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Chain Partitioning

Dilworth’s theorem
A poset of width w can be partitioned off-line into w chains. J
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Chain Partitioning

Dilworth's theorem
A poset of width w can be partitioned off-line into w chains.

On-line chain partitioning

An on-line chain partitioning algorithm is presented with a poset (X, P) in
set order of elements xq, x, ..., x, and constructs an on-line chain
partitioning.
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On line width

Definition

On-line width olw(w) of the class of posets with width < w is the largest
k € N, such that there exists a strategy that forces any on-line chain
partitioning algorithm to use k chains.

3/21



On line width

Definition

On-line width olw(w) of the class of posets with width < w is the largest
k € N, such that there exists a strategy that forces any on-line chain
partitioning algorithm to use k chains.

The exact value of olw(w) is unknown for w > 2.
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Bounds on on-line width

Kierstead 1981

An on-line algorithm that uses at most (5 — 1)/4 chains to partition a
poset of width w.
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Bounds on on-line width

Kierstead 1981

An on-line algorithm that uses at most (5 — 1)/4 chains to partition a
poset of width w.

Bosek and Krawczyk 2021

An on-line algorithm that needs at most w©(/°g 8 @) chains to partition a
poset.

Szemerédi

Any algorithm could be forced to use (”;1) chains to partition a poset of

width w.

Bosek, Felsner, Kloch, Krawczyk, Matecki and Micek 2012

w+1
2

Improved lower bound of (2 — o(1))(“") chains.
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Interval Order

Interval order

We call a poset (X, P) an interval order if there exists a funciont / which
maps each element x € X to a closed real number interval /(x) = [, r«],
such that for every x1,xo € X it holds that x; < xo iff ry, < Iy,.

We call | an interval representation of (X, P).
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Interval Order

Interval order

We call a poset (X, P) an interval order if there exists a funciont / which
maps each element x € X to a closed real number interval /(x) = [, r«],
such that for every x1,xo € X it holds that x; < xo iff ry, < Iy,.

We call | an interval representation of (X, P).

Semi-order

An interval order (X, P) is a semi-order if there is an interval
representation / of (X, P) with unit-length intervals [r, — 1, ry] on the real
line. For each x1,x2 € X, x1 < x if and only if r,, < ry, — 1.
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On-Line Width of Interval Orders

On-Line Width of Interval Orders

On-line width olwi(w) of the class of interval orders with width < w is the

largest k € N, such that there exists a strategy that forces any chain
partitioning algorithm to use k chains.

Kierstead and Trotter showed that olwi(w) = 3w — 2.
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On-Line Width of Interval Orders

On-Line Width of Interval Orders

On-line width olwi(w) of the class of interval orders with width < w is the
largest k € N, such that there exists a strategy that forces any chain
partitioning algorithm to use k chains.

Kierstead and Trotter showed that olwi(w) = 3w — 2.

On-Line Width of Interval Orders with Representation

On-line width olwig(w) of the class of interval orders with width < w is
the largest k € N, such that there exists a strategy that forces any
algorithm to use k chains to partition an interval order of witdth w
presented as intervals.

Instead of presenting the poset as points, it's presented as intervals, which
provide an interval representation of a specific poset (X, P). Showed by
Chrobak and Slusarek to be olwig(w) = 3w — 2.
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On-Line Width of Semi-Orders

On-Line Width of Semi-Orders

On-line width olws(w) of the class of semi-orders with width < w is the
largest k € N, such that there exists a strategy that forces any chain
partitioning algorithm to use k chains.

First shown that first-fit algorithm uses 2w — 1 chains. Later it was also
proved that any on-line algorithm can be forced to use 2w — 1 chains,
giving the exact value olws(w) = 2w — 1
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On-Line Width of Semi-Orders

On-Line Width of Semi-Orders

On-line width olws(w) of the class of semi-orders with width < w is the
largest k € N, such that there exists a strategy that forces any chain
partitioning algorithm to use k chains.

