
Lower Bounds on the On-line Chain Partitioning of
Semi-orders with Representation

Csaba Biró and Israel R. Curbelo

Rafa l Kilar

Thursday 19th May, 2022

1 / 21

Chain Partitioning

Dilworth’s theorem

A poset of width ω can be partitioned off-line into ω chains.

On-line chain partitioning

An on-line chain partitioning algorithm is presented with a poset (X ,P) in
set order of elements x1, x2, . . . , xn and constructs an on-line chain
partitioning.

2 / 21

Chain Partitioning

Dilworth’s theorem

A poset of width ω can be partitioned off-line into ω chains.

On-line chain partitioning

An on-line chain partitioning algorithm is presented with a poset (X ,P) in
set order of elements x1, x2, . . . , xn and constructs an on-line chain
partitioning.

2 / 21

On line width

Definition

On-line width olw(ω) of the class of posets with width ≤ ω is the largest
k ∈ N, such that there exists a strategy that forces any on-line chain
partitioning algorithm to use k chains.

The exact value of olw(ω) is unknown for ω > 2.

3 / 21

On line width

Definition

On-line width olw(ω) of the class of posets with width ≤ ω is the largest
k ∈ N, such that there exists a strategy that forces any on-line chain
partitioning algorithm to use k chains.

The exact value of olw(ω) is unknown for ω > 2.

3 / 21

Bounds on on-line width

Kierstead 1981

An on-line algorithm that uses at most (5ω − 1)/4 chains to partition a
poset of width ω.

Bosek and Krawczyk 2021

An on-line algorithm that needs at most ωO(log log ω) chains to partition a
poset.

Szemerédi

Any algorithm could be forced to use
(
ω+1
2

)
chains to partition a poset of

width ω.

Bosek, Felsner, Kloch, Krawczyk, Matecki and Micek 2012

Improved lower bound of (2 − o(1))
(
ω+1
2

)
chains.

4 / 21

Bounds on on-line width

Kierstead 1981

An on-line algorithm that uses at most (5ω − 1)/4 chains to partition a
poset of width ω.

Bosek and Krawczyk 2021

An on-line algorithm that needs at most ωO(log log ω) chains to partition a
poset.

Szemerédi

Any algorithm could be forced to use
(
ω+1
2

)
chains to partition a poset of

width ω.

Bosek, Felsner, Kloch, Krawczyk, Matecki and Micek 2012

Improved lower bound of (2 − o(1))
(
ω+1
2

)
chains.

4 / 21

Bounds on on-line width

Kierstead 1981

An on-line algorithm that uses at most (5ω − 1)/4 chains to partition a
poset of width ω.

Bosek and Krawczyk 2021

An on-line algorithm that needs at most ωO(log log ω) chains to partition a
poset.

Szemerédi

Any algorithm could be forced to use
(
ω+1
2

)
chains to partition a poset of

width ω.

Bosek, Felsner, Kloch, Krawczyk, Matecki and Micek 2012

Improved lower bound of (2 − o(1))
(
ω+1
2

)
chains.

4 / 21

Bounds on on-line width

Kierstead 1981

An on-line algorithm that uses at most (5ω − 1)/4 chains to partition a
poset of width ω.

Bosek and Krawczyk 2021

An on-line algorithm that needs at most ωO(log log ω) chains to partition a
poset.

Szemerédi

Any algorithm could be forced to use
(
ω+1
2

)
chains to partition a poset of

width ω.

Bosek, Felsner, Kloch, Krawczyk, Matecki and Micek 2012

Improved lower bound of (2 − o(1))
(
ω+1
2

)
chains.

4 / 21

Interval Order

Interval order

We call a poset (X ,P) an interval order if there exists a funciont I which
maps each element x ∈ X to a closed real number interval I (x) = [lx , rx],
such that for every x1, x2 ∈ X it holds that x1 < x2 iff rx1 < lx2 .
We call I an interval representation of (X ,P).

