Bears with Hats and Independence Polynomials

Václav Blaej, Pavel Dvoák, Michal Opler

Kamil Galewski

May 12, 2022

Hat guessing game

- We are given a graph G. In each vertex sits a bear.

Hat guessing game

- We are given a graph G. In each vertex sits a bear.
- A demon puts colorful hats on the bears. Each hat has one of h colors.

Hat guessing game

- Bears see hats of their neighbours. Based on this information and a predetermined strategy, the bears guess the colors of their hats.

Hat guessing game

- Each bear has g tries. The bears win if at least one bear guesses correctly.

Formal definition

A hat guessing game is a triple $H=(G, h, g)$ where

- $G=(V, E)$ is an undirected graph.
- $h \in \mathbb{N}:=$ number of different possible hat colors for each bear
- $g \in \mathbb{N}:=$ the number of guesses each bear is allowed to make

Formal definition

A hat guessing game is a triple $H=(G, h, g)$ where

- $G=(V, E)$ is an undirected graph.
- $h \in \mathbb{N}:=$ number of different possible hat colors for each bear
- $g \in \mathbb{N}:=$ the number of guesses each bear is allowed to make

A hats arrangement is a function $\varphi: V \rightarrow S$, where $S=[h]=\{0, \ldots, h-1\}$

Formal definition

A hat guessing game is a triple $H=(G, h, g)$ where

- $G=(V, E)$ is an undirected graph.
- $h \in \mathbb{N}:=$ number of different possible hat colors for each bear
- $g \in \mathbb{N}:=$ the number of guesses each bear is allowed to make

A hats arrangement is a function $\varphi: V \rightarrow S$, where $S=[h]=\{0, \ldots, h-1\}$
A strategy of a bear on v is a function $\Gamma_{v}: S^{|N(v)|} \rightarrow\binom{S}{g}$, and a strategy for H is a collection of strategies for all vertices.

Formal definition

A hat guessing game is a triple $H=(G, h, g)$ where

- $G=(V, E)$ is an undirected graph.
- $h \in \mathbb{N}:=$ number of different possible hat colors for each bear
- $g \in \mathbb{N}:=$ the number of guesses each bear is allowed to make

A hats arrangement is a function $\varphi: V \rightarrow S$, where
$S=[h]=\{0, \ldots, h-1\}$
A strategy of a bear on v is a function $\Gamma_{v}: S^{|N(v)|} \rightarrow\binom{S}{g}$, and a strategy for H is a collection of strategies for all vertices.

A strategy is winning if

$$
\forall_{\varphi} \exists_{v} \varphi(v) \in \Gamma_{v}\left((\varphi(u))_{u \in N(v)}\right)
$$

Non-uniform variant

$$
\begin{gathered}
(G=(V, E), \mathbf{h}, \mathbf{g}) \\
\mathbf{h}=\left(h_{v}\right)_{v \in V} \text { and } \mathbf{g}=\left(g_{v}\right)_{v \in V}
\end{gathered}
$$

A bear on v gets a hat of one of h_{v} colors and is allowed to guess exactly g_{v} colors.

(Fractional) Hat Chromatic Number

The hat chromatic number $\mu(G):=\max h$ for which game ($G, h, 1$) is winning.

(Fractional) Hat Chromatic Number

The hat chromatic number $\mu(G):=\max h$ for which game ($G, h, 1$) is winning.

The fractional hat chromatic number $\hat{\mu}(G)$ is defined as

$$
\hat{\mu}(G)=\sup \left\{\left.\frac{h}{g} \right\rvert\,(G, h, g) \text { is a winning game }\right\}
$$

Fractional hat chromatic number doesn't have to be rational (paths).

(Fractional) Hat Chromatic Number

Observation. Let $k \in \mathbb{N}$. If a game $H=(G, h, g)$ is winning, then the game $H_{k}=(G, k \cdot h, k \cdot g)$ is winning as well.

(Fractional) Hat Chromatic Number

Observation. Let $k \in \mathbb{N}$. If a game $H=(G, h, g)$ is winning, then the game $H_{k}=(G, k \cdot h, k \cdot g)$ is winning as well.

