Lower Bounds on the On-line Chain Partitioning of Semi-orders with Representation

Csaba Biró and Israel R. Curbelo

Rafał Kilar

Thursday $19^{\text {th }}$ May, 2022

Chain Partitioning

Dilworth's theorem

A poset of width ω can be partitioned off-line into ω chains.

Chain Partitioning

Dilworth's theorem

A poset of width ω can be partitioned off-line into ω chains.

On-line chain partitioning

An on-line chain partitioning algorithm is presented with a poset (X, P) in set order of elements $x_{1}, x_{2}, \ldots, x_{n}$ and constructs an on-line chain partitioning.

On line width

Definition

On-line width olw (ω) of the class of posets with width $\leq \omega$ is the largest $k \in \mathbb{N}$, such that there exists a strategy that forces any on-line chain partitioning algorithm to use k chains.

On line width

Definition
 On-line width olw (ω) of the class of posets with width $\leq \omega$ is the largest $k \in \mathbb{N}$, such that there exists a strategy that forces any on-line chain partitioning algorithm to use k chains.

The exact value of olw (ω) is unknown for $\omega>2$.

Bounds on on-line width

Kierstead 1981

An on-line algorithm that uses at most $\left(5^{\omega}-1\right) / 4$ chains to partition a poset of width ω.

Bounds on on-line width

Kierstead 1981

An on-line algorithm that uses at most $\left(5^{\omega}-1\right) / 4$ chains to partition a poset of width ω.

Bosek and Krawczyk 2021

An on-line algorithm that needs at most $\omega^{O(\log \log \omega)}$ chains to partition a poset.

Bounds on on-line width

Kierstead 1981

An on-line algorithm that uses at most $\left(5^{\omega}-1\right) / 4$ chains to partition a poset of width ω.

Bosek and Krawczyk 2021

An on-line algorithm that needs at most $\omega^{O(\log \log \omega)}$ chains to partition a poset.

Szemerédi

Any algorithm could be forced to use $\binom{\omega+1}{2}$ chains to partition a poset of width ω.

Bounds on on-line width

Kierstead 1981

An on-line algorithm that uses at most $\left(5^{\omega}-1\right) / 4$ chains to partition a poset of width ω.

Bosek and Krawczyk 2021

An on-line algorithm that needs at most $\omega^{O(\log \log \omega)}$ chains to partition a poset.

Szemerédi

Any algorithm could be forced to use $\binom{\omega+1}{2}$ chains to partition a poset of width ω.

Bosek, Felsner, Kloch, Krawczyk, Matecki and Micek 2012 Improved lower bound of $(2-o(1))\binom{\omega+1}{2}$ chains.

Interval Order

Interval order

We call a poset (X, P) an interval order if there exists a funciont I which maps each element $x \in X$ to a closed real number interval $I(x)=\left[I_{x}, r_{x}\right]$, such that for every $x_{1}, x_{2} \in X$ it holds that $x_{1}<x_{2}$ iff $r_{x_{1}}<I_{x_{2}}$. We call I an interval representation of (X, P).

Interval Order

Interval order

We call a poset (X, P) an interval order if there exists a funciont I which maps each element $x \in X$ to a closed real number interval $I(x)=\left[I_{x}, r_{x}\right]$, such that for every $x_{1}, x_{2} \in X$ it holds that $x_{1}<x_{2}$ iff $r_{x_{1}}<I_{x_{2}}$. We call I an interval representation of (X, P).

Semi-order

An interval order (X, P) is a semi-order if there is an interval representation I of (X, P) with unit-length intervals $\left[r_{x}-1, r_{x}\right]$ on the real line. For each $x_{1}, x_{2} \in X, x_{1}<x_{2}$ if and only if $r_{x_{1}}<r_{x_{2}}-1$.

On-Line Width of Interval Orders

On-Line Width of Interval Orders

On-line width olwi (ω) of the class of interval orders with width $\leq \omega$ is the largest $k \in \mathbb{N}$, such that there exists a strategy that forces any chain partitioning algorithm to use k chains.
Kierstead and Trotter showed that olwi $(\omega)=3 \omega-2$.