Semi-order

An interval order (X ,P) is a semi-order if there is an interval
representation I of (X ,P) with unit-length intervals [rx − 1, rx] on the real
line. For each x1, x2 ∈ X , x1 < x2 if and only if rx1 < rx2 − 1.

5 / 21

Interval Order

Interval order

We call a poset (X ,P) an interval order if there exists a funciont I which
maps each element x ∈ X to a closed real number interval I (x) = [lx , rx],
such that for every x1, x2 ∈ X it holds that x1 < x2 iff rx1 < lx2 .
We call I an interval representation of (X ,P).

Semi-order

An interval order (X ,P) is a semi-order if there is an interval
representation I of (X ,P) with unit-length intervals [rx − 1, rx] on the real
line. For each x1, x2 ∈ X , x1 < x2 if and only if rx1 < rx2 − 1.

5 / 21

On-Line Width of Interval Orders

On-Line Width of Interval Orders

On-line width olwi(ω) of the class of interval orders with width ≤ ω is the
largest k ∈ N, such that there exists a strategy that forces any chain
partitioning algorithm to use k chains.
Kierstead and Trotter showed that olwi(ω) = 3ω − 2.

On-Line Width of Interval Orders with Representation

On-line width olwiR(ω) of the class of interval orders with width ≤ ω is
the largest k ∈ N, such that there exists a strategy that forces any
algorithm to use k chains to partition an interval order of witdth ω
presented as intervals.
Instead of presenting the poset as points, it’s presented as intervals, which
provide an interval representation of a specific poset (X ,P). Showed by
Chrobak and Ślusarek to be olwiR(ω) = 3ω − 2.

6 / 21

On-Line Width of Interval Orders

On-Line Width of Interval Orders

On-line width olwi(ω) of the class of interval orders with width ≤ ω is the
largest k ∈ N, such that there exists a strategy that forces any chain
partitioning algorithm to use k chains.
Kierstead and Trotter showed that olwi(ω) = 3ω − 2.

On-Line Width of Interval Orders with Representation

On-line width olwiR(ω) of the class of interval orders with width ≤ ω is
the largest k ∈ N, such that there exists a strategy that forces any
algorithm to use k chains to partition an interval order of witdth ω
presented as intervals.
Instead of presenting the poset as points, it’s presented as intervals, which
provide an interval representation of a specific poset (X ,P). Showed by
Chrobak and Ślusarek to be olwiR(ω) = 3ω − 2.

6 / 21

On-Line Width of Semi-Orders

On-Line Width of Semi-Orders

On-line width olws(ω) of the class of semi-orders with width ≤ ω is the
largest k ∈ N, such that there exists a strategy that forces any chain
partitioning algorithm to use k chains.
First shown that first-fit algorithm uses 2ω − 1 chains. Later it was also
proved that any on-line algorithm can be forced to use 2ω − 1 chains,
giving the exact value olws(ω) = 2ω − 1

On-Line Width of Semi-Orders with Representation

On-line width olwsR(ω) of the class of interval orders with width ≤ ω is
the largest k ∈ N, such that there exists a strategy that forces any
algorithm to use k chains to partition when presented with a poset
represented with unit-length intervals.
Exact value of olwsR(ω) is unknown.

7 / 21

On-Line Width of Semi-Orders

On-Line Width of Semi-Orders

On-line width olws(ω) of the class of semi-orders with width ≤ ω is the
largest k ∈ N, such that there exists a strategy that forces any chain
partitioning algorithm to use k chains.
First shown that first-fit algorithm uses 2ω − 1 chains. Later it was also
proved that any on-line algorithm can be forced to use 2ω − 1 chains,
giving the exact value olws(ω) = 2ω − 1

On-Line Width of Semi-Orders with Representation

On-line width olwsR(ω) of the class of interval orders with width ≤ ω is
the largest k ∈ N, such that there exists a strategy that forces any
algorithm to use k chains to partition when presented with a poset
represented with unit-length intervals.
Exact value of olwsR(ω) is unknown.