Lemma. Suppose that

- (G, h, g) is winning, and
- $r^{\prime} \in \mathbb{Q}, r^{\prime} \leq h / g$

Then $\exists h^{\prime}, g^{\prime} \in \mathbb{N}$ such that $h^{\prime} / g^{\prime}=r^{\prime}$ and the game $\left(G, h^{\prime}, g^{\prime}\right)$ is winning.

(Fractional) Hat Chromatic Number

Observation. Let $k \in \mathbb{N}$. If a game $H=(G, h, g)$ is winning, then the game $H_{k}=(G, k \cdot h, k \cdot g)$ is winning as well.

Lemma. Suppose that

- (G, h, g) is winning, and
- $r^{\prime} \in \mathbb{Q}, r^{\prime} \leq h / g$

Then $\exists h^{\prime}, g^{\prime} \in \mathbb{N}$ such that $h^{\prime} / g^{\prime}=r^{\prime}$ and the game $\left(G, h^{\prime}, g^{\prime}\right)$ is winning.

Corollary.: If $\frac{p}{q}<\hat{\mu}(G)$, then there are $h, g \in \mathbb{N}$ such that $\frac{p}{q}=\frac{h}{g}$ and the bears win the game (G, h, g).

Fractional Hat Chromatic Number - Cliques

Theorem. Bears win a game $\left(K_{n}=(V, E), \mathbf{h}, \mathbf{g}\right)$ if and only if

$$
\sum_{v \in V} \frac{g_{v}}{h_{v}} \geq 1
$$

Fractional Hat Chromatic Number - Cliques

Theorem. Bears win a game $\left(K_{n}=(V, E), \mathbf{h}, \mathbf{g}\right)$ if and only if

$$
\sum_{v \in V} \frac{g_{v}}{h_{v}} \geq 1
$$

Corollary. For each $n \in \mathbb{N}$, it holds that $\hat{\mu}\left(K_{n}\right)=n$

Clique Join

Clique Join

Lemma. Games

$$
\begin{aligned}
& \mathcal{H}_{1}=\left(G_{1}=\left(V_{1}, E_{1}\right), \mathbf{h}^{1}, \mathbf{g}^{1}\right) \\
& \mathcal{H}_{2}=\left(G_{2}=\left(V_{2}, E_{2}\right), \mathbf{h}^{2}, \mathbf{g}^{2}\right)
\end{aligned}
$$

are winning \Longrightarrow game $\mathcal{H}=(G, \mathbf{h}, \mathbf{g})$ is winning, where

$$
h_{u}=\left\{\begin{array}{ll}
h_{u}^{1} & u \in V_{1} \backslash S \\
h_{u}^{2} & u \in V_{2} \backslash\{v\} \\
h_{u}^{1} \cdot h_{v}^{2} & u \in S, \text { and }
\end{array} \quad g_{u}= \begin{cases}g_{u}^{1} & u \in V_{1} \backslash S \\
g_{u}^{2} & u \in V_{2} \backslash\{v\} \\
g_{u}^{1} \cdot g_{v}^{2} & u \in S .\end{cases}\right.
$$

Independence Polynomial

The multivariate independence polynomial of a graph $G=(V, E)$ on variables $\mathbf{x}=\left(x_{v}\right)_{v \in V}$ is

$$
P_{G}(\mathbf{x})=\sum_{\substack{l \subseteq V \\ l \text { independent set }}} \prod_{v \in I} x_{v} .
$$

Independence Polynomial

The multivariate independence polynomial of a graph $G=(V, E)$ on variables $\mathbf{x}=\left(x_{v}\right)_{v \in V}$ is

$$
P_{G}(\mathbf{x})=\sum_{\substack{l \subseteq V \\ l \text { independent set }}} \prod_{v \in I} x_{v} .
$$

Inclusion-exclusion principle. For a union A of sets A_{1}, \ldots, A_{n} holds that

$$
|A|=\sum_{\emptyset \neq I \subseteq\{1, \ldots, n\}}(-1)^{|I|+1}\left|\bigcap_{i \in I} A_{i}\right| .
$$

