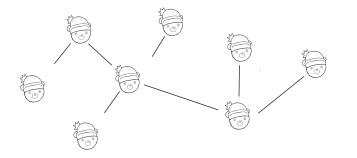
Bears with Hats and Independence Polynomials

Václav Blaej, Pavel Dvoák, Michal Opler

Kamil Galewski

May 12, 2022

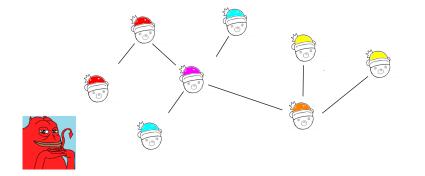
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで



<ロト <回ト < 注ト < 注ト

э

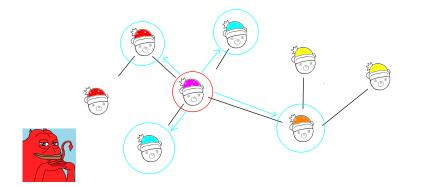
▶ We are given a graph *G*. In each vertex sits a bear.



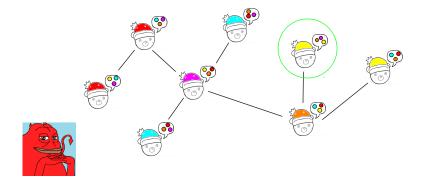
- ▶ We are given a graph *G*. In each vertex sits a bear.
- A demon puts colorful hats on the bears. Each hat has one of h colors.

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э



Bears see hats of their neighbours. Based on this information and a predetermined strategy, the bears guess the colors of their hats.



Each bear has g tries. The bears win if at least one bear guesses correctly.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

A hat guessing game is a triple H = (G, h, g) where

- G = (V, E) is an undirected graph.
- ▶ $h \in \mathbb{N} :=$ number of different possible hat colors for each bear
- ▶ $g \in \mathbb{N} :=$ the number of guesses each bear is allowed to make

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A hat guessing game is a triple H = (G, h, g) where

- G = (V, E) is an undirected graph.
- ▶ $h \in \mathbb{N} :=$ number of different possible hat colors for each bear
- ▶ $g \in \mathbb{N} :=$ the number of guesses each bear is allowed to make

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

A hats arrangement is a function $\varphi: V \rightarrow S$, where $S = [h] = \{0, ..., h - 1\}$

A hat guessing game is a triple H = (G, h, g) where

- G = (V, E) is an undirected graph.
- ▶ $h \in \mathbb{N} :=$ number of different possible hat colors for each bear
- ▶ $g \in \mathbb{N} :=$ the number of guesses each bear is allowed to make

A hats arrangement is a function $\varphi : V \rightarrow S$, where $S = [h] = \{0, ..., h - 1\}$

A strategy of a bear on v is a function $\Gamma_v : S^{|N(v)|} \to {S \choose g}$, and a strategy for H is a collection of strategies for all vertices.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

A hat guessing game is a triple H = (G, h, g) where

- G = (V, E) is an undirected graph.
- ▶ $h \in \mathbb{N} :=$ number of different possible hat colors for each bear
- ▶ $g \in \mathbb{N} :=$ the number of guesses each bear is allowed to make

A hats arrangement is a function $\varphi : V \rightarrow S$, where $S = [h] = \{0, ..., h - 1\}$

A strategy of a bear on v is a function $\Gamma_v : S^{|N(v)|} \to {S \choose g}$, and a strategy for H is a collection of strategies for all vertices.

A strategy is winning if

$$\forall_{\varphi} \exists_{v} \varphi(v) \in \Gamma_{v}((\varphi(u))_{u \in N(v)})$$

(日)(1)

Non-uniform variant

.

$$(G = (V, E), \mathbf{h}, \mathbf{g})$$

 $\mathbf{h} = (h_v)_{v \in V}$ and $\mathbf{g} = (g_v)_{v \in V}$

A bear on v gets a hat of one of h_v colors and is allowed to guess exactly g_v colors.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The **hat chromatic number** $\mu(G) := \max h$ for which game (G, h, 1) is winning.

The **hat chromatic number** $\mu(G) := \max h$ for which game (G, h, 1) is winning.