On-Line Width of Interval Orders

On-Line Width of Interval Orders

On-line width olwi (ω) of the class of interval orders with width $\leq \omega$ is the largest $k \in \mathbb{N}$, such that there exists a strategy that forces any chain partitioning algorithm to use k chains.
Kierstead and Trotter showed that olwi $(\omega)=3 \omega-2$.

On-Line Width of Interval Orders with Representation

On-line width olwi $i_{R}(\omega)$ of the class of interval orders with width $\leq \omega$ is the largest $k \in \mathbb{N}$, such that there exists a strategy that forces any algorithm to use k chains to partition an interval order of witdth ω presented as intervals.
Instead of presenting the poset as points, it's presented as intervals, which provide an interval representation of a specific poset (X, P). Showed by Chrobak and Ślusarek to be olwi $i_{R}(\omega)=3 \omega-2$.

On-Line Width of Semi-Orders

Abstract

On-Line Width of Semi-Orders On-line width olws (ω) of the class of semi-orders with width $\leq \omega$ is the largest $k \in \mathbb{N}$, such that there exists a strategy that forces any chain partitioning algorithm to use k chains. First shown that first-fit algorithm uses $2 \omega-1$ chains. Later it was also proved that any on-line algorithm can be forced to use $2 \omega-1$ chains, giving the exact value olws $(\omega)=2 \omega-1$

On-Line Width of Semi-Orders

> On-Line Width of Semi-Orders
> On-line width olws (ω) of the class of semi-orders with width $\leq \omega$ is the largest $k \in \mathbb{N}$, such that there exists a strategy that forces any chain partitioning algorithm to use k chains.
> First shown that first-fit algorithm uses $2 \omega-1$ chains. Later it was also proved that any on-line algorithm can be forced to use $2 \omega-1$ chains, giving the exact value olws $(\omega)=2 \omega-1$

On-Line Width of Semi-Orders with Representation

On-line width olws ${ }_{R}(\omega)$ of the class of interval orders with width $\leq \omega$ is the largest $k \in \mathbb{N}$, such that there exists a strategy that forces any algorithm to use k chains to partition when presented with a poset represented with unit-length intervals.
Exact value of olws ${ }_{R}(\omega)$ is unknown.

On-Line Width of Semi-Orders with Representation

The problem first considered by Chrobak and Ślusarek. As previously mentioned, they showed that first-fit uses at most $2 \omega-1$ chains to perform an on-line chain partitioning. They also showed that any greedy algorithm can be forced to use $2 \omega-1$ chains.

On-Line Width of Semi-Orders with Representation

The problem first considered by Chrobak and Ślusarek. As previously mentioned, they showed that first-fit uses at most $2 \omega-1$ chains to perform an on-line chain partitioning. They also showed that any greedy algorithm can be forced to use $2 \omega-1$ chains.
The question remained, whether more optimal algorithms exists.

On-Line Width of Semi-Orders with Representation

The problem first considered by Chrobak and Ślusarek. As previously mentioned, they showed that first-fit uses at most $2 \omega-1$ chains to perform an on-line chain partitioning. They also showed that any greedy algorithm can be forced to use $2 \omega-1$ chains.
The question remained, whether more optimal algorithms exists. In 2005, Epstein and Levy showed a strategy, which for any positive integer k forces on-line algorithms to use $3 k$ chains to partition a semi-order of width $2 k$ represented with intervals.