Independence Polynomial

The multivariate independence polynomial of a graph $G=(V, E)$ on variables $\mathbf{x}=\left(x_{V}\right)_{v \in V}$ is

$$
P_{G}(\mathbf{x})=\sum_{\substack{I \subseteq V \\ I \text { independent set }}} \prod_{v \in I} x_{v}
$$

Inclusion-exclusion principle. For a union A of sets A_{1}, \ldots, A_{n} holds that

$$
|A|=\sum_{\emptyset \neq I \subseteq\{1, \ldots, n\}}(-1)^{\mid / I+1}\left|\bigcap_{i \in I} A_{i}\right| .
$$

Idea: We can use the inclusion-exclusion principle to compute the probability that at least one bear sitting on some vertex of I guesses correctly, where I is an independent set.

Independence Polynomial

$$
P_{G}(\mathbf{x})=P_{G \backslash\{v\}}(\mathbf{x})+x_{v} P_{G \backslash N^{+}(v)}(\mathbf{x})
$$

Independence Polynomial

$$
P_{G}(\mathbf{x})=P_{G \backslash\{v\}}(\mathbf{x})+x_{v} P_{G \backslash N^{+}(v)}(\mathbf{x})
$$

$$
Z_{G}(\mathbf{x}):=P_{G}(-\mathbf{x})
$$

Independence Polynomial

$$
P_{G}(\mathbf{x})=P_{G \backslash\{v\}}(\mathbf{x})+x_{v} P_{G \backslash N^{+}(v)}(\mathbf{x})
$$

$$
Z_{G}(\mathbf{x}):=P_{G}(-\mathbf{x})
$$

$\mathcal{R}(G):=$ set of all vectors $\mathbf{r} \in[0, \infty)^{V}$ such that $Z_{G}(\mathbf{w})>0$ for all $0 \leq \mathbf{w} \leq \mathbf{r}$, where the comparison is done entry-wise.

Independence Polynomial

$$
P_{G}(\mathbf{x})=P_{G \backslash\{v\}}(\mathbf{x})+x_{v} P_{G \backslash N^{+}(v)}(\mathbf{x})
$$

$$
Z_{G}(\mathbf{x}):=P_{G}(-\mathbf{x})
$$

$\mathcal{R}(G):=$ set of all vectors $\mathbf{r} \in[0, \infty)^{V}$ such that $Z_{G}(\mathbf{w})>0$ for all $0 \leq \mathbf{w} \leq \mathbf{r}$, where the comparison is done entry-wise.

Note that $Z_{G}(\mathbf{0})=1$

Independence Polynomial

Theorem. Let $G=(V, E)$ be a graph.

- $\left(A_{v}\right)_{v \in V}$ is a family of events, A_{v} is independent of $\left\{A_{w} \mid w \notin N^{+}(v)\right\}$
- $\mathbf{p} \in[0,1]^{V}$, for each v we have $P\left(A_{v}\right) \leq p_{v}, \mathbf{p} \in \mathcal{R}(G)$

Then

$$
P\left(\bigcap_{v \in V} \bar{A}_{v}\right) \geq Z_{G}(\mathbf{p})>0
$$

Independence Polynomial

Theorem. Let $G=(V, E)$ be a graph.

- $\left(A_{v}\right)_{v \in V}$ is a family of events, A_{v} is independent of $\left\{A_{w} \mid w \notin N^{+}(v)\right\}$
- $\mathbf{p} \in[0,1]^{V}$, for each v we have $P\left(A_{v}\right) \leq p_{v}, \mathbf{p} \in \mathcal{R}(G)$

Then

$$
P\left(\bigcap_{v \in V} \bar{A}_{v}\right) \geq Z_{G}(\mathbf{p})>0
$$

Proposition. A hat guessing game $\mathcal{H}=(G=(V, E), \mathbf{h}, \mathbf{g})$ is losing whenever $\mathbf{r} \in \mathcal{R}(G)$ where $\mathbf{r}=\left(g_{v} / h_{v}\right)_{v \in V}$.