The fractional hat chromatic number $\hat{\mu}(G)$ is defined as

$$\hat{\mu}(G) = \sup\left\{\frac{h}{g} \mid (G, h, g) \text{ is a winning game}
ight\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Fractional hat chromatic number doesn't have to be rational (paths).

Observation. Let $k \in \mathbb{N}$. If a game H = (G, h, g) is winning, then the game $H_k = (G, k \cdot h, k \cdot g)$ is winning as well.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Observation. Let $k \in \mathbb{N}$. If a game H = (G, h, g) is winning, then the game $H_k = (G, k \cdot h, k \cdot g)$ is winning as well.

Lemma. Suppose that

Then $\exists h', g' \in \mathbb{N}$ such that h'/g' = r' and the game (G, h', g') is winning.

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Observation. Let $k \in \mathbb{N}$. If a game H = (G, h, g) is winning, then the game $H_k = (G, k \cdot h, k \cdot g)$ is winning as well.

Lemma. Suppose that

Then $\exists h', g' \in \mathbb{N}$ such that h'/g' = r' and the game (G, h', g') is winning.

Corollary.: If $\frac{p}{q} < \hat{\mu}(G)$, then there are $h, g \in \mathbb{N}$ such that $\frac{p}{q} = \frac{h}{g}$ and the bears win the game (G, h, g).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Fractional Hat Chromatic Number - Cliques

Theorem. Bears win a game $(K_n = (V, E), \mathbf{h}, \mathbf{g})$ if and only if

$$\sum_{v \in V} \frac{g_v}{h_v} \ge 1$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

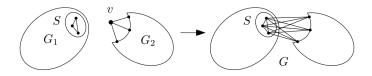
Fractional Hat Chromatic Number - Cliques

Theorem. Bears win a game $(K_n = (V, E), \mathbf{h}, \mathbf{g})$ if and only if

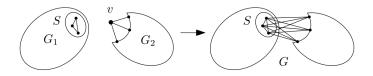
$$\sum_{v \in V} \frac{g_v}{h_v} \ge 1$$

Corollary. For each $n \in \mathbb{N}$, it holds that $\hat{\mu}(K_n) = n$

Clique Join



Clique Join



Lemma. Games

$$\mathcal{H}_{1} = (G_{1} = (V_{1}, E_{1}), \mathbf{h}^{1}, \mathbf{g}^{1})$$
$$\mathcal{H}_{2} = (G_{2} = (V_{2}, E_{2}), \mathbf{h}^{2}, \mathbf{g}^{2})$$
ning \longrightarrow game $\mathcal{H} = (G, \mathbf{h}, \mathbf{g})$ is winning, where

are winning \implies game $\mathcal{H} = (G, \mathbf{h}, \mathbf{g})$ is winning, where

$$h_u = \begin{cases} h_u^1 & u \in V_1 \backslash S \\ h_u^2 & u \in V_2 \backslash \{v\} \\ h_u^1 \cdot h_v^2 & u \in S, \text{ and} \end{cases} g_u^1 & u \in V_1 \backslash S \\ g_u^2 & u \in V_2 \backslash \{v\} \\ g_u^1 \cdot g_v^2 & u \in S. \end{cases}$$

・ロト・「四ト・「田下・「田下・(日下

The **multivariate independence polynomial** of a graph G = (V, E) on variables $\mathbf{x} = (x_v)_{v \in V}$ is

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The **multivariate independence polynomial** of a graph G = (V, E) on variables $\mathbf{x} = (x_v)_{v \in V}$ is

$$P_G(\mathbf{x}) = \sum_{\substack{I \subseteq V \\ l \text{ independent set}}} \prod_{v \in I} x_v.$$

Inclusion-exclusion principle. For a union A of sets A_1, \ldots, A_n holds that

$$|A| = \sum_{\emptyset \neq I \subseteq \{1, \dots, n\}} (-1)^{|I|+1} \left| \bigcap_{i \in I} A_i \right|.$$

The **multivariate independence polynomial** of a graph G = (V, E) on variables $\mathbf{x} = (x_v)_{v \in V}$ is

$$P_G(\mathbf{x}) = \sum_{\substack{I \subseteq V \\ l \text{ independent set}}} \prod_{v \in I} x_v.$$

Inclusion-exclusion principle. For a union A of sets A_1, \ldots, A_n holds that

$$|A| = \sum_{\emptyset
eq I \subseteq \{1,...,n\}} (-1)^{|I|+1} \left| igcap_{i \in I} A_i
ight|.$$