7 / 21

On-Line Width of Semi-Orders with Representation

The problem first considered by Chrobak and Ślusarek. As previously
mentioned, they showed that first-fit uses at most 2ω − 1 chains to
perform an on-line chain partitioning. They also showed that any greedy
algorithm can be forced to use 2ω − 1 chains.

The question remained, whether more optimal algorithms exists.
In 2005, Epstein and Levy showed a strategy, which for any positive
integer k forces on-line algorithms to use 3k chains to partition a
semi-order of width 2k represented with intervals.
This given us the best bounds known so far:

⌊3

2
ω⌋ ≤ olwsR(ω) ≤ 2ω − 1

8 / 21

On-Line Width of Semi-Orders with Representation

The problem first considered by Chrobak and Ślusarek. As previously
mentioned, they showed that first-fit uses at most 2ω − 1 chains to
perform an on-line chain partitioning. They also showed that any greedy
algorithm can be forced to use 2ω − 1 chains.
The question remained, whether more optimal algorithms exists.

In 2005, Epstein and Levy showed a strategy, which for any positive
integer k forces on-line algorithms to use 3k chains to partition a
semi-order of width 2k represented with intervals.
This given us the best bounds known so far:

⌊3

2
ω⌋ ≤ olwsR(ω) ≤ 2ω − 1

8 / 21

On-Line Width of Semi-Orders with Representation

The problem first considered by Chrobak and Ślusarek. As previously
mentioned, they showed that first-fit uses at most 2ω − 1 chains to
perform an on-line chain partitioning. They also showed that any greedy
algorithm can be forced to use 2ω − 1 chains.
The question remained, whether more optimal algorithms exists.
In 2005, Epstein and Levy showed a strategy, which for any positive
integer k forces on-line algorithms to use 3k chains to partition a
semi-order of width 2k represented with intervals.

This given us the best bounds known so far:

⌊3

2
ω⌋ ≤ olwsR(ω) ≤ 2ω − 1

8 / 21

On-Line Width of Semi-Orders with Representation

The problem first considered by Chrobak and Ślusarek. As previously
mentioned, they showed that first-fit uses at most 2ω − 1 chains to
perform an on-line chain partitioning. They also showed that any greedy
algorithm can be forced to use 2ω − 1 chains.
The question remained, whether more optimal algorithms exists.
In 2005, Epstein and Levy showed a strategy, which for any positive
integer k forces on-line algorithms to use 3k chains to partition a
semi-order of width 2k represented with intervals.
This given us the best bounds known so far:

⌊3

2
ω⌋ ≤ olwsR(ω) ≤ 2ω − 1

8 / 21

Theorem

We will show a slightly improved lower bound for on-line width of
semi-orders with representation.

olwsR(ω) ≥ ⌈3

2
ω⌉

For a given k we will force any on-line chain partitioning algorithm to use
3k + 2 chains for a poset of width ω = 2k + 1.

9 / 21

Theorem

We will show a slightly improved lower bound for on-line width of
semi-orders with representation.

olwsR(ω) ≥ ⌈3

2
ω⌉

For a given k we will force any on-line chain partitioning algorithm to use
3k + 2 chains for a poset of width ω = 2k + 1.

9 / 21

Stage 1

We start with k identical intervals x1, . . . , xk with xi = 0 for each
i ∈ {1, . . . , k}.

It’s easy to see that they form an antichain, so each of them has to be
assigned to a separate chain. Lets denote the set of those chain as
A = {a1, . . . , ak}.

10 / 21

Stage 1

We start with k identical intervals x1, . . . , xk with xi = 0 for each
i ∈ {1, . . . , k}.
It’s easy to see that they form an antichain, so each of them has to be
assigned to a separate chain. Lets denote the set of those chain as
A = {a1, . . . , ak}.

10 / 21

Stage 1

We start with k identical intervals x1, . . . , xk with xi = 0 for each
i ∈ {1, . . . , k}.
It’s easy to see that they form an antichain, so each of them has to be
assigned to a separate chain. Lets denote the set of those chain as
A = {a1, . . . , ak}.