Perfect Strategy

A strategy \mathcal{H} is perfect if

- It is winning, and
- In every hat arrangement, no two bears that guess correctly are on adjacent vertices

Perfect Strategy

A strategy \mathcal{H} is perfect if

- It is winning, and
- In every hat arrangement, no two bears that guess correctly are on adjacent vertices

Proposition. ($G, \mathbf{h}, \mathbf{g}$) has perfect strategy \Longrightarrow for $\mathbf{r}=\left(g_{v} / h_{v}\right)_{v \in V}$ we have

$$
Z_{G}(\mathbf{r})=0 \text { and } Z_{G}(\mathbf{w}) \geq 0
$$

for every $0 \leq \mathbf{w} \leq \mathbf{r}$.

Proof that $Z_{G}(\mathbf{r})=0$

$$
m=\left|\bigcup_{v \in V} A_{v}\right|=
$$

Proof that $Z_{G}(\mathbf{r})=0$

$$
\begin{aligned}
m & =\left|\bigcup_{v \in V} A_{V}\right|= \\
& =\sum_{\emptyset \neq S \subseteq V}(-1)^{|S|+1} n_{S}=
\end{aligned}
$$

Proof that $Z_{G}(\mathbf{r})=0$

$$
\begin{aligned}
m & =\left|\bigcup_{V \in V} A_{V}\right|= \\
& =\sum_{\emptyset \neq S \subseteq V}(-1)^{|S|+1} n_{S}= \\
& =\sum_{\substack{\emptyset \neq I \subseteq V \\
I \text { independent }}}(-1)^{|I|+1} n_{I}=
\end{aligned}
$$

Proof that $Z_{G}(\mathbf{r})=0$

$$
\begin{aligned}
m & =\left|\bigcup_{v \in V} A_{V}\right|= \\
& =\sum_{\emptyset \neq S \subseteq V}(-1)^{|S|+1} n_{S}= \\
& =\sum_{\substack{\emptyset \neq I \subseteq V \\
I \text { independent }}}(-1)^{|I|+1} n_{I}= \\
& =m \cdot \sum_{\substack{\emptyset \neq I \subseteq V \\
I \text { independent }}}(-1)^{|I|+1} \prod_{v \in I} \frac{g_{v}}{h_{V}}=
\end{aligned}
$$

Proof that $Z_{G}(\mathbf{r})=0$

$$
\begin{aligned}
m & =\left|\bigcup_{v \in V} A_{v}\right|= \\
& =\sum_{\emptyset \neq S \subseteq V}(-1)^{|S|+1} n_{S}= \\
& =\sum_{\substack{\emptyset \neq I \subseteq V \\
I \text { independent }}}(-1)^{|I|+1} n_{I}= \\
& =m \cdot \sum_{\substack{\emptyset \neq I \subseteq V \\
I \text { independent }}}(-1)^{|I|+1} \prod_{v \in I} \frac{g_{v}}{h_{v}}= \\
& =m \cdot\left(1-Z_{G}(\mathbf{r})\right) \Longrightarrow Z_{G}(\mathbf{r})=0
\end{aligned}
$$

Proof that $Z_{G}(\mathbf{w}) \geq 0$

$$
\begin{aligned}
& \mathbf{w}^{i}=\left(w_{1}, w_{2}, \ldots, w_{i}, r_{i+1}, \ldots, r_{n}\right) \\
& \mathbf{w}^{0}=\mathbf{r}, \mathbf{w}^{n}=\mathbf{w}
\end{aligned}
$$

Proof that $Z_{G}(\mathbf{w}) \geq 0$

$$
\begin{aligned}
& \mathbf{w}^{i}=\left(w_{1}, w_{2}, \ldots, w_{i}, r_{i+1}, \ldots, r_{n}\right) \\
& \mathbf{w}^{0}=\mathbf{r}, \mathbf{w}^{n}=\mathbf{w}
\end{aligned}
$$

We prove by induction on i that for every induced subgraph G^{\prime} of G it holds that $Z_{G^{\prime}}\left(\mathbf{w}^{i}\right) \geq 0$.

Proof that $Z_{G}(\mathbf{w}) \geq 0$

$$
\begin{aligned}
& \mathbf{w}^{i}=\left(w_{1}, w_{2}, \ldots, w_{i}, r_{i+1}, \ldots, r_{n}\right) \\
& \mathbf{w}^{0}=\mathbf{r}, \mathbf{w}^{n}=\mathbf{w}
\end{aligned}
$$

We prove by induction on i that for every induced subgraph G^{\prime} of G it holds that $Z_{G^{\prime}}\left(\mathbf{w}^{i}\right) \geq 0$.

