Nash-Williams Theorem

Let G be a graph with multiple edges allowed but no loops. A ρ-forest decomposition is a decomposition of the edge set into ρ subsets $E(G)=E_{1} \cup \ldots E_{\rho}$ such that each subgraph E_{i} is acyclic. The minimum ρ is called the arboricity of G, and denoted by $\rho(G)$.

Nash-Williams Theorem:

$$
\rho(G)=\max _{H}\lceil e(H) /(v(H)-1)\rceil
$$

where H runs over all subgraphs of G with $v(H):=|V(H)|>1$, and $e(H):=|E(H)|$.

Proof

Note: $\rho(G) \geq\lceil e(H) /(v(H)-1)\rceil$ is a trivial lower bound.
Proof. Let G be a counter-example that minimizes $e(G)+v(G)$. Then $\rho(G)$ is strictly greater than the right side of the equation.
Obviously G is connected with $\rho(G)>1$ and critical with respect to the arboricity, that is, $\rho(G-e)<\rho(G)$ holds for each $e \in E$.

Proof

Note: $\rho(G) \geq\lceil e(H) /(v(H)-1)\rceil$ is a trivial lower bound.
Proof. Let G be a counter-example that minimizes $e(G)+v(G)$. Then $\rho(G)$ is strictly greater than the right side of the equation.
Obviously G is connected with $\rho(G)>1$ and critical with respect to the arboricity, that is, $\rho(G-e)<\rho(G)$ holds for each $e \in E$.

Lemma 1. Let G be connected and critical with $\rho(G)>1$. Then for every $e \in E$ any $(\rho(G)-1)$-forest decomposition of $G-e$ is a decomposition into $\rho(G)-1$ spanning trees of G.

Proof

Note: $\rho(G) \geq\lceil e(H) /(v(H)-1)\rceil$ is a trivial lower bound.
Proof. Let G be a counter-example that minimizes $e(G)+v(G)$. Then $\rho(G)$ is strictly greater than the right side of the equation.
Obviously G is connected with $\rho(G)>1$ and critical with respect to the arboricity, that is, $\rho(G-e)<\rho(G)$ holds for each $e \in E$.

Lemma 1. Let G be connected and critical with $\rho(G)>1$. Then for every $e \in E$ any $(\rho(G)-1)$-forest decomposition of $G-e$ is a decomposition into $\rho(G)-1$ spanning trees of G.

Using this lemma, we obtain an equality:

$$
e(G)=(\rho(G)-1) \cdot(v(G)-1)+1
$$

which leads to the following contradiction:
$\rho(G)>\lceil e(G) /(v(G)-1)\rceil=\lceil((\rho(G)-1)(v(G)-1)+1) /(v(G)-1)]=\lceil\rho(G)-1+1 /(v(G)-1)\rceil=\rho(G)$

Proof of Lemma 1

Proof by contradiction. Let $\rho:=\rho(G)$ and let $E_{1} \ldots E_{\rho-1}$ be a forest decomposition of $G-e$ where E_{1} is not a spanning tree of G. Since $E_{1}+e$ must contain a cycle, both ends of e are in a connected component T of E_{1}.

Proof of Lemma 1

Proof by contradiction. Let $\rho:=\rho(G)$ and let $E_{1} \ldots E_{\rho-1}$ be a forest decomposition of $G-e$ where E_{1} is not a spanning tree of G. Since $E_{1}+e$ must contain a cycle, both ends of e are in a connected component T of E_{1}.

Let K be a subgraph induced by $V(T) . K \neq G$ and by the criticality of the the $G, \mathrm{~K}$ has $(\rho-1)$-forest decomposition: $E(K)=A_{1} \cup \ldots \cup A_{\rho-1}$.

Let $S:=\left\{\left(E_{1}^{\prime} \ldots, E_{\rho-1}^{\prime},\left\{e^{\prime}\right\}\right): \rho\right.$-forest decomposition of G, such that a connected component of E_{1} is a spanning tree of K and $\left.e^{\prime} \in K\right\}$.
$\left(E_{1}, \ldots E_{\rho-1},\{e\}\right) \in S$ shows that $|S|>0$. Let $\left(\overline{E_{1}} \ldots \overline{E_{\rho-1}},\{\bar{e}\}\right)$ be an element of S that maximizes:

$$
J(\bar{E})=\sum_{i=1}^{\rho-1}\left|A_{i} \cap \overline{E_{i}}\right|
$$

Let $S:=\left\{\left(E_{1}^{\prime} \ldots, E_{\rho-1}^{\prime},\left\{e^{\prime}\right\}\right): \rho\right.$-forest decomposition of G, such that a connected component of E_{1} is a spanning tree of K and $\left.e^{\prime} \in K\right\}$.
$\left(E_{1}, \ldots E_{\rho-1},\{e\}\right) \in S$ shows that $|S|>0$. Let $\left(\overline{E_{1}} \ldots \overline{E_{\rho-1}},\{\bar{e}\}\right)$ be an element of S that maximizes:

$$
J(\bar{E})=\sum_{i=1}^{\rho-1}\left|A_{i} \cap \overline{E_{i}}\right|
$$

Since $\bar{e} \in E(K), \bar{e} \in A_{t}$ for some $t . E_{t}+\bar{e}$ must contain a cycle C. We will prove that $C \subset K$. Case $t=1$ is trivial. Otherwise if $C \not \subset K$ then we can take an edge $f \in C$ with one end in $V(K)$ and the other in $V(G) \backslash V(K) . \overline{E_{1}}+f$ is acyclic and then $\left(\overline{E_{1}}+f, \ldots \overline{E_{t}}+\bar{e}-f, \ldots, \overline{E_{\rho}}\right)$ is $\rho-1$ decomposition of G - contradiction.

Let $S:=\left\{\left(E_{1}^{\prime} \ldots, E_{\rho-1}^{\prime},\left\{e^{\prime}\right\}\right): \rho\right.$-forest decomposition of G, such that a connected component of E_{1} is a spanning tree of K and $\left.e^{\prime} \in K\right\}$.
$\left(E_{1}, \ldots E_{\rho-1},\{e\}\right) \in S$ shows that $|S|>0$. Let $\left(\overline{E_{1}} \ldots \overline{E_{\rho-1}},\{\bar{e}\}\right)$ be an element of S that maximizes:

$$
J(\bar{E})=\sum_{i=1}^{\rho-1}\left|A_{i} \cap \overline{E_{i}}\right|
$$

Since $\bar{e} \in E(K), \bar{e} \in A_{t}$ for some $t . E_{t}+\bar{e}$ must contain a cycle C. We will prove that $C \subset K$. Case $t=1$ is trivial. Otherwise if $C \not \subset K$ then we can take an edge $f \in C$ with one end in $V(K)$ and the other in $V(G) \backslash V(K) . \overline{E_{1}}+f$ is acyclic and then $\left(\overline{E_{1}}+f, \ldots \overline{E_{t}}+\bar{e}-f, \ldots, \overline{E_{\rho}}\right)$ is $\rho-1$ decomposition of G - contradiction.

Since A_{t} is acyclic, there exists an edge $g \in E(C)-A_{t}$. Now
$\left(\overline{E_{1}} \ldots \overline{E_{t}}+\bar{e}-g, \ldots \overline{E_{\rho-1}},\{g\}\right) \in S$
increases J by one, which contradicts the assumption on maximality.

Thorem 2. (Reiher, Sauermann). Given a graph G, an integer $\rho=\rho(G)$, and moreover a sequence $e_{1}, e_{2}, \ldots, e_{\rho}$ of distinct edges of G, there exists a partition ($E_{1}, \ldots E_{\rho}$) such that $e_{i} \in E_{i}$ and E_{i} 's are forests.
Proof by contradiction. Let $\left(E_{1}, \ldots E_{\rho}\right)$ be a partition, that minimizes the number of i 's such that $e_{i} \notin E_{i}$. If $e_{k} \notin E_{k}$ then $e_{k} \in E_{l}$ for $l \neq k$.

Thorem 2. (Reiher, Sauermann). Given a graph G, an integer $\rho=\rho(G)$, and moreover a sequence $e_{1}, e_{2}, \ldots, e_{\rho}$ of distinct edges of G, there exists a partition ($E_{1}, \ldots E_{\rho}$) such that $e_{i} \in E_{i}$ and E_{i} 's are forests.
Proof by contradiction. Let $\left(E_{1}, \ldots E_{\rho}\right)$ be a partition, that minimizes the number of i 's such that $e_{i} \notin E_{i}$. If $e_{k} \notin E_{k}$ then $e_{k} \in E_{l}$ for $l \neq k$.
Case 1. Two vertices of e_{k} belong to the different components of E_{k}

Thorem 2. (Reiher, Sauermann). Given a graph G, an integer $\rho=\rho(G)$, and moreover a sequence $e_{1}, e_{2}, \ldots, e_{\rho}$ of distinct edges of G, there exists a partition ($E_{1}, \ldots E_{\rho}$) such that $e_{i} \in E_{i}$ and E_{i} 's are forests.
Proof by contradiction. Let $\left(E_{1}, \ldots E_{\rho}\right)$ be a partition, that minimizes the number of i 's such that $e_{i} \notin E_{i}$. If $e_{k} \notin E_{k}$ then $e_{k} \in E_{l}$ for $l \neq k$.
Case 1. Two vertices of e_{k} belong to the different components of E_{k}
Let C be a cycle in $E_{k}+e_{k} . u, v$ are in different components of $\left(E_{l}-e_{k}\right)$. Hence, there is an edge f of the cycle C connecting vertices of different components of $\left(E_{l}-e_{k}\right)$.
The partition gained from $\left(E_{1}, \ldots E_{\rho}\right)$ substituting E_{k} by $E_{k}+e_{k}-f$ and E_{l} by $E_{l}-e_{k}+f$ is better.