On-Line Width of Semi-Orders with Representation

The problem first considered by Chrobak and Ślusarek. As previously mentioned, they showed that first-fit uses at most $2 \omega-1$ chains to perform an on-line chain partitioning. They also showed that any greedy algorithm can be forced to use $2 \omega-1$ chains.
The question remained, whether more optimal algorithms exists. In 2005, Epstein and Levy showed a strategy, which for any positive integer k forces on-line algorithms to use $3 k$ chains to partition a semi-order of width $2 k$ represented with intervals.
This given us the best bounds known so far:

$$
\left\lfloor\frac{3}{2} \omega\right\rfloor \leq \text { olws }_{R}(\omega) \leq 2 \omega-1
$$

Theorem

We will show a slightly improved lower bound for on-line width of semi-orders with representation.

$$
\operatorname{olws}_{R}(\omega) \geq\left\lceil\frac{3}{2} \omega\right\rceil
$$

Theorem

We will show a slightly improved lower bound for on-line width of semi-orders with representation.

$$
\operatorname{olws}_{R}(\omega) \geq\left\lceil\frac{3}{2} \omega\right\rceil
$$

For a given k we will force any on-line chain partitioning algorithm to use $3 k+2$ chains for a poset of width $\omega=2 k+1$.

Stage 1

We start with k identical intervals x_{1}, \ldots, x_{k} with $x_{i}=0$ for each $i \in\{1, \ldots, k\}$.

Stage 1

We start with k identical intervals x_{1}, \ldots, x_{k} with $x_{i}=0$ for each $i \in\{1, \ldots, k\}$.
It's easy to see that they form an antichain, so each of them has to be assigned to a separate chain. Lets denote the set of those chain as $A=\left\{a_{1}, \ldots, a_{k}\right\}$.

Stage 1

We start with k identical intervals x_{1}, \ldots, x_{k} with $x_{i}=0$ for each $i \in\{1, \ldots, k\}$.
It's easy to see that they form an antichain, so each of them has to be assigned to a separate chain. Lets denote the set of those chain as $A=\left\{a_{1}, \ldots, a_{k}\right\}$.

Stage 2

We perform the following steps:
(1) We start with $l_{2}:=1$ and $h_{2}:=2$

Stage 2

We perform the following steps:
(1) We start with $I_{2}:=1$ and $h_{2}:=2$
(2) We present the new interval $x_{i}=\frac{l_{2}+h_{2}}{2}$

Stage 2

We perform the following steps:
(1) We start with $I_{2}:=1$ and $h_{2}:=2$
(2) We present the new interval $x_{i}=\frac{l_{2}+h_{2}}{2}$
(3) Let j be the chain x_{i} was assigned to by the algorithm.

Stage 2

We perform the following steps:
(1) We start with $l_{2}:=1$ and $h_{2}:=2$
(2) We present the new interval $x_{i}=\frac{l_{2}+h_{2}}{2}$
(3) Let j be the chain x_{i} was assigned to by the algorithm.
(9) If $j \in A$, then set $h_{2}=x_{i}$

Stage 2

We perform the following steps:
(1) We start with $I_{2}:=1$ and $h_{2}:=2$
(2) We present the new interval $x_{i}=\frac{l_{2}+h_{2}}{2}$
(3) Let j be the chain x_{i} was assigned to by the algorithm.
(9) If $j \in A$, then set $h_{2}=x_{i}$
(6) If $j \notin A$, then set $I_{2}=x_{i}$

Stage 2

We perform the following steps:
(1) We start with $I_{2}:=1$ and $h_{2}:=2$
(2) We present the new interval $x_{i}=\frac{l_{2}+h_{2}}{2}$
(3) Let j be the chain x_{i} was assigned to by the algorithm.
(9) If $j \in A$, then set $h_{2}=x_{i}$
(0) If $j \notin A$, then set $I_{2}=x_{i}$

Let B be the set of new chains used by the algorithm. We continue steps $2-5$ until $|B|=k+1$.

Stage 2

We perform the following steps:
(1) We start with $I_{2}:=1$ and $h_{2}:=2$
(2) We present the new interval $x_{i}=\frac{l_{2}+h_{2}}{2}$
(3) Let j be the chain x_{i} was assigned to by the algorithm.
(9) If $j \in A$, then set $h_{2}=x_{i}$
(5) If $j \notin A$, then set $I_{2}=x_{i}$

Let B be the set of new chains used by the algorithm. We continue steps $2-5$ until $|B|=k+1$.

Stage 2

$$
l_{2}-1 h_{2}-1
$$

Because $1<x_{i}<2$, all the intervals created in this stage form an antichain of size at most ω.
All of them have to be assigned to different chains. At most k are in A and exactly $k+1$ in B.