10 / 21

Stage 2

We perform the following steps:

1 We start with l2 := 1 and h2 := 2

2 We present the new interval xi = l2+h2
2

3 Let j be the chain xi was assigned to by the algorithm.

4 If j ∈ A, then set h2 = xi
5 If j /∈ A, then set l2 = xi

Let B be the set of new chains used by the algorithm. We continue steps
2-5 until |B| = k + 1.

11 / 21

Stage 2

We perform the following steps:

1 We start with l2 := 1 and h2 := 2

2 We present the new interval xi = l2+h2
2

3 Let j be the chain xi was assigned to by the algorithm.

4 If j ∈ A, then set h2 = xi
5 If j /∈ A, then set l2 = xi

Let B be the set of new chains used by the algorithm. We continue steps
2-5 until |B| = k + 1.

11 / 21

Stage 2

We perform the following steps:

1 We start with l2 := 1 and h2 := 2

2 We present the new interval xi = l2+h2
2

3 Let j be the chain xi was assigned to by the algorithm.

4 If j ∈ A, then set h2 = xi
5 If j /∈ A, then set l2 = xi

Let B be the set of new chains used by the algorithm. We continue steps
2-5 until |B| = k + 1.

11 / 21

Stage 2

We perform the following steps:

1 We start with l2 := 1 and h2 := 2

2 We present the new interval xi = l2+h2
2

3 Let j be the chain xi was assigned to by the algorithm.

4 If j ∈ A, then set h2 = xi

5 If j /∈ A, then set l2 = xi

Let B be the set of new chains used by the algorithm. We continue steps
2-5 until |B| = k + 1.

11 / 21

Stage 2

We perform the following steps:

1 We start with l2 := 1 and h2 := 2

2 We present the new interval xi = l2+h2
2

3 Let j be the chain xi was assigned to by the algorithm.

4 If j ∈ A, then set h2 = xi
5 If j /∈ A, then set l2 = xi

Let B be the set of new chains used by the algorithm. We continue steps
2-5 until |B| = k + 1.

11 / 21

Stage 2

We perform the following steps:

1 We start with l2 := 1 and h2 := 2

2 We present the new interval xi = l2+h2
2

3 Let j be the chain xi was assigned to by the algorithm.

4 If j ∈ A, then set h2 = xi
5 If j /∈ A, then set l2 = xi

Let B be the set of new chains used by the algorithm. We continue steps
2-5 until |B| = k + 1.

11 / 21

Stage 2

We perform the following steps:

1 We start with l2 := 1 and h2 := 2

2 We present the new interval xi = l2+h2
2

3 Let j be the chain xi was assigned to by the algorithm.

4 If j ∈ A, then set h2 = xi
5 If j /∈ A, then set l2 = xi

Let B be the set of new chains used by the algorithm. We continue steps
2-5 until |B| = k + 1.

11 / 21

Stage 2

Because 1 < xi < 2, all the intervals created in this stage form an
antichain of size at most ω.
All of them have to be assigned to different chains. At most k are in A
and exactly k + 1 in B.

12 / 21

Stage 3
We perform the following steps:

1 We start with l3 := l2 − 3 and h3 := h2 − 3

2 We present the new interval xi = l3+h3
2

3 Let j be the chain xi was assigned to by the algorithm.
4 If j /∈ B, then set l3 = xi and go to round i + 1
5 If j ∈ B, then set h3 = xi and go to next stage

For all new intervals xi in this stage we have −2 < xi < −1, so they form
an antichain of size at most ω.
If the intervals are assigned to k + 1 new chains, then we can finish.
We can assume that we finish the stage with an interval xB = h3 assigned
to a chain b ∈ B

13 / 21

Stage 3
We perform the following steps:

1 We start with l3 := l2 − 3 and h3 := h2 − 3
2 We present the new interval xi = l3+h3

2

3 Let j be the chain xi was assigned to by the algorithm.
4 If j /∈ B, then set l3 = xi and go to round i + 1
5 If j ∈ B, then set h3 = xi and go to next stage

For all new intervals xi in this stage we have −2 < xi < −1, so they form
an antichain of size at most ω.
If the intervals are assigned to k + 1 new chains, then we can finish.
We can assume that we finish the stage with an interval xB = h3 assigned
to a chain b ∈ B

13 / 21

Stage 3
We perform the following steps:

1 We start with l3 := l2 − 3 and h3 := h2 − 3
2 We present the new interval xi = l3+h3

2
3 Let j be the chain xi was assigned to by the algorithm.

