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Hat guessing game

I We are given a graph G . In each vertex sits a bear.

I A demon puts colorful hats on the bears. Each hat has one of
h colors.



Hat guessing game

I We are given a graph G . In each vertex sits a bear.
I A demon puts colorful hats on the bears. Each hat has one of

h colors.



Hat guessing game

I Bears see hats of their neighbours. Based on this information
and a predetermined strategy, the bears guess the colors of
their hats.



Hat guessing game

I Each bear has g tries. The bears win if at least one bear
guesses correctly.



Formal definition

A hat guessing game is a triple H = (G , h, g) where

I G = (V ,E ) is an undirected graph.
I h ∈ N := number of different possible hat colors for each bear
I g ∈ N := the number of guesses each bear is allowed to make

A hats arrangement is a function ϕ : V → S, where
S = [h] = {0, ..., h − 1}

A strategy of a bear on v is a function Γv : S |N(v)| →
(S

g
)

, and a
strategy for H is a collection of strategies for all vertices.

A strategy is winning if

∀ϕ∃vϕ(v) ∈ Γv ((ϕ(u))u∈N(v))

.
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Non-uniform variant

(G = (V ,E ),h, g)

h = (hv )v∈V and g = (gv )v∈V

.

A bear on v gets a hat of one of hv colors and is allowed to guess
exactly gv colors.



(Fractional) Hat Chromatic Number

The hat chromatic number µ(G) := max h for which game
(G , h, 1) is winning.

The fractional hat chromatic number µ̂(G) is defined as

µ̂(G) = sup

{
h
g | (G , h, g) is a winning game

}

Fractional hat chromatic number doesn’t have to be rational
(paths).
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(Fractional) Hat Chromatic Number

Observation. Let k ∈ N. If a game H = (G , h, g) is winning, then
the game Hk = (G , k · h, k · g) is winning as well.

Lemma. Suppose that

I (G , h, g) is winning, and
I r ′ ∈ Q, r ′ ≤ h/g

Then ∃h′, g ′ ∈ N such that h′/g ′ = r ′ and the game (G , h′, g ′) is
winning.

Corollary.: If p
q < µ̂(G), then there are h, g ∈ N such that p

q = h
g

and the bears win the game (G , h, g).
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Fractional Hat Chromatic Number - Cliques

Theorem. Bears win a game (Kn = (V ,E ),h, g) if and only if∑
v∈V

gv
hv

≥ 1

Corollary. For each n ∈ N, it holds that µ̂(Kn) = n
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Clique Join

Lemma. Games

H1 =
(
G1 = (V1,E1) ,h1, g1)

H2 =
(
G2 = (V2,E2) ,h2, g2)

are winning =⇒ game H = (G ,h, g) is winning, where

hu =


h1

u u ∈ V1\S
h2

u u ∈ V2\{v}
h1

u · h2
v u ∈ S, and

gu =


g1

u u ∈ V1\S
g2

u u ∈ V2\{v}
g1

u · g2
v u ∈ S.
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Independence Polynomial

The multivariate independence polynomial of a graph
G = (V ,E ) on variables x = (xv )v∈V is

PG(x) =
∑
I⊆V

I independent set

∏
v∈I

xv .

Inclusion-exclusion principle. For a union A of sets A1, . . . ,An
holds that

|A| =
∑

∅6=I⊆{1,...,n}
(−1)|I|+1

∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣ .
Idea: We can use the inclusion-exclusion principle to compute the
probability that at least one bear sitting on some vertex of I
guesses correctly, where I is an independent set.
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Independence Polynomial

PG(x) = PG\{v}(x) + xv PG\N+(v)(x)

ZG(x) := PG(−x)

R(G) := set of all vectors r ∈ [0,∞)V such that ZG(w) > 0 for all
0 ≤ w ≤ r, where the comparison is done entry-wise.

Note that ZG(0) = 1
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Independence Polynomial

Theorem. Let G = (V ,E ) be a graph.

I (Av )v∈V is a family of events, Av is independent of
{Aw | w /∈ N+(v)}

I p ∈ [0, 1]V , for each v we have P (Av ) ≤ pv , p ∈ R(G)

Then

P
(⋂

v∈V
Āv

)
≥ ZG(p) > 0.

Proposition. A hat guessing game H = (G = (V ,E ),h, g) is
losing whenever r ∈ R(G) where r = (gv/hv )v∈V .
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Perfect Strategy

A strategy H is perfect if

I It is winning, and
I In every hat arrangement, no two bears that guess correctly

are on adjacent vertices

Proposition. (G ,h, g) has perfect strategy =⇒
for r = (gv/hv )v∈V we have

ZG(r) = 0 and ZG(w) ≥ 0

for every 0 ≤ w ≤ r.
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Proof that ZG(r) = 0

m =

∣∣∣∣∣ ⋃
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Proof that ZG(w) ≥ 0
wi = (w1,w2, . . . ,wi , ri+1, . . . , rn)
w0 = r, wn = w.