Idea: We can use the inclusion-exclusion principle to compute the probability that at least one bear sitting on some vertex of *I* guesses correctly, where *I* is an independent set.

$$P_G(\mathbf{x}) = P_{G \setminus \{v\}}(\mathbf{x}) + x_v P_{G \setminus N^+(v)}(\mathbf{x})$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$P_G(\mathbf{x}) = P_{G \setminus \{v\}}(\mathbf{x}) + x_v P_{G \setminus N^+(v)}(\mathbf{x})$$

$$Z_G(\mathbf{x}) \coloneqq P_G(-\mathbf{x})$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$P_G(\mathbf{x}) = P_{G \setminus \{v\}}(\mathbf{x}) + x_v P_{G \setminus N^+(v)}(\mathbf{x})$$

$$Z_G(\mathbf{x}) \coloneqq P_G(-\mathbf{x})$$

 $\mathcal{R}(G) \coloneqq$ set of all vectors $\mathbf{r} \in [0, \infty)^V$ such that $Z_G(\mathbf{w}) > 0$ for all $0 \le \mathbf{w} \le \mathbf{r}$, where the comparison is done entry-wise.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

$$P_G(\mathbf{x}) = P_{G \setminus \{v\}}(\mathbf{x}) + x_v P_{G \setminus N^+(v)}(\mathbf{x})$$

$$Z_G(\mathbf{x}) \coloneqq P_G(-\mathbf{x})$$

 $\mathcal{R}(G) := \text{set of all vectors } \mathbf{r} \in [0, \infty)^V \text{ such that } Z_G(\mathbf{w}) > 0 \text{ for all } 0 \le \mathbf{w} \le \mathbf{r}$, where the comparison is done entry-wise. Note that $Z_G(\mathbf{0}) = 1$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem. Let G = (V, E) be a graph.

Then

$$P\left(igcap_{v\in V}ar{A}_v
ight)\geq Z_G(\mathbf{p})>0.$$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Theorem. Let G = (V, E) be a graph.

Then

$$P\left(\bigcap_{v\in V}\bar{A}_v\right)\geq Z_G(\mathbf{p})>0.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Proposition. A hat guessing game $\mathcal{H} = (G = (V, E), \mathbf{h}, \mathbf{g})$ is losing whenever $\mathbf{r} \in \mathcal{R}(G)$ where $\mathbf{r} = (g_v/h_v)_{v \in V}$.

Perfect Strategy

A strategy ${\mathcal H}$ is perfect if

- It is winning, and
- In every hat arrangement, no two bears that guess correctly are on adjacent vertices

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Perfect Strategy

A strategy ${\mathcal H}$ is ${\boldsymbol{perfect}}$ if

- It is winning, and
- In every hat arrangement, no two bears that guess correctly are on adjacent vertices

Proposition. $(G, \mathbf{h}, \mathbf{g})$ has perfect strategy \implies for $\mathbf{r} = (g_v/h_v)_{v \in V}$ we have

$$Z_G(\mathbf{r}) = 0$$
 and $Z_G(\mathbf{w}) \ge 0$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

for every $0 \leq \mathbf{w} \leq \mathbf{r}$.

$$m = \left| \bigcup_{v \in V} A_v \right| =$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●

$$egin{aligned} m &= \left|igcup_{v\in V} A_v
ight| = \ &= \sum_{\emptyset
eq S\subseteq V} (-1)^{|S|+1} n_S = \end{aligned}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●

$$m = \left| \bigcup_{v \in V} A_v \right| =$$

= $\sum_{\substack{\emptyset \neq S \subseteq V \\ I \text{ independent}}} (-1)^{|S|+1} n_S =$
= $\sum_{\substack{\emptyset \neq I \subseteq V \\ I \text{ independent}}} (-1)^{|I|+1} n_I =$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$m = \left| \bigcup_{v \in V} A_v \right| =$$

= $\sum_{\substack{\emptyset \neq S \subseteq V \\ I \text{ independent}}} (-1)^{|S|+1} n_S =$
= $\sum_{\substack{\emptyset \neq I \subseteq V \\ I \text{ independent}}} (-1)^{|I|+1} n_I =$
= $m \cdot \sum_{\substack{\emptyset \neq I \subseteq V \\ I \text{ independent}}} (-1)^{|I|+1} \prod_{v \in I} \frac{g_v}{h_v} =$