4 If j /∈ B, then set l3 = xi and go to round i + 1
5 If j ∈ B, then set h3 = xi and go to next stage

For all new intervals xi in this stage we have −2 < xi < −1, so they form
an antichain of size at most ω.
If the intervals are assigned to k + 1 new chains, then we can finish.
We can assume that we finish the stage with an interval xB = h3 assigned
to a chain b ∈ B

13 / 21

Stage 3
We perform the following steps:

1 We start with l3 := l2 − 3 and h3 := h2 − 3
2 We present the new interval xi = l3+h3

2
3 Let j be the chain xi was assigned to by the algorithm.
4 If j /∈ B, then set l3 = xi and go to round i + 1

5 If j ∈ B, then set h3 = xi and go to next stage

For all new intervals xi in this stage we have −2 < xi < −1, so they form
an antichain of size at most ω.
If the intervals are assigned to k + 1 new chains, then we can finish.
We can assume that we finish the stage with an interval xB = h3 assigned
to a chain b ∈ B

13 / 21

Stage 3
We perform the following steps:

1 We start with l3 := l2 − 3 and h3 := h2 − 3
2 We present the new interval xi = l3+h3

2
3 Let j be the chain xi was assigned to by the algorithm.
4 If j /∈ B, then set l3 = xi and go to round i + 1
5 If j ∈ B, then set h3 = xi and go to next stage

For all new intervals xi in this stage we have −2 < xi < −1, so they form
an antichain of size at most ω.
If the intervals are assigned to k + 1 new chains, then we can finish.
We can assume that we finish the stage with an interval xB = h3 assigned
to a chain b ∈ B

13 / 21

Stage 3
We perform the following steps:

1 We start with l3 := l2 − 3 and h3 := h2 − 3
2 We present the new interval xi = l3+h3

2
3 Let j be the chain xi was assigned to by the algorithm.
4 If j /∈ B, then set l3 = xi and go to round i + 1
5 If j ∈ B, then set h3 = xi and go to next stage

For all new intervals xi in this stage we have −2 < xi < −1, so they form
an antichain of size at most ω.

If the intervals are assigned to k + 1 new chains, then we can finish.
We can assume that we finish the stage with an interval xB = h3 assigned
to a chain b ∈ B

13 / 21

Stage 3
We perform the following steps:

1 We start with l3 := l2 − 3 and h3 := h2 − 3
2 We present the new interval xi = l3+h3

2
3 Let j be the chain xi was assigned to by the algorithm.
4 If j /∈ B, then set l3 = xi and go to round i + 1
5 If j ∈ B, then set h3 = xi and go to next stage

For all new intervals xi in this stage we have −2 < xi < −1, so they form
an antichain of size at most ω.
If the intervals are assigned to k + 1 new chains, then we can finish.
We can assume that we finish the stage with an interval xB = h3 assigned
to a chain b ∈ B

13 / 21

Stage 4

We perform the following steps:

1 We start with l4 := l3 + 1 and h4 := h3 + 1

2 We present the new interval xi = l4+h4
2

3 Let j be the chain xi was assigned to by the algorithm.
We know that −1 < xi < xB + 1 < 0, so j /∈ A and j ̸= b

4 Update l4 = xi
5 If j ∈ B, the we go to round i + 1

6 If j /∈ B, then we move to the next stage

The new intervals form an antichain of size at most k + 1. They all had to
be assigned to different chains.
None of the those chains are in A ∪ {b}.
At most k of them are in B \ {b}
The stage must finish with an interval xC assigned to a new chain c .