- Base step.

$$
m \geq\left|\bigcup_{v \in V^{\prime}} A_{V}\right|=m \cdot\left(1-Z_{G^{\prime}}(\mathbf{r})\right) \Longrightarrow Z_{G^{\prime}}(\mathbf{r}) \geq 0
$$

Proof that $Z_{G}(\mathbf{w}) \geq 0$

$$
\begin{aligned}
& \mathbf{w}^{i}=\left(w_{1}, w_{2}, \ldots, w_{i}, r_{i+1}, \ldots, r_{n}\right) \\
& \mathbf{w}^{0}=\mathbf{r}, \mathbf{w}^{n}=\mathbf{w}
\end{aligned}
$$

We prove by induction on i that for every induced subgraph G^{\prime} of G it holds that $Z_{G^{\prime}}\left(\mathbf{w}^{i}\right) \geq 0$.

- Base step.

$$
m \geq\left|\bigcup_{v \in V^{\prime}} A_{V}\right|=m \cdot\left(1-Z_{G^{\prime}}(\mathbf{r})\right) \Longrightarrow Z_{G^{\prime}}(\mathbf{r}) \geq 0
$$

- Inductive step.
- if $v_{i} \notin G^{\prime}, Z_{G^{\prime}}\left(\mathbf{w}^{i}\right)=Z_{G^{\prime}}\left(\mathbf{w}^{i-1}\right) \geq 0$

Proof that $Z_{G}(\mathbf{w}) \geq 0$

$$
\begin{aligned}
& \mathbf{w}^{i}=\left(w_{1}, w_{2}, \ldots, w_{i}, r_{i+1}, \ldots, r_{n}\right) \\
& \mathbf{w}^{0}=\mathbf{r}, \mathbf{w}^{n}=\mathbf{w}
\end{aligned}
$$

We prove by induction on i that for every induced subgraph G^{\prime} of G it holds that $Z_{G^{\prime}}\left(\mathbf{w}^{i}\right) \geq 0$.

- Base step.

$$
m \geq\left|\bigcup_{v \in V^{\prime}} A_{V}\right|=m \cdot\left(1-Z_{G^{\prime}}(\mathbf{r})\right) \Longrightarrow Z_{G^{\prime}}(\mathbf{r}) \geq 0
$$

- Inductive step.
- if $v_{i} \notin G^{\prime}, Z_{G^{\prime}}\left(\mathbf{w}^{i}\right)=Z_{G^{\prime}}\left(\mathbf{w}^{i-1}\right) \geq 0$
- otherwise

$$
\begin{aligned}
Z_{G^{\prime}}\left(\mathbf{w}^{i}\right) & =Z_{G^{\prime} \backslash\left\{v_{i}\right\}}\left(\mathbf{w}^{i}\right)-w_{v_{i}} Z_{G^{\prime} \backslash N+\left(v_{i}\right)}\left(\mathbf{w}^{i}\right) \\
& \geq Z_{G^{\prime} \backslash\left\{v_{i}\right\}}\left(\mathbf{w}^{i-1}\right)-r_{v_{i}} Z_{G^{\prime} \backslash N^{+}\left(v_{i}\right)}\left(\mathbf{w}^{i-1}\right)=Z_{G^{\prime}}\left(\mathbf{w}^{i-1}\right) \geq 0
\end{aligned}
$$

Perfect Strategy - conclusion

$Z_{G}(\mathbf{w}) \geq 0$ for every $0 \leq \mathbf{w} \leq \mathbf{r} \Longleftrightarrow \mathbf{r}$ lies in the closure of $\mathcal{R}(G)$. Since \mathbf{r} cannot lie inside $\mathcal{R}(G)$, it must belong to the boundary of the set $\mathcal{R}(G)$.

Chordal Graphs

A graph G is chordal if every cycle of length at least 4 has a chord.