Stage 3

We perform the following steps:
(1) We start with $I_{3}:=I_{2}-3$ and $h_{3}:=h_{2}-3$

Stage 3

We perform the following steps:
(1) We start with $I_{3}:=I_{2}-3$ and $h_{3}:=h_{2}-3$
(2) We present the new interval $x_{i}=\frac{l_{3}+h_{3}}{2}$

Stage 3

We perform the following steps:
(1) We start with $I_{3}:=I_{2}-3$ and $h_{3}:=h_{2}-3$
(2) We present the new interval $x_{i}=\frac{1_{3}+h_{3}}{2}$
(3) Let j be the chain x_{i} was assigned to by the algorithm.

Stage 3

We perform the following steps:
(1) We start with $I_{3}:=I_{2}-3$ and $h_{3}:=h_{2}-3$
(2) We present the new interval $x_{i}=\frac{I_{3}+h_{3}}{2}$
(3) Let j be the chain x_{i} was assigned to by the algorithm.
(9) If $j \notin B$, then set $l_{3}=x_{i}$ and go to round $i+1$

Stage 3

We perform the following steps:
(1) We start with $I_{3}:=I_{2}-3$ and $h_{3}:=h_{2}-3$
(2) We present the new interval $x_{i}=\frac{1_{3}+h_{3}}{2}$
(3) Let j be the chain x_{i} was assigned to by the algorithm.
(9) If $j \notin B$, then set $l_{3}=x_{i}$ and go to round $i+1$
(5) If $j \in B$, then set $h_{3}=x_{i}$ and go to next stage

Stage 3

We perform the following steps:
(1) We start with $I_{3}:=I_{2}-3$ and $h_{3}:=h_{2}-3$
(2) We present the new interval $x_{i}=\frac{1_{3}+h_{3}}{2}$
(3) Let j be the chain x_{i} was assigned to by the algorithm.
(9) If $j \notin B$, then set $l_{3}=x_{i}$ and go to round $i+1$
(0) If $j \in B$, then set $h_{3}=x_{i}$ and go to next stage

For all new intervals x_{i} in this stage we have $-2<x_{i}<-1$, so they form an antichain of size at most ω.

Stage 3

We perform the following steps:
(1) We start with $I_{3}:=I_{2}-3$ and $h_{3}:=h_{2}-3$
(2) We present the new interval $x_{i}=\frac{1_{3}+h_{3}}{2}$
(3) Let j be the chain x_{i} was assigned to by the algorithm.
(9) If $j \notin B$, then set $l_{3}=x_{i}$ and go to round $i+1$
(0) If $j \in B$, then set $h_{3}=x_{i}$ and go to next stage

For all new intervals x_{i} in this stage we have $-2<x_{i}<-1$, so they form an antichain of size at most ω.
If the intervals are assigned to $k+1$ new chains, then we can finish.
We can assume that we finish the stage with an interval $x_{B}=h_{3}$ assigned to a chain $b \in B$

Stage 4

We perform the following steps:
(1) We start with $I_{4}:=I_{3}+1$ and $h_{4}:=h_{3}+1$

Stage 4

We perform the following steps:
(1) We start with $I_{4}:=I_{3}+1$ and $h_{4}:=h_{3}+1$
(2) We present the new interval $x_{i}=\frac{I_{4}+h_{4}}{2}$

Stage 4

We perform the following steps:
(1) We start with $I_{4}:=I_{3}+1$ and $h_{4}:=h_{3}+1$
(2) We present the new interval $x_{i}=\frac{I_{4}+h_{4}}{2}$
(3) Let j be the chain x_{i} was assigned to by the algorithm. We know that $-1<x_{i}<x_{B}+1<0$, so $j \notin A$ and $j \neq b$