14 / 21

Stage 4

We perform the following steps:

1 We start with l4 := l3 + 1 and h4 := h3 + 1

2 We present the new interval xi = l4+h4
2

3 Let j be the chain xi was assigned to by the algorithm.
We know that −1 < xi < xB + 1 < 0, so j /∈ A and j ̸= b

4 Update l4 = xi
5 If j ∈ B, the we go to round i + 1

6 If j /∈ B, then we move to the next stage

The new intervals form an antichain of size at most k + 1. They all had to
be assigned to different chains.
None of the those chains are in A ∪ {b}.
At most k of them are in B \ {b}
The stage must finish with an interval xC assigned to a new chain c .

14 / 21

Stage 4

We perform the following steps:

1 We start with l4 := l3 + 1 and h4 := h3 + 1

2 We present the new interval xi = l4+h4
2

3 Let j be the chain xi was assigned to by the algorithm.
We know that −1 < xi < xB + 1 < 0, so j /∈ A and j ̸= b

4 Update l4 = xi
5 If j ∈ B, the we go to round i + 1

6 If j /∈ B, then we move to the next stage

The new intervals form an antichain of size at most k + 1. They all had to
be assigned to different chains.
None of the those chains are in A ∪ {b}.
At most k of them are in B \ {b}
The stage must finish with an interval xC assigned to a new chain c .

14 / 21

Stage 4

We perform the following steps:

1 We start with l4 := l3 + 1 and h4 := h3 + 1

2 We present the new interval xi = l4+h4
2

3 Let j be the chain xi was assigned to by the algorithm.
We know that −1 < xi < xB + 1 < 0, so j /∈ A and j ̸= b

4 Update l4 = xi

5 If j ∈ B, the we go to round i + 1

6 If j /∈ B, then we move to the next stage

The new intervals form an antichain of size at most k + 1. They all had to
be assigned to different chains.
None of the those chains are in A ∪ {b}.
At most k of them are in B \ {b}
The stage must finish with an interval xC assigned to a new chain c .

14 / 21

Stage 4

We perform the following steps:

1 We start with l4 := l3 + 1 and h4 := h3 + 1

2 We present the new interval xi = l4+h4
2

3 Let j be the chain xi was assigned to by the algorithm.
We know that −1 < xi < xB + 1 < 0, so j /∈ A and j ̸= b

4 Update l4 = xi
5 If j ∈ B, the we go to round i + 1

6 If j /∈ B, then we move to the next stage

The new intervals form an antichain of size at most k + 1. They all had to
be assigned to different chains.
None of the those chains are in A ∪ {b}.
At most k of them are in B \ {b}
The stage must finish with an interval xC assigned to a new chain c .

14 / 21

Stage 4

We perform the following steps:

1 We start with l4 := l3 + 1 and h4 := h3 + 1

2 We present the new interval xi = l4+h4
2

3 Let j be the chain xi was assigned to by the algorithm.
We know that −1 < xi < xB + 1 < 0, so j /∈ A and j ̸= b

4 Update l4 = xi
5 If j ∈ B, the we go to round i + 1

6 If j /∈ B, then we move to the next stage

The new intervals form an antichain of size at most k + 1. They all had to
be assigned to different chains.
None of the those chains are in A ∪ {b}.
At most k of them are in B \ {b}
The stage must finish with an interval xC assigned to a new chain c .

14 / 21

Stage 4

We perform the following steps:

1 We start with l4 := l3 + 1 and h4 := h3 + 1

2 We present the new interval xi = l4+h4
2

3 Let j be the chain xi was assigned to by the algorithm.
We know that −1 < xi < xB + 1 < 0, so j /∈ A and j ̸= b

4 Update l4 = xi
5 If j ∈ B, the we go to round i + 1

6 If j /∈ B, then we move to the next stage

The new intervals form an antichain of size at most k + 1. They all had to
be assigned to different chains.
None of the those chains are in A ∪ {b}.
At most k of them are in B \ {b}

The stage must finish with an interval xC assigned to a new chain c .