First shown that first-fit algorithm uses 2w — 1 chains. Later it was also
proved that any on-line algorithm can be forced to use 2w — 1 chains,
giving the exact value olws(w) = 2w — 1

On-Line Width of Semi-Orders with Representation

On-line width olwsg(w) of the class of interval orders with width < w is
the largest k € N, such that there exists a strategy that forces any
algorithm to use k chains to partition when presented with a poset
represented with unit-length intervals.

Exact value of olwsg(w) is unknown.
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On-Line Width of Semi-Orders with Representation

The problem first considered by Chrobak and Slusarek. As previously
mentioned, they showed that first-fit uses at most 2w — 1 chains to

perform an on-line chain partitioning. They also showed that any greedy
algorithm can be forced to use 2w — 1 chains.
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On-Line Width of Semi-Orders with Representation

The problem first considered by Chrobak and Slusarek. As previously
mentioned, they showed that first-fit uses at most 2w — 1 chains to
perform an on-line chain partitioning. They also showed that any greedy
algorithm can be forced to use 2w — 1 chains.

The question remained, whether more optimal algorithms exists.

In 2005, Epstein and Levy showed a strategy, which for any positive
integer k forces on-line algorithms to use 3k chains to partition a
semi-order of width 2k represented with intervals.

This given us the best bounds known so far:

5] < olwsg(w) <21
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Theorem

We will show a slightly improved lower bound for on-line width of
semi-orders with representation.

olwsg(w) > [gw}
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Theorem

We will show a slightly improved lower bound for on-line width of
semi-orders with representation.

olwsg(w) > [gw}

For a given k we will force any on-line chain partitioning algorithm to use
3k + 2 chains for a poset of width w = 2k + 1.
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Stage 1

We start with k identical intervals x1,..., x, with x; = 0 for each
ie{l,... k}.
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Stage 1

We start with k identical intervals x1, ..., xx with x; = 0 for each
ie{l,... k}.
It's easy to see that they form an antichain, so each of them has to be

assigned to a separate chain. Lets denote the set of those chain as
A={a1,...,ak}.
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We start with k identical intervals x1, ..., xx with x; = 0 for each
ie{l,... k}.
It's easy to see that they form an antichain, so each of them has to be

assigned to a separate chain. Lets denote the set of those chain as
A={a1,...,ak}.
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Stage 2

We perform the following steps:
@ We start with b :=1 and hy :=2
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Stage 2

We perform the following steps:
@ We start with b :=1 and hy :=2
@ We present the new interval x; = @
© Let j be the chain x; was assigned to by the algorithm.
Q If j € A, then set hy = x;
@ Ifj ¢ A thenset h =x;

Let B be the set of new chains used by the algorithm. We continue steps
2-5 until |B| = k+ 1.
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Stage 2

We perform the following steps:
@ We start with b :=1 and hy :=2

@ We present the new interval x; =

© Let j be the chain x; was assigned to by the algorithm.

Q If j € A, then set hy = x;
@ Ifj ¢ A thenset h =x;

_ hth

Let B be the set of new chains used by the algorithm. We continue steps

2-5 until |B| = k+ 1.

lz*lhgﬁl

S/

k+1
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Stage 2

la—1hy—1

A

k+1

Because 1 < x; < 2, all the intervals created in this stage form an

antichain of size at most w.

All of them have to be assigned to different chains. At most k are in A

and exactly k + 1 in B.
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Stage 3
We perform the following steps:
@ We start with 5:=h —3 and h3 := h, — 3
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Stage 3
We perform the following steps:
@ We start with 5:=h —3 and h3 := h, — 3
@ We present the new interval x; = #
© Let j be the chain x; was assigned to by the algorithm.
Q If j ¢ B, then set 5 = x; and go to round i/ +1
@ If j € B, then set h3 = x; and go to next stage
For all new intervals x; in this stage we have —2 < x; < —1, so they form
an antichain of size at most w.
If the intervals are assigned to k + 1 new chains, then we can finish.
We can assume that we finish the stage with an interval xg = hs assigned
toachain be B

¢ B
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Stage 4

We perform the following steps:
@ We start with I ;= +1and hy ;== h3 +1
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Stage 4

The new intervals form an antichain of size at most kK + 1. They all had to

be assigned to different chains.