Stage 4

We perform the following steps:
(1) We start with $I_{4}:=I_{3}+1$ and $h_{4}:=h_{3}+1$
(2) We present the new interval $x_{i}=\frac{I_{4}+h_{4}}{2}$
(3) Let j be the chain x_{i} was assigned to by the algorithm. We know that $-1<x_{i}<x_{B}+1<0$, so $j \notin A$ and $j \neq b$
(9) Update $I_{4}=x_{i}$

Stage 4

We perform the following steps:
(1) We start with $I_{4}:=I_{3}+1$ and $h_{4}:=h_{3}+1$
(2) We present the new interval $x_{i}=\frac{I_{4}+h_{4}}{2}$
(3) Let j be the chain x_{i} was assigned to by the algorithm. We know that $-1<x_{i}<x_{B}+1<0$, so $j \notin A$ and $j \neq b$
(9) Update $I_{4}=x_{i}$
(3) If $j \in B$, the we go to round $i+1$

Stage 4

We perform the following steps:
(1) We start with $I_{4}:=I_{3}+1$ and $h_{4}:=h_{3}+1$
(2) We present the new interval $x_{i}=\frac{l_{4}+h_{4}}{2}$
(3) Let j be the chain x_{i} was assigned to by the algorithm. We know that $-1<x_{i}<x_{B}+1<0$, so $j \notin A$ and $j \neq b$
(9) Update $I_{4}=x_{i}$
(5) If $j \in B$, the we go to round $i+1$
(6) If $j \notin B$, then we move to the next stage

Stage 4

We perform the following steps:
(1) We start with $I_{4}:=I_{3}+1$ and $h_{4}:=h_{3}+1$
(2) We present the new interval $x_{i}=\frac{I_{4}+h_{4}}{2}$
(3) Let j be the chain x_{i} was assigned to by the algorithm.

We know that $-1<x_{i}<x_{B}+1<0$, so $j \notin A$ and $j \neq b$
(9) Update $I_{4}=x_{i}$
(5) If $j \in B$, the we go to round $i+1$
(6) If $j \notin B$, then we move to the next stage

The new intervals form an antichain of size at most $k+1$. They all had to be assigned to different chains.
None of the those chains are in $A \cup\{b\}$.
At most k of them are in $B \backslash\{b\}$

Stage 4

We perform the following steps:
(1) We start with $I_{4}:=I_{3}+1$ and $h_{4}:=h_{3}+1$
(2) We present the new interval $x_{i}=\frac{l_{4}+h_{4}}{2}$
(3) Let j be the chain x_{i} was assigned to by the algorithm.

We know that $-1<x_{i}<x_{B}+1<0$, so $j \notin A$ and $j \neq b$
(9) Update $I_{4}=x_{i}$
(5) If $j \in B$, the we go to round $i+1$
(6) If $j \notin B$, then we move to the next stage

The new intervals form an antichain of size at most $k+1$. They all had to be assigned to different chains.
None of the those chains are in $A \cup\{b\}$.
At most k of them are in $B \backslash\{b\}$
The stage must finish with an interval x_{C} assigned to a new chain c.

Stage 4

The new intervals form an antichain of size at most $k+1$. They all had to be assigned to different chains.
None of the those chains are in $A \cup\{b\}$.
At most k of them are in $B \backslash\{b\}$
The stage must finish with an interval x_{C} assigned to a new chain c.

Stage 5

In the last stage we introduce k intervals $x_{i}=x_{C}+1$.

Stage 5

In the last stage we introduce k intervals $x_{i}=x_{C}+1$.
They form an antichain of size k, so the must be assigned to different chain.
None of those chains are in $A \cup B \cup\{c\}$

Stage 5

In the last stage we introduce k intervals $x_{i}=x_{C}+1$.
They form an antichain of size k, so the must be assigned to different chain.
None of those chains are in $A \cup B \cup\{c\}$
We want to show that the width ω has not been exceeded.

Stage 5

Among intervals introduced in stages 3 and 4, the only interval incomparable to x_{i} is x_{C}.