Chordal Graphs

A graph G is chordal if every cycle of length at least 4 has a chord.
Clique tree of $G=(V, E)$ is a tree $T=\left(V^{\prime}, E^{\prime}\right)$ such that

- $V^{\prime}=\{S \subseteq V \mid S$ induce maximal clique in $G\}$
- $\forall_{v \in V}$ the vertices of T containing v induces a connected subtree.

Chordal Graphs

A graph G is chordal if every cycle of length at least 4 has a chord.
Clique tree of $G=(V, E)$ is a tree $T=\left(V^{\prime}, E^{\prime}\right)$ such that

- $V^{\prime}=\{S \subseteq V \mid S$ induce maximal clique in $G\}$
- $\forall_{v \in V}$ the vertices of T containing v induces a connected subtree.
G is chordal \Longleftrightarrow there exists a clique tree of G.

Chordal Graphs

Theorem. Let $G=(V, E)$ be a chordal graph and let $\mathbf{r}=\left(r_{v}\right)_{v \in V} \in([0,1] \cap \mathbb{Q})^{V}$. If $\mathbf{r} \notin \mathcal{R}(G)$ then

$$
\exists_{\mathbf{g}, \mathbf{h} \in \mathbb{N}^{v}} \forall_{v \in V} \quad g_{v} / h_{v} \leq r_{v}
$$

and the game $(G, \mathbf{h}, \mathbf{g})$ is winning.

Proof

$$
\mathbf{r} \notin \mathcal{R}(G) \Longrightarrow \exists_{0 \leq \mathbf{w} \leq \mathbf{r}} Z_{G}(\mathbf{w}) \leq 0
$$

Proof

$$
\mathbf{r} \notin \mathcal{R}(G) \Longrightarrow \exists_{0 \leq \mathbf{w} \leq \mathbf{r}} Z_{G}(\mathbf{w}) \leq 0
$$

Case 1. G is a complete graph.

Proof

$$
\mathbf{r} \notin \mathcal{R}(G) \Longrightarrow \exists_{0 \leq \mathbf{w} \leq \mathbf{r}} Z_{G}(\mathbf{w}) \leq 0
$$

Case 1. G is a complete graph.

$$
Z_{G}(\mathbf{w}) \leq 0 \Longrightarrow \sum_{v \in V} w_{v} \geq 1 \Longrightarrow \sum_{v \in V} r_{v} \geq \sum_{v \in V} w_{v} \geq 1
$$

Proof

$\mathbf{r} \notin \mathcal{R}(G) \Longrightarrow \exists_{0 \leq \mathbf{w} \leq \mathbf{r}} Z_{G}(\mathbf{w}) \leq 0$
Case 1. G is a complete graph.
$Z_{G}(\mathbf{w}) \leq 0 \Longrightarrow \sum_{v \in V} w_{v} \geq 1 \Longrightarrow \sum_{v \in V} r_{v} \geq \sum_{v \in V} w_{v} \geq 1$.
We take $\mathbf{g}, \mathbf{h} \in \mathbb{N}^{V}$ such that $g_{v} / h_{v}=r_{v}$ for each v. The game $(G, \mathbf{h}, \mathbf{g})$ is winning, since $\sum g_{v} / h_{v} \geq 1$.

Proof

Case 2. G is not a complete graph (its clique tree has at least two vertices).

Proof

Case 2. G is not a complete graph (its clique tree has at least two vertices).
$C:=$ arbitrary leaf in clique tree.
$R \subseteq C:=$ vertices belonging only to C.
$S:=C \backslash R$

Proof

Case 2. G is not a complete graph (its clique tree has at least two vertices).
$C:=$ arbitrary leaf in clique tree.
$R \subseteq C:=$ vertices belonging only to C.
$S:=C \backslash R$
Idea. Find winning games for $G[V \backslash R]$ and $G[C]$ and combine them into final game.