None of the those chains are in AU {b}.

At most k of them are in B\ {b}

The stage must finish with an interval xc assigned to a new chain c.

l3 hs3

:

c B\ {b}

¢ B

|
|
|
|
|
T
I
|
|
|
|
|
|
|
|
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Stage 5

In the last stage we introduce k intervals x; = x¢ + 1.
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Stage 5

In the last stage we introduce k intervals x; = x¢ + 1.
They form an antichain of size k, so the must be assigned to different

chain.
None of those chains are in AU BU {c}
We want to show that the width w has not been exceeded.

I3 hy Iy Iy—1hy—1

‘ ]
(Y
ml 3

c
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Stage 5

Among intervals introduced in stages 3 and 4, the only interval
incomparable to x; is xc.
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Stage 5

e LY ! ! !

/ b 3 A,
[ eaf ! e A

Among intervals introduced in stages 3 and 4, the only interval
incomparable to x; is xc.
Additionally, we have:

bh—3<xg<h—3
h—2<xc<xg+1
xi=xc+1

From which we can deduce b, — 1 < x; < hp — 1. Meaning the intervals
from stage 2 incomparable to x; are exactly the k + 1 intervals which were
assigned to chains from B.

17/21



Stage 5

I3 hs Iy lo—1hy—1

Let D denote the set of new chains used by the algorithm in stage 5.
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Stage 5

k+1

Let D denote the set of new chains used by the algorithm in stage 5.

The total number of chains forced by our strategy is thus:

Al + Bl + [{c} + |D| = k+ (k+1)+ 1+ k =3k +2
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Recap

I

© We force k chains A with intervals ending at 0.
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Recap

ly—1hy—1

/s
‘ B

k+1

AiE

© We force k chains A with intervals ending at 0.

@ We add new intervals in the (1,2) window until we force k + 1 new
chains - the set B.

19/21



Recap

I3 hs lo—1hy—1

k+1

© We force k chains A with intervals ending at 0.

@ We add new intervals in the (1,2) window until we force k + 1 new
chains - the set B.

© We move the window to the left by 3 and add intervals until one of
them is assigned to a chain in B.
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Recap

I3 hy Iy lo—1hy—1

Ix cB\(} /! P

m ! P
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P H B

k+1

We force k chains A with intervals ending at 0.

© 0

We add new intervals in the (1,2) window until we force k + 1 new
chains - the set B.

©

We move the window to the left by 3 and add intervals until one of
them is assigned to a chain in B.

©

We move the window by 1 and add intervals until we get a new chain
c.
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Recap

I3 hs A ly—1hy—1

|

E—
/ W T A

© We force k chains A with intervals ending at 0.

@ We add new intervals in the (1,2) window until we force k + 1 new
chains - the set B.

© We move the window to the left by 3 and add intervals until one of
them is assigned to a chain in B.

@ We move the window by 1 and add intervals until we get a new chain
c.

© We add k new intervals 1 to right of xc. Each of them forces a new
chain, we denote them D.
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Conclusion

I3 hy Iy lo—1hy—1

5 I
— 1
L enwf
Bk 1

In the end we forced 3k + 2 chain in AU B U {c} U D while keeping the
width of the poset to at most 2k + 1.
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In the end we forced 3k + 2 chain in AU BU {c} U D while keeping the

width of the poset to at most 2k + 1.
That means we have a new best lower bound for the on-line width of

semi-orders with representation:
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Conclusion

lo—1hy—1

Ll

In the end we forced 3k + 2 chain in AU BU {c} U D while keeping the

width of the poset to at most 2k + 1.
That means we have a new best lower bound for the on-line width of

semi-orders with representation:
3
[Ew] < olwsg(w) <2w-—1
By including the upper bound we can give the exact value for w = 3:

olwsg(3) =5
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