Stage 5

Among intervals introduced in stages 3 and 4, the only interval incomparable to x_{i} is x_{C}.
Additionally, we have:

$$
l_{2}-3<x_{B}<h_{2}-3
$$

Stage 5

Among intervals introduced in stages 3 and 4, the only interval incomparable to x_{i} is x_{C}.
Additionally, we have:

$$
\begin{aligned}
& I_{2}-3<x_{B}<h_{2}-3 \\
& I_{2}-2<x_{C}<x_{B}+1
\end{aligned}
$$

Stage 5

Among intervals introduced in stages 3 and 4, the only interval incomparable to x_{i} is x_{C}.
Additionally, we have:

$$
\begin{gathered}
I_{2}-3<x_{B}<h_{2}-3 \\
I_{2}-2<x_{C}<x_{B}+1 \\
x_{i}=x_{C}+1
\end{gathered}
$$

Stage 5

Among intervals introduced in stages 3 and 4, the only interval incomparable to x_{i} is x_{C}.
Additionally, we have:

$$
\begin{gathered}
I_{2}-3<x_{B}<h_{2}-3 \\
I_{2}-2<x_{C}<x_{B}+1 \\
x_{i}=x_{C}+1
\end{gathered}
$$

From which we can deduce $I_{2}-1<x_{i}<h_{2}-1$. Meaning the intervals from stage 2 incomparable to x_{i} are exactly the $k+1$ intervals which were assigned to chains from B.

Stage 5

Let D denote the set of new chains used by the algorithm in stage 5 .

Stage 5

Let D denote the set of new chains used by the algorithm in stage 5 . The total number of chains forced by our strategy is thus:

$$
|A|+|B|+|\{c\}|+|D|=k+(k+1)+1+k=3 k+2
$$

Recap

(1) We force k chains A with intervals ending at 0 .

Recap

(1) We force k chains A with intervals ending at 0 .
(2) We add new intervals in the $(1,2)$ window until we force $k+1$ new chains - the set B.

Recap

(1) We force k chains A with intervals ending at 0 .
(2) We add new intervals in the $(1,2)$ window until we force $k+1$ new chains - the set B.
(3) We move the window to the left by 3 and add intervals until one of them is assigned to a chain in B.

Recap

(1) We force k chains A with intervals ending at 0 .
(2) We add new intervals in the $(1,2)$ window until we force $k+1$ new chains - the set B.
(3) We move the window to the left by 3 and add intervals until one of them is assigned to a chain in B.
(9) We move the window by 1 and add intervals until we get a new chain c.

Recap

(1) We force k chains A with intervals ending at 0 .
(2) We add new intervals in the $(1,2)$ window until we force $k+1$ new chains - the set B.
(3) We move the window to the left by 3 and add intervals until one of them is assigned to a chain in B.
(9) We move the window by 1 and add intervals until we get a new chain c.
(5) We add k new intervals 1 to right of x_{C}. Each of them forces a new chain, we denote them D.

Conclusion

In the end we forced $3 k+2$ chain in $A \cup B \cup\{c\} \cup D$ while keeping the width of the poset to at most $2 k+1$.

Conclusion

In the end we forced $3 k+2$ chain in $A \cup B \cup\{c\} \cup D$ while keeping the width of the poset to at most $2 k+1$.
That means we have a new best lower bound for the on-line width of semi-orders with representation:

$$
\left\lceil\frac{3}{2} \omega\right\rceil \leq \operatorname{olws}_{R}(\omega)
$$

Conclusion

In the end we forced $3 k+2$ chain in $A \cup B \cup\{c\} \cup D$ while keeping the width of the poset to at most $2 k+1$.
That means we have a new best lower bound for the on-line width of semi-orders with representation:

$$
\left\lceil\frac{3}{2} \omega\right\rceil \leq \text { olws }_{R}(\omega) \leq 2 \omega-1
$$

By including the upper bound we can give the exact value for $\omega=3$:

$$
\operatorname{olws}_{R}(3)=5
$$

References

Contents and illustrations taken from
[1] C. Biró and I. R. Curbelo, Improved lower bound on the on-line chain partitioning of semi-orders with representation, 2021. DOI: 10.48550/ARXIV.2111.04790. [Online]. Available:
https://arxiv.org/abs/2111.04790.