・ロト・「四ト・「田下・「田下・(日下

$$m = \left| \bigcup_{v \in V} A_v \right| =$$

$$= \sum_{\substack{\emptyset \neq S \subseteq V \\ I \text{ independent}}} (-1)^{|S|+1} n_S =$$

$$= \sum_{\substack{\emptyset \neq I \subseteq V \\ I \text{ independent}}} (-1)^{|I|+1} n_I =$$

$$= m \cdot \sum_{\substack{\emptyset \neq I \subseteq V \\ I \text{ independent}}} (-1)^{|I|+1} \prod_{v \in I} \frac{g_v}{h_v} =$$

$$= m \cdot (1 - Z_G(\mathbf{r})) \implies Z_G(\mathbf{r}) = 0$$

・ロ・・ 「「・・」、 ・ 「」、 ・ 「」、 ・ (□・・ (□・・))

Proof that $Z_G(\mathbf{w}) \geq 0$

$$\mathbf{w}^{i} = (w_{1}, w_{2}, \dots, w_{i}, r_{i+1}, \dots, r_{n})$$

 $\mathbf{w}^{0} = \mathbf{r}, \ \mathbf{w}^{n} = \mathbf{w}.$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●

Proof that $Z_G(\mathbf{w}) \geq 0$

$$\mathbf{w}^{i} = (w_{1}, w_{2}, \dots, w_{i}, r_{i+1}, \dots, r_{n})$$

 $\mathbf{w}^{0} = \mathbf{r}, \ \mathbf{w}^{n} = \mathbf{w}.$

We prove by induction on *i* that for every induced subgraph G' of G it holds that $Z_{G'}(\mathbf{w}^i) \ge 0$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Proof that $Z_G(\mathbf{w}) \ge 0$ $\mathbf{w}^i = (w_1, w_2, \dots, w_i, r_{i+1}, \dots, r_n)$ $\mathbf{w}^0 = \mathbf{r}, \ \mathbf{w}^n = \mathbf{w}.$

We prove by induction on *i* that for every induced subgraph G' of G it holds that $Z_{G'}(\mathbf{w}^i) \geq 0$.

Base step.

$$m \geq \left| \bigcup_{v \in V'} A_v \right| = m \cdot (1 - Z_{G'}(\mathbf{r})) \implies Z_{G'}(\mathbf{r}) \geq 0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Proof that $Z_G(\mathbf{w}) \ge 0$ $\mathbf{w}^i = (w_1, w_2, \dots, w_i, r_{i+1}, \dots, r_n)$ $\mathbf{w}^0 = \mathbf{r}, \ \mathbf{w}^n = \mathbf{w}.$

We prove by induction on *i* that for every induced subgraph G' of G it holds that $Z_{G'}(\mathbf{w}^i) \ge 0$.

Base step.

$$m \ge \left| \bigcup_{v \in V'} A_v \right| = m \cdot (1 - Z_{G'}(\mathbf{r})) \implies Z_{G'}(\mathbf{r}) \ge 0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Inductive step.

► if $v_i \notin G'$, $Z_{G'}\left(\mathbf{w}^i\right) = Z_{G'}\left(\mathbf{w}^{i-1}\right) \ge 0$

Proof that $Z_G(\mathbf{w}) \ge 0$ $\mathbf{w}^i = (w_1, w_2, \dots, w_i, r_{i+1}, \dots, r_n)$ $\mathbf{w}^0 = \mathbf{r}, \ \mathbf{w}^n = \mathbf{w}.$

We prove by induction on *i* that for every induced subgraph G' of G it holds that $Z_{G'}(\mathbf{w}^i) \ge 0$.

