
Nash-Williams Theorem
Let G be a graph with multiple edges allowed but no loops. A ρ-forest
decomposition is a decomposition of the edge set into ρ subsets E(G) = E1 ∪ . . . Eρ
such that each subgraph Ei is acyclic. The minimum ρ is called the arboricity of G,
and denoted by ρ(G).

Nash-Williams Theorem:

ρ(G) = maxHde(H)/(v(H)− 1)e
where H runs over all subgraphs of G with v(H) := |V (H)| > 1, and e(H) := |E(H)|.



Proof

Proof. Let G be a counter-example that minimizes e(G) + v(G). Then ρ(G) is
strictly greater than the right side of the equation.

Note: ρ(G) ≥ de(H)/(v(H)− 1)e is a trivial lower bound.

Obviously G is connected with ρ(G) >1 and critical with respect to the arboricity,
that is, ρ(G− e) < ρ(G) holds for each e ∈ E.
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spanning trees of G.
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Lemma 1. Let G be connected and critical with ρ(G) > 1. Then for every e ∈ E
any (ρ(G)− 1)-forest decomposition of G− e is a decomposition into ρ(G)− 1
spanning trees of G.

e(G) = (ρ(G)− 1) · (v(G)− 1) + 1

which leads to the following contradiction:

ρ(G) > de(G)/(v(G)−1)e = d((ρ(G)−1)(v(G)−1)+1)/(v(G)−1)] = dρ(G)−1+1/(v(G)−1)e = ρ(G)

Using this lemma, we obtain an equality:



Proof of Lemma 1
Proof by contradiction. Let ρ := ρ(G) and let E1 . . . Eρ−1 be a forest decomposi-
tion of G− e where E1 is not a spanning tree of G. Since E1 + e must contain a
cycle, both ends of e are in a connected component T of E1.
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Let K be a subgraph induced by V (T ). K 6= G and by
the criticality of the the G, K has (ρ− 1)-forest
decomposition: E(K) = A1 ∪ . . . ∪Aρ−1.

K



Let S := {(E′1 . . . , E′ρ−1, {e′}) : ρ-forest decomposition of G, such that a connected
component of E1 is a spanning tree of K and e′ ∈ K}.

(E1, . . . Eρ−1, {e}) ∈ S shows that |S| > 0. Let (E1 . . . Eρ−1, {e}) be an element of
S that maximizes:

J(E) =
∑ρ−1
i=1 |Ai ∩ Ei|
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Since e ∈ E(K), e ∈ At for some t. Et + e must contain a cycle C. We will prove
that C ⊂ K. Case t = 1 is trivial. Otherwise if C 6⊂ K then we can take an edge
f ∈ C with one end in V (K) and the other in V (G) \ V (K). E1 + f is acyclic and
then (E1 + f, . . . Et + e− f, . . . , Eρ) is ρ− 1 decomposition of G – contradiction.

K

e

f

Cycle C



Let S := {(E′1 . . . , E′ρ−1, {e′}) : ρ-forest decomposition of G, such that a connected
component of E1 is a spanning tree of K and e′ ∈ K}.

(E1, . . . Eρ−1, {e}) ∈ S shows that |S| > 0. Let (E1 . . . Eρ−1, {e}) be an element of
S that maximizes:

J(E) =
∑ρ−1
i=1 |Ai ∩ Ei|

Since e ∈ E(K), e ∈ At for some t. Et + e must contain a cycle C. We will prove
that C ⊂ K. Case t = 1 is trivial. Otherwise if C 6⊂ K then we can take an edge
f ∈ C with one end in V (K) and the other in V (G) \ V (K). E1 + f is acyclic and
then (E1 + f, . . . Et + e− f, . . . , Eρ) is ρ− 1 decomposition of G – contradiction.

Since At is acyclic, there exists an edge
g ∈ E(C)−At. Now
(E1 . . . Et + e− g, . . . Eρ−1, {g}) ∈ S
increases J by one, which contradicts the
assumption on maximality.
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Thorem 2. (Reiher, Sauermann). Given a graph G, an integer ρ = ρ(G), and
moreover a sequence e1, e2, ..., eρ of distinct edges of G, there exists a partition
(E1, . . . Eρ) such that ei ∈ Ei and Ei’s are forests.

Proof by contradiction. Let (E1, . . . Eρ) be a partition, that minimizes the number
of i’s such that ei 6∈ Ei. If ek 6∈ Ek then ek ∈ El for l 6= k.
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CLet C be a cycle in Ek + ek. u, v are in

different components of (El − ek). Hence,
there is an edge f of the cycle C
connecting vertices of different components
of (El − ek).

u v
The partition gained from (E1, . . . Eρ)
substituting Ek by Ek + ek − f and El by
El − ek + f is better.


