Multiple list colouring of planar graphs

Jędrzej Kula

31 march 2022

Table of contents

(1) Preliminaries
(2) Counterexample construction

(3) Open problems

Definition

b-fold colouring of graph \boldsymbol{G} is a mapping ϕ which assigns to each vertex v of G a set of $\phi(v)$ of b colours, so that adjacent vertices receive disjoint colour sets.

Definition

b-fold colouring of graph \boldsymbol{G} is a mapping ϕ which assigns to each vertex v of G a set of $\phi(v)$ of b colours, so that adjacent vertices receive disjoint colour sets.

Definition

(a,b)-colouring of \boldsymbol{G} is a b-fold colouring ϕ of G such that $\phi(v) \subseteq\{1,2, \ldots, a\}$ for each vertex v.

Definition

b-fold colouring of graph \boldsymbol{G} is a mapping ϕ which assigns to each vertex v of G a set of $\phi(v)$ of b colours, so that adjacent vertices receive disjoint colour sets.

Definition

$\mathbf{(a , b)}$-colouring of \boldsymbol{G} is a b-fold colouring ϕ of G such that $\phi(v) \subseteq\{1,2, \ldots, a\}$ for each vertex v.

Definition

Fractional chromatic number of G

$$
\chi_{f}(G)=\inf \left\{\frac{a}{b}: G \text { is }(a, b) \text {-colourable }\right\} .
$$

Definition

a-list assignment of \mathbf{G} is a mapping L which assigns to each vertex v a set $L(v)$ of a permissible colours.

Definition

a-list assignment of \boldsymbol{G} is a mapping L which assigns to each vertex v a set $L(v)$ of a permissible colours.

Definition

b-fold L-colouring of \mathbf{G} is a b-fold colouring ϕ of G such that $\phi(v) \subseteq L(v)$ for each vertex v.

Definition

a-list assignment of \boldsymbol{G} is a mapping L which assigns to each vertex v a set $L(v)$ of a permissible colours.

Definition

b-fold L-colouring of \boldsymbol{G} is a b-fold colouring ϕ of G such that $\phi(v) \subseteq L(v)$ for each vertex v.

Definition

\boldsymbol{G} is $(\mathbf{a}, \boldsymbol{b})$-choosable if for any a-list assignment L of G, there is a b-fold L-colouring of G.

Definition

a-list assignment of \boldsymbol{G} is a mapping L which assigns to each vertex v a set $L(v)$ of a permissible colours.

Definition

b-fold L-colouring of \mathbf{G} is a b-fold colouring ϕ of G such that $\phi(v) \subseteq L(v)$ for each vertex v.

Definition

\mathbf{G} is $(\mathbf{a}, \boldsymbol{b})$-choosable if for any a-list assignment L of G, there is a b-fold L-colouring of G.

Definition

Fractional choice number of \mathbf{G}

$$
c h_{f}(G)=\inf \left\{\frac{a}{b}: G \text { is }(a, b) \text {-choosable }\right\} .
$$

Table of contents

(1) Preliminaries

(2) Counterexample construction

(3) Open problems

Theorem

Theorem

For each positive integer m, there is a planar graph G which is not $\left(4 m+\left\lfloor\frac{2 m-1}{9}\right\rfloor, m\right)$-choosable.

Proof

Theorem

For each positive integer m, there is a planar graph G which is not $\left(4 m+\left\lfloor\frac{2 m-1}{9}\right\rfloor, m\right)$-choosable.

Let m be the fixed positive integer and $k=\left\lfloor\frac{2 m-1}{9}\right\rfloor$. To proof the theorem we will show the construction of a planar graph H which is not ($4 m+k, m$)-choosable.

Fig. 1. The graph G.

Lemma

Lemma

Let G be a graph shown above. Let A and B be disjoint sets, such that $|A|=|B|=m$. Let L be a list assignment of G for which the following hold:
(1) $|L(s)|=4 m+k$ for each vertex s, except that $L(u)=A, L\left(u^{\prime}\right)=B$.
(2) There is no m-fold L-colouring of G.

Proof of Lemma

Let A, B be any disjoint sets of colours such that $|A|=|B|=m$. Let C, D be any disjoint sets of colours such that $|C|=|D|=2 m+k$ and C, D are disjoint from both A and B.

Let $X, X^{\prime} \subseteq C$ be disjoint subsets such that $|X|=\left|X^{\prime}\right|=m$. L will be defined in the following way:

- $L(u)=A$ and $L\left(u^{\prime}\right)=B$.
- $L(v)=L(w)=L(t)=L\left(t^{\prime}\right)=A \cup B \cup C$.
- $L(x)=L(a)=X \cup A \cup D$ and $L\left(x^{\prime}\right)=L\left(a^{\prime}\right)=X^{\prime} \cup A \cup D$.
- $L(y)=L(b)=X \cup B \cup D$ and $L\left(y^{\prime}\right)=L\left(b^{\prime}\right)=X^{\prime} \cup A \cup D$.
- $L(z)=L(c)=L\left(z^{\prime}\right)=L\left(c^{\prime}\right)=A \cup B \cup D$.