Base step.

$$m \ge \left| \bigcup_{v \in V'} A_v \right| = m \cdot (1 - Z_{G'}(\mathbf{r})) \implies Z_{G'}(\mathbf{r}) \ge 0$$

Inductive step.

if v_i ∉ G', Z_{G'} (**w**ⁱ) = Z_{G'} (**w**ⁱ⁻¹) ≥ 0
 otherwise

$$Z_{G'}\left(\mathbf{w}^{i}\right) = Z_{G'\setminus\{v_i\}}\left(\mathbf{w}^{i}\right) - w_{v_i}Z_{G'\setminus N+(v_i)}\left(\mathbf{w}^{i}\right)$$

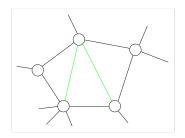
$$\geq Z_{G'\setminus\{v_i\}}\left(\mathbf{w}^{i-1}\right) - r_{v_i}Z_{G'\setminus N^+(v_i)}\left(\mathbf{w}^{i-1}\right) = Z_{G'}\left(\mathbf{w}^{i-1}\right) \geq 0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

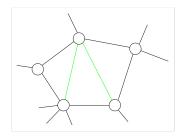
Perfect Strategy - conclusion

 $Z_G(\mathbf{w}) \ge 0$ for every $0 \le \mathbf{w} \le \mathbf{r} \iff \mathbf{r}$ lies in the closure of $\mathcal{R}(G)$. Since \mathbf{r} cannot lie inside $\mathcal{R}(G)$, it must belong to the boundary of the set $\mathcal{R}(G)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

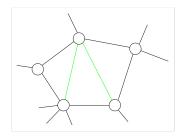


A graph G is **chordal** if every cycle of length at least 4 has a chord.



A graph G is **chordal** if every cycle of length at least 4 has a chord. **Clique tree** of G = (V, E) is a tree T = (V', E') such that

- ▶ $V' = \{S \subseteq V \mid S \text{ induce maximal clique in } G\}$
- ∀_{v∈V} the vertices of T containing v induces a connected subtree.



A graph G is **chordal** if every cycle of length at least 4 has a chord. **Clique tree** of G = (V, E) is a tree T = (V', E') such that

- ▶ $V' = \{S \subseteq V \mid S \text{ induce maximal clique in } G\}$
- ∀_{v∈V} the vertices of T containing v induces a connected subtree.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

G is chordal \iff there exists a clique tree of G.

Theorem. Let G = (V, E) be a chordal graph and let $\mathbf{r} = (r_v)_{v \in V} \in ([0, 1] \cap \mathbb{Q})^V$. If $\mathbf{r} \notin \mathcal{R}(G)$ then

$$\exists_{\mathbf{g},\mathbf{h}\in\mathbb{N}^V} \ \forall_{v\in V} \ g_v/h_v \leq r_v$$

and the game $(G, \mathbf{h}, \mathbf{g})$ is winning.

$\mathbf{r} \notin \mathcal{R}(G) \implies \exists_{0 \leq \mathbf{w} \leq \mathbf{r}} \ Z_G(\mathbf{w}) \leq 0$

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ = のへぐ

$\mathbf{r} \notin \mathcal{R}(G) \implies \exists_{0 \leq \mathbf{w} \leq \mathbf{r}} \ Z_G(\mathbf{w}) \leq 0$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Case 1. *G* is a complete graph.

$$\begin{split} \mathbf{r} \notin \mathcal{R}(G) \implies \exists_{0 \leq \mathbf{w} \leq \mathbf{r}} \ Z_G(\mathbf{w}) \leq 0 \\ \mathbf{Case 1.} \ G \text{ is a complete graph.} \\ Z_G(\mathbf{w}) \leq 0 \implies \sum_{v \in V} w_v \geq 1 \implies \sum_{v \in V} r_v \geq \sum_{v \in V} w_v \geq 1. \end{split}$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

$$\begin{split} \mathbf{r} \notin \mathcal{R}(G) \implies \exists_{0 \leq \mathbf{w} \leq \mathbf{r}} \ Z_G(\mathbf{w}) \leq 0 \\ \mathbf{Case 1.} \ G \text{ is a complete graph.} \\ Z_G(\mathbf{w}) \leq 0 \implies \sum_{v \in V} w_v \geq 1 \implies \sum_{v \in V} r_v \geq \sum_{v \in V} w_v \geq 1. \\ \text{We take } \mathbf{g}, \mathbf{h} \in \mathbb{N}^V \text{ such that } g_v / h_v = r_v \text{ for each } v. \text{ The game} \\ (G, \mathbf{h}, \mathbf{g}) \text{ is winning, since } \sum g_v / h_v \geq 1. \end{split}$$

Case 2. *G* is not a complete graph (its clique tree has at least two vertices).

