_0.$	$X_t + X_t \cap I_j $
So			
$ Y^{(i,-1,k,q+1)} \cap$	$\cap I_j \cap X_{V(T_t)} \leq (Y^{(i,-1,k,q+1)} - Y^{(i,-1)}) \leq f(Y^{(i,-1,k,q)} \cap I_j \cap Z)$ $\leq f(Y^{(i,-1,k,q)} \cap I_j \cap Z)$ $= f_1(Y^{(i,-1,k,q)} \cap I_j \cap Z)$	$X_{V(T_i)}) + w_0 + Y^{(i,-1,k,q)} \cap I_j \cap X$	