14 / 21

Stage 4

We perform the following steps:

1 We start with l4 := l3 + 1 and h4 := h3 + 1

2 We present the new interval xi = l4+h4
2

3 Let j be the chain xi was assigned to by the algorithm.
We know that −1 < xi < xB + 1 < 0, so j /∈ A and j ̸= b

4 Update l4 = xi
5 If j ∈ B, the we go to round i + 1

6 If j /∈ B, then we move to the next stage

The new intervals form an antichain of size at most k + 1. They all had to
be assigned to different chains.
None of the those chains are in A ∪ {b}.
At most k of them are in B \ {b}
The stage must finish with an interval xC assigned to a new chain c .

14 / 21

Stage 4

The new intervals form an antichain of size at most k + 1. They all had to
be assigned to different chains.
None of the those chains are in A ∪ {b}.
At most k of them are in B \ {b}
The stage must finish with an interval xC assigned to a new chain c .

15 / 21

Stage 5

In the last stage we introduce k intervals xi = xC + 1.

They form an antichain of size k , so the must be assigned to different
chain.
None of those chains are in A ∪ B ∪ {c}
We want to show that the width ω has not been exceeded.

16 / 21

Stage 5

In the last stage we introduce k intervals xi = xC + 1.
They form an antichain of size k , so the must be assigned to different
chain.
None of those chains are in A ∪ B ∪ {c}

We want to show that the width ω has not been exceeded.

16 / 21

Stage 5

In the last stage we introduce k intervals xi = xC + 1.
They form an antichain of size k , so the must be assigned to different
chain.
None of those chains are in A ∪ B ∪ {c}
We want to show that the width ω has not been exceeded.

16 / 21

Stage 5

Among intervals introduced in stages 3 and 4, the only interval
incomparable to xi is xC .

Additionally, we have:

l2 − 3 < xB < h2 − 3
l2 − 2 < xC < xB + 1

xi = xC + 1

From which we can deduce l2 − 1 < xi < h2 − 1. Meaning the intervals
from stage 2 incomparable to xi are exactly the k + 1 intervals which were
assigned to chains from B.

17 / 21

Stage 5

Among intervals introduced in stages 3 and 4, the only interval
incomparable to xi is xC .
Additionally, we have:

l2 − 3 < xB < h2 − 3

l2 − 2 < xC < xB + 1
xi = xC + 1

From which we can deduce l2 − 1 < xi < h2 − 1. Meaning the intervals
from stage 2 incomparable to xi are exactly the k + 1 intervals which were
assigned to chains from B.

17 / 21

Stage 5

Among intervals introduced in stages 3 and 4, the only interval
incomparable to xi is xC .
Additionally, we have:

l2 − 3 < xB < h2 − 3
l2 − 2 < xC < xB + 1

xi = xC + 1

From which we can deduce l2 − 1 < xi < h2 − 1. Meaning the intervals
from stage 2 incomparable to xi are exactly the k + 1 intervals which were
assigned to chains from B.

17 / 21

Stage 5

Among intervals introduced in stages 3 and 4, the only interval
incomparable to xi is xC .
Additionally, we have:

l2 − 3 < xB < h2 − 3
l2 − 2 < xC < xB + 1

xi = xC + 1

From which we can deduce l2 − 1 < xi < h2 − 1. Meaning the intervals
from stage 2 incomparable to xi are exactly the k + 1 intervals which were
assigned to chains from B.

17 / 21

Stage 5

Among intervals introduced in stages 3 and 4, the only interval
incomparable to xi is xC .
Additionally, we have:

l2 − 3 < xB < h2 − 3
l2 − 2 < xC < xB + 1

xi = xC + 1

From which we can deduce l2 − 1 < xi < h2 − 1. Meaning the intervals
from stage 2 incomparable to xi are exactly the k + 1 intervals which were
assigned to chains from B.

17 / 21

Stage 5

Let D denote the set of new chains used by the algorithm in stage 5.