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

Case 2. *G* is not a complete graph (its clique tree has at least two vertices).

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

$$\begin{split} & C := \text{arbitrary leaf in clique tree.} \\ & R \subseteq C := \text{vertices belonging only to } C. \\ & S := C \setminus R \end{split}$$

Case 2. *G* is not a complete graph (its clique tree has at least two vertices).

C := arbitrary leaf in clique tree. $R \subseteq C := \text{vertices belonging only to } C.$ $S := C \setminus R$

Idea. Find winning games for $G[V \setminus R]$ and G[C] and combine them into final game.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Proof - winning game for $G[V \setminus R]$

If $\sum_{v \in C} r_v \ge 1$, then the game is winning on G[C].

Assume that $\sum_{v \in C} r_v < 1 \implies \sum_{v \in C} w_v < 1$

Proof - winning game for $G[V \setminus R]$

If
$$\sum_{v \in C} r_v \ge 1$$
, then the game is winning on $G[C]$.
Assume that $\sum_{v \in C} r_v < 1 \implies \sum_{v \in C} w_v < 1$
We define vectors $\mathbf{w}' = (w'_v)_{v \in V \setminus R}$ and $\mathbf{r}' = (r'_v)_{v \in V \setminus R}$ as

$$w'_{v} = \begin{cases} w_{v}/\alpha_{w} & \text{if } v \in S, \\ w_{v} & \text{otherwise, and} \end{cases} \qquad r'_{v} = \begin{cases} r_{v}/\alpha_{r} & \text{if } v \in S, \\ r_{v} & \text{otherwise,} \end{cases}$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

where
$$lpha_{r}=1-\sum_{m{v}\inm{R}}m{r}_{m{v}}$$
 and $lpha_{m{w}}=1-\sum_{m{v}\inm{R}}m{w}_{m{v}}$

Proof - winning game for $G[V \setminus R]$

If
$$\sum_{v \in C} r_v \ge 1$$
, then the game is winning on $G[C]$.
Assume that $\sum_{v \in C} r_v < 1 \implies \sum_{v \in C} w_v < 1$
We define vectors $\mathbf{w}' = (w'_v)_{v \in V \setminus R}$ and $\mathbf{r}' = (r'_v)_{v \in V \setminus R}$ as

$$w'_{v} = \begin{cases} w_{v}/\alpha_{w} & \text{if } v \in S, \\ w_{v} & \text{otherwise, and} \end{cases} \qquad r'_{v} = \begin{cases} r_{v}/\alpha_{r} & \text{if } v \in S, \\ r_{v} & \text{otherwise,} \end{cases}$$

where $\alpha_r = 1 - \sum_{v \in R} r_v$ and $\alpha_w = 1 - \sum_{v \in R} w_v$ It turns out that $\mathbf{w}' \leq \mathbf{r}'$ are vectors of numbers from [0, 1]. Furthermore,

$$Z_{G'}\left(\mathbf{w}'\right) = Z_{G}(\mathbf{w})/\alpha_{w} \implies Z_{G'}\left(\mathbf{w}'\right) \le 0 \implies \mathbf{r}' \notin \mathcal{R}\left(G'\right)$$

Thus, we can apply induction to find winning game $(G', \mathbf{h}', \mathbf{g}')$.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うへぐ

Proof - winning game for G[C]

Let G'' be the clique G[C] with S contracted to a single vertex u.

We define the vector $\mathbf{r}'' = (r''_v)_{v \in R \cup \{u\}}$ as

$$r_v'' = \begin{cases} r_v & \text{if } v \in R, \\ \alpha_r & \text{if } v = u \end{cases}$$

 $r''_u + \sum_{v \in R} r''_v = 1 \implies \exists \mathbf{h}'', \mathbf{g}'' \in \mathbb{N}^V$ such that $g''_v / h''_v = r_v$ for every v and the game $(G'', \mathbf{h}'', \mathbf{g}'')$ is winning.

G is precisely the clique join of G' and G'' with respect to S and u.

 $U_G(x) :=$ polynomial obtained by plugging x for each variable x_v of Z_G .

Corollary. For any chordal graph *G*, the fractional hat chromatic number $\hat{\mu}(G)$ is equal to 1/r where *r* is the smallest positive root of $U_G(x)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00