Proof - winning game for $G[V \backslash R]$

If $\sum_{v \in C} r_{v} \geq 1$, then the game is winning on $G[C]$.
Assume that $\sum_{v \in C} r_{v}<1 \Longrightarrow \sum_{v \in C} w_{v}<1$

Proof - winning game for $G[V \backslash R]$

If $\sum_{v \in C} r_{v} \geq 1$, then the game is winning on $G[C]$.
Assume that $\sum_{v \in C} r_{v}<1 \Longrightarrow \sum_{v \in C} w_{v}<1$
We define vectors $\mathbf{w}^{\prime}=\left(w_{v}^{\prime}\right)_{v \in V \backslash R}$ and $\mathbf{r}^{\prime}=\left(r_{v}^{\prime}\right)_{v \in V \backslash R}$ as

$$
w_{v}^{\prime}=\left\{\begin{array}{ll}
w_{v} / \alpha_{w} & \text { if } v \in S, \\
w_{v} & \text { otherwise, and }
\end{array} \quad r_{v}^{\prime}= \begin{cases}r_{v} / \alpha_{r} & \text { if } v \in S, \\
r_{v} & \text { otherwise },\end{cases}\right.
$$

where $\alpha_{r}=1-\sum_{v \in R} r_{v}$ and $\alpha_{w}=1-\sum_{v \in R} w_{v}$

Proof - winning game for $G[V \backslash R]$

If $\sum_{v \in C} r_{v} \geq 1$, then the game is winning on $G[C]$.
Assume that $\sum_{v \in C} r_{v}<1 \Longrightarrow \sum_{v \in C} w_{v}<1$
We define vectors $\mathbf{w}^{\prime}=\left(w_{v}^{\prime}\right)_{v \in V \backslash R}$ and $\mathbf{r}^{\prime}=\left(r_{v}^{\prime}\right)_{v \in V \backslash R}$ as

$$
w_{v}^{\prime}=\left\{\begin{array}{ll}
w_{v} / \alpha_{w} & \text { if } v \in S, \\
w_{v} & \text { otherwise, and }
\end{array} \quad r_{v}^{\prime}= \begin{cases}r_{v} / \alpha_{r} & \text { if } v \in S, \\
r_{v} & \text { otherwise },\end{cases}\right.
$$

where $\alpha_{r}=1-\sum_{v \in R} r_{v}$ and $\alpha_{w}=1-\sum_{v \in R} w_{v}$
It turns out that $\mathbf{w}^{\prime} \leq \mathbf{r}^{\prime}$ are vectors of numbers from $[0,1]$.
Furthermore,

$$
Z_{G^{\prime}}\left(\mathbf{w}^{\prime}\right)=Z_{G}(\mathbf{w}) / \alpha_{w} \Longrightarrow Z_{G^{\prime}}\left(\mathbf{w}^{\prime}\right) \leq 0 \Longrightarrow \mathbf{r}^{\prime} \notin \mathcal{R}\left(G^{\prime}\right)
$$

Thus, we can apply induction to find winning game ($G^{\prime}, \mathbf{h}^{\prime}, \mathbf{g}^{\prime}$).

Proof - winning game for $G[C]$

Let $G^{\prime \prime}$ be the clique $G[C]$ with S contracted to a single vertex u.
We define the vector $\mathbf{r}^{\prime \prime}=\left(r_{v}^{\prime \prime}\right)_{v \in R \cup\{u\}}$ as

$$
r_{v}^{\prime \prime}= \begin{cases}r_{v} & \text { if } v \in R \\ \alpha_{r} & \text { if } v=u\end{cases}
$$

$r_{u}^{\prime \prime}+\sum_{v \in R} r_{v}^{\prime \prime}=1 \Longrightarrow \exists \mathbf{h}^{\prime \prime}, \mathbf{g}^{\prime \prime} \in \mathbb{N}^{V}$ such that $g_{v}^{\prime \prime} / h_{v}^{\prime \prime}=r_{v}$ for every v and the game ($G^{\prime \prime}, \mathbf{h}^{\prime \prime}, \mathbf{g}^{\prime \prime}$) is winning.
G is precisely the clique join of G^{\prime} and $G^{\prime \prime}$ with respect to S and u.

Chordal graphs - conclusion

$U_{G}(x):=$ polynomial obtained by plugging x for each variable x_{v} of Z_{G}.
Corollary. For any chordal graph G, the fractional hat chromatic number $\hat{\mu}(G)$ is equal to $1 / r$ where r is the smallest positive root of $U_{G}(x)$.