The total number of chains forced by our strategy is thus:

|A| + |B| + |{c}| + |D| = k + (k + 1) + 1 + k = 3k + 2

18 / 21

Stage 5

Let D denote the set of new chains used by the algorithm in stage 5.
The total number of chains forced by our strategy is thus:

|A| + |B| + |{c}| + |D| = k + (k + 1) + 1 + k = 3k + 2

18 / 21

Recap

1 We force k chains A with intervals ending at 0.

2 We add new intervals in the (1, 2) window until we force k + 1 new
chains - the set B.

3 We move the window to the left by 3 and add intervals until one of
them is assigned to a chain in B.

4 We move the window by 1 and add intervals until we get a new chain
c .

5 We add k new intervals 1 to right of xC . Each of them forces a new
chain, we denote them D.

19 / 21

Recap

1 We force k chains A with intervals ending at 0.

2 We add new intervals in the (1, 2) window until we force k + 1 new
chains - the set B.

3 We move the window to the left by 3 and add intervals until one of
them is assigned to a chain in B.

4 We move the window by 1 and add intervals until we get a new chain
c .

5 We add k new intervals 1 to right of xC . Each of them forces a new
chain, we denote them D.

19 / 21

Recap

1 We force k chains A with intervals ending at 0.

2 We add new intervals in the (1, 2) window until we force k + 1 new
chains - the set B.

3 We move the window to the left by 3 and add intervals until one of
them is assigned to a chain in B.

4 We move the window by 1 and add intervals until we get a new chain
c .

5 We add k new intervals 1 to right of xC . Each of them forces a new
chain, we denote them D.

19 / 21

Recap

1 We force k chains A with intervals ending at 0.

2 We add new intervals in the (1, 2) window until we force k + 1 new
chains - the set B.

3 We move the window to the left by 3 and add intervals until one of
them is assigned to a chain in B.

4 We move the window by 1 and add intervals until we get a new chain
c .

5 We add k new intervals 1 to right of xC . Each of them forces a new
chain, we denote them D.

19 / 21

Recap

1 We force k chains A with intervals ending at 0.

2 We add new intervals in the (1, 2) window until we force k + 1 new
chains - the set B.

3 We move the window to the left by 3 and add intervals until one of
them is assigned to a chain in B.

4 We move the window by 1 and add intervals until we get a new chain
c .

5 We add k new intervals 1 to right of xC . Each of them forces a new
chain, we denote them D.

19 / 21

Conclusion

In the end we forced 3k + 2 chain in A ∪ B ∪ {c} ∪ D while keeping the
width of the poset to at most 2k + 1.

That means we have a new best lower bound for the on-line width of
semi-orders with representation: By including the upper bound we can
give the exact value for ω = 3:

olwsR(3) = 5

20 / 21

Conclusion

In the end we forced 3k + 2 chain in A ∪ B ∪ {c} ∪ D while keeping the
width of the poset to at most 2k + 1.
That means we have a new best lower bound for the on-line width of
semi-orders with representation:

⌈3

2
ω⌉ ≤ olwsR(ω)

By including the upper bound we can give the exact value for ω = 3:

olwsR(3) = 5

20 / 21

Conclusion

In the end we forced 3k + 2 chain in A ∪ B ∪ {c} ∪ D while keeping the
width of the poset to at most 2k + 1.
That means we have a new best lower bound for the on-line width of
semi-orders with representation:

⌈3

2
ω⌉ ≤ olwsR(ω) ≤ 2ω − 1

By including the upper bound we can give the exact value for ω = 3:

olwsR(3) = 5

20 / 21

References

Contents and illustrations taken from

[1] C. Biró and I. R. Curbelo, Improved lower bound on the on-line chain
partitioning of semi-orders with representation, 2021. doi:
10.48550/ARXIV.2111.04790. [Online]. Available:
https://arxiv.org/abs/2111.04790.

21 / 21

https://doi.org/10.48550/ARXIV.2111.04790
https://arxiv.org/abs/2111.04790