We prove by induction on i that for every induced subgraph G ′ of
G it holds that ZG ′(wi) ≥ 0.

I Base step.

m ≥

∣∣∣∣∣ ⋃
v∈V ′

Av

∣∣∣∣∣ = m · (1 − ZG ′(r)) =⇒ ZG ′(r) ≥ 0

I Inductive step.
I if vi /∈ G ′, ZG′

(
wi) = ZG′

(
wi−1) ≥ 0

I otherwise

ZG ′
(
wi) = ZG ′\{vi}

(
wi)− wvi ZG ′\N+(vi )

(
wi)

≥ ZG ′\{vi}
(
wi−1)− rvi ZG ′\N+(vi )

(
wi−1) = ZG ′

(
wi−1) ≥ 0
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Perfect Strategy - conclusion

ZG(w) ≥ 0 for every 0 ≤ w ≤ r ⇐⇒ r lies in the closure of
R(G). Since r cannot lie inside R(G), it must belong to the
boundary of the set R(G).



Chordal Graphs

A graph G is chordal if every cycle of length at least 4 has a chord.

Clique tree of G = (V ,E ) is a tree T = (V ′,E ′) such that

I V ′ = {S ⊆ V | S induce maximal clique in G}
I ∀v∈V the vertices of T containing v induces a connected

subtree.

G is chordal ⇐⇒ there exists a clique tree of G .
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Chordal Graphs

Theorem. Let G = (V ,E ) be a chordal graph and let
r = (rv )v∈V ∈ ([0, 1] ∩ Q)V . If r /∈ R(G) then

∃g,h∈NV ∀v∈V gv/hv ≤ rv

and the game (G ,h, g) is winning.



Proof

r /∈ R(G) =⇒ ∃0≤w≤r ZG(w) ≤ 0

Case 1. G is a complete graph.

ZG(w) ≤ 0 =⇒
∑

v∈V wv ≥ 1 =⇒
∑

v∈V rv ≥
∑

v∈V wv ≥ 1.

We take g,h ∈ NV such that gv/hv = rv for each v . The game
(G ,h, g) is winning, since

∑
gv/hv ≥ 1.
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Proof

Case 2. G is not a complete graph (its clique tree has at least two
vertices).

C := arbitrary leaf in clique tree.
R ⊆ C := vertices belonging only to C .
S := C \ R

Idea. Find winning games for G [V \ R] and G [C ] and combine
them into final game.
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Proof - winning game for G [V \ R]

If
∑

v∈C rv ≥ 1, then the game is winning on G [C ].

Assume that
∑

v∈C rv < 1 =⇒
∑

v∈C wv < 1

We define vectors w′ = (w ′
v )v∈V\R and r′ = (r ′v )v∈V\R as

where αr = 1 −
∑

v∈R rv and αw = 1 −
∑

v∈R wv

It turns out that w′ ≤ r′ are vectors of numbers from [0, 1].

Furthermore,

ZG ′
(
w′) = ZG(w)/αw =⇒ ZG ′

(
w′) ≤ 0 =⇒ r′ /∈ R

(
G ′)

Thus, we can apply induction to find winning game (G ′,h′, g′).
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It turns out that w′ ≤ r′ are vectors of numbers from [0, 1].

Furthermore,

ZG ′
(
w′) = ZG(w)/αw =⇒ ZG ′

(
w′) ≤ 0 =⇒ r′ /∈ R

(
G ′)

Thus, we can apply induction to find winning game (G ′,h′, g′).
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(
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(
G ′)

Thus, we can apply induction to find winning game (G ′,h′, g′).



Proof - winning game for G [C ]

Let G ′′ be the clique G [C ] with S contracted to a single vertex u.

We define the vector r′′ = (r ′′v )v∈R∪{u} as

r ′′v =

{
rv if v ∈ R,

αr if v = u

r ′′u +
∑

v∈R r ′′v = 1 =⇒ ∃ h′′, g′′ ∈ NV such that g ′′
v /h′′

v = rv for
every v and the game (G ′′,h′′, g′′) is winning.

G is precisely the clique join of G ′ and G ′′ with respect to S and u.



Chordal graphs - conclusion

UG(x) := polynomial obtained by plugging x for each variable xv
of ZG .

Corollary. For any chordal graph G , the fractional hat chromatic
number µ̂(G) is equal to 1/r where r is the smallest positive root
of UG(x).
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