Now we will show the second property of the L - there is no m-fold L-colouring of G.
Lets assume that ϕ is an m-fold L-colouring of G. Then $\phi(u)=A$ and $\phi\left(u^{\prime}\right)=B$ and $\phi(v), \phi(w)$ are disjoint m-subsets of C. So

$$
\left|(\phi(v) \cup \phi(w)) \cap\left(X \cup X^{\prime}\right)\right| \geq 2 m-k
$$

By symmetry of (u, v, w) and $\left(u^{\prime}, v, w\right)$, we can assume that

$$
|(\phi(v) \cup \phi(w)) \cap X| \geq\left|(\phi(v) \cup \phi(w)) \cap X^{\prime}\right|
$$

So

$$
|\phi(v) \cap X|+|\phi(w) \cap X|=|(\phi(v) \cup \phi(w)) \cap X| \geq m-\frac{k}{2}
$$

By symmetry of (u, v, t) and (u, w, t), we can assume that

$$
|\phi(v) \cap X| \geq|\phi(w) \cap X|
$$

so

$$
|\phi(v) \cap X| \geq \frac{m}{2}-\frac{k}{4}
$$

Let $T=X-\phi(v)$. We have

$$
|T|=|X|-|X \cap \phi(v)| \leq \frac{m}{2}+\frac{k}{4}
$$

Let $R=B-\phi(t)$ and $S=C-(\phi(v) \cup \phi(w))$. Then $|S| \leq k$. As $\phi(t)$ is disjoint from $\phi(u) \cup \phi(v) \cup \phi(w)$, we know that $\phi(t) \subseteq B \cup S$. Hence

$$
|R| \leq|S|=k
$$

By deleting the colours used by the neighbours of a, b, c, respectively, we have

- $\phi(a) \subseteq D \cup T$,
- $\phi(b) \subseteq D \cup R \cup T$,
- $\phi(c) \subseteq D \cup R$.

As $\phi(a), \phi(b), \phi(c)$ are pairwise disjoint, we have

$$
\begin{gathered}
3 m=|\phi(a) \cup \phi(b) \cup \phi(c)| \leq|D|+|T|+|R| \\
\leq(2 m+k)+\left(\frac{m}{2}+\frac{k}{4}\right)+k=\frac{5 m}{2}+\frac{9 k}{4}<3 m
\end{gathered}
$$

a contradiction.

Back to proof of Theorem

Let $p=\binom{4 m+k}{m, m, 2 m+k}$, and let G be obtained from the disjoint union of p copies of H by identifying all the copies of u into a single vertex (also named as u) and all the copies of u^{\prime} into a single vertex (also named as u^{\prime}), and then add an edge connecting u and u^{\prime}. For sure G is a planar graph.

To show that G is not $(4 m+k, m)$-choosable, let Z be a set of $4 m+k$ colours. Let $L(u)=L\left(u^{\prime}\right)=Z$. There are p possible m-fold L-colourings of u and u^{\prime}. Each such colouring ϕ corresponds to one copy of H. In that copy of H, define the list assignment as in the proof of Lemma, by replacing A with $\phi(u)$ and B with $\phi\left(u^{\prime}\right)$. Now Lemma implies that no m-fold colouring of u and u^{\prime} can be extended to and m-fold L-colouring of G.

Table of contents

(1) Preliminaries

(2) Counterexample construction
(3) Open problems

Thomassen proved that every planar graph is 5 -choosable. It is possible to adopt proof and show for any positive integer m, every planar graph $(5 m, m)$-choosable. Given a positive integer m, let $a(m)$ be the minimum integer such that every planar graph is $(a(m), m)$-choosable. Combining Thomassen's result and Theorem of this paper, we have

$$
4 m+\left\lfloor\frac{2 m-1}{9}\right\rfloor+1 \leq a(m) \leq 5 m
$$

For $m=1$, the upper bound and the lower bound coincide. So $a(1)=5$. As m becomes bigger, the gap between the upper and lower bounds increases. A natural question is what is the exact value of $a(m)$. Authors conjecture that the upper bound is not always tight.

Conjecture

There is a constant integer m such that every planar graph is ($5 m-1, m$)-choosable.

Conjecture

Every planar graph is $(9,2)$-choosable.

Conjecture

(By Erdos, Rubin and Taylor) If G is (a, b)-choosable, then for any positive integer m, G is $(a m, b m)$-choosable

Definition

\boldsymbol{G} is strongly α-choosable if for any positive integer m, G is ($\lceil\alpha m\rceil, m$)-choosable.

Definition

Strong choice number of G is

$$
\operatorname{ch}_{s}(G)=\inf \{\alpha: G \text { is strongly } \alpha \text {-choosable. }\}
$$

- Is the infimum in the definition of $c h_{s}(G)$ always attained (and hence can be replaced by the minimum)?
- What real numbers are the strong choice number of graphs?
- Is $c h_{s}(G)$ rational for all finite graphs?

