A better lower bound on average degree of 4-list-critical $${\rm graphs}^1$$

Łukasz Selwa

Jagiellonian University, Theoretical Computer Science

May 26, 2022

¹Landon Rabern. A better lower bound on average degree of 4-list-critical graphs. 2016. DOI: 10.48550/ARXIV.1602.08532. URL: https://arxiv.org/abs/1602.08532.

def. k-list-critical graph

We call graph G k-list-critical if G is not (k-1)-choosable (doesn't always have a proper k list coloring), but every proper subgraph of G is (k-1)-choosable.

def. k-list-critical graph

We call graph G k-list-critical if G is not (k-1)-choosable (doesn't always have a proper k list coloring), but every proper subgraph of G is (k-1)-choosable.

Theorem (Main Theorem)

Every incomplete k-list-critical graph has average degree at least

$$k - 1 + \frac{k - 3}{k^2 - 2k + 2}$$

	k-critical				k-list-critical			
k	Gallai	Kriv	KS	KY	KS	KR	CR^2	Here
4	3.0769	3.1429	_	3.3333	—	—	—	3.1000
5	4.0909	4.1429	—	4.5000	_	4.0984	4.1000	4.1176
6	5.0909	5.1304	5.0976	5.6000	_	5.1053	5.1076	5.1153
7	6.0870	6.1176	6.0990	6.6667	_	6.1149	6.1192	6.1081
8	7.0820	7.1064	7.0980	7.7143	_	7.1128	7.1167	7.1000
9	8.0769	8.0968	8.0959	8.7500	8.0838	8.1094	8.1130	8.0923
10	9.0722	9.0886	9.0932	9.7778	9.0793	9.1055	9.1088	9.0853

Table 1: Previous known lower bounds on the average degree of k-critical and k-list-critical graphs

²Daniel Cranston and Landon Rabern. "Edge Lower Bounds for List Critical Graphs, Via Discharging". In: *Combinatorica* 38 (Feb. 2016). DOI: 10.1007/s00493-016-3584-6.

L. Selwa (TCS)

For graph G = (V, E) we follow notation from the article where:

- 1 |G| := |V(G)|
- **2** ||G|| := |E(G)|
- $||A, B|| := |\{uv \in E : u \in A \land v \in B\}|,$ For $A, B \subseteq V(G), A \cap B = \emptyset$

def. Gallai tree

A graph T is called Gallai tree if every block (2-connected component) is either a clique or an odd cycle.

Figure 1: A Gallai tree with 15 blocks^3

³Daniel Cranston and Landon Rabern. "Brooks' Theorem and Beyond". In: Journal of Graph Theory 80 (Dec. 2014). DOI: 10.1002/jgt.21847.

L. Selwa (TCS)

Lower bound on average degree of 4-list-critical graphs

In a k-critical graph, the vertices of degree k - 1 induce a disjoint union of Gallai trees.

In a k-critical graph, the vertices of degree k - 1 induce a disjoint union of Gallai trees.

It proven that this theorem is also true for k-list-critical graphs.

In a k-critical graph, the vertices of degree k - 1 induce a disjoint union of Gallai trees.

It proven that this theorem is also true for k-list-critical graphs.

def. $\beta_k(G)$

For graph G, let $\beta_k(G)$ be equal to the independence number of the subgraph of G induced on the vertices of degree k - 1.

In a k-critical graph, the vertices of degree k - 1 induce a disjoint union of Gallai trees.

It proven that this theorem is also true for k-list-critical graphs.

def. $\beta_k(G)$

For graph G, let $\beta_k(G)$ be equal to the independence number of the subgraph of G induced on the vertices of degree k - 1.

Lemma 1.

If $k \ge 4$ and $T \ne K_k$ is a Gallai tree with maximum degree at most k - 1, then

$$2||T|| \le (k-2)|T| + 2\beta_k(T)$$

Suppose the lemma is false. Choose a counterexample T with minimal |T|. Cases where T has 2 or less blocks are trivial. Suppose that T has at least 3 blocks.

Proof of Lemma 1.

Suppose the lemma is false. Choose a counterexample T with minimal |T|. Cases where T has 2 or less blocks are trivial. Suppose that T has at least 3 blocks. Let A be an end-block of T, let x be the unique cut-vertex of T with $x \in V(A)$. Consider $T' := T - (V(A) \setminus \{x\})$.

Figure 2: Example A, T'

 $2||T'|| \le (k-2)|T'| + 2\beta_K(T')$

 $2||T|| - 2||A|| \le (k - 2)(|T| + 1 - |A|) + 2\beta_K(T')$

$$2||T|| - 2||A|| \le (k - 2)(|T| + 1 - |A|) + 2\beta_K(T')$$

Since T is a counter example:

$$\frac{-2||T|| + 2||A|| \ge (k-2)(-|T|-1+|A|) - 2\beta_K(T')}{+2||T|| \ge (k-2)|T| + 2\beta_K(T)}$$

$$\frac{-2||A|| \ge (k-2)|T| + 2\beta_K(T)}{2||A|| \ge (k-2)(|A|-1) + 2\beta_K(T) - 2\beta_K(T')}$$

$$2||T|| - 2||A|| \le (k - 2)(|T| + 1 - |A|) + 2\beta_K(T')$$

Since T is a counter example:

$$2||A|| > (k-2)(|A|-1)$$

$$2||T|| - 2||A|| \le (k - 2)(|T| + 1 - |A|) + 2\beta_K(T')$$

Since T is a counter example:

$$2||A|| > (k-2)(|A|-1)$$

If k > 4 then $A = K_{k-1}$, if k = 4 then A is an odd cycle. In both cases:

 $d_T(x) = k - 1$

Proof of Lemma 1.

Let $T^* := T - V(A)$.

Figure 2: Example A, T^*

Let $T^* := T - V(A)$. Because T is the minimal counter example $2||T^*|| \le (k-2)|T^*| + 2\beta_k(T^*)$

Let $T^* := T - V(A)$. Because T is the minimal counter example $2||T|| - 2||A|| - 2 \le (k - 2)(|T| - |A|) + 2\beta_k(T^*)$ Let $T^* := T - V(A)$. Because T is the minimal counter example $\begin{aligned} -2||T|| + 2||A|| + 2 \ge (k-2)(-|T| + |A|) - 2\beta_K(T^*) \\ \underline{2||T|| \ge (k-2)|T| + 2\beta_K(T)} \\ \underline{2||A|| + 2 \ge (k-2)|A| + 2\beta_K(T) - 2\beta_K(T^*)} \end{aligned}$ Let $T^* := T - V(A)$. Because T is the minimal counter example

 $2||A|| + 2 > (k - 2)|A| + 2\beta_K(T) - 2\beta_K(T^*)$

We proved that $d_T(x) = k - 1$. But in T^* all of neighbours of x have degree at most k - 2, so some vertex in $\{x\} \cup N(x)$ is in maximum independent set of degree k - 1 vertices in T. Which implies that $\beta_k(T^*) \leq \beta_k(T) - 1$.

Let $T^* := T - V(A)$. Because T is the minimal counter example

 $2||A|| + 2 > (k - 2)|A| + 2\beta_K(T) - 2\beta_K(T^*)$

We proved that $d_T(x) = k - 1$. But in T^* all of neighbours of x have degree at most k - 2, so some vertex in $\{x\} \cup N(x)$ is in maximum independent set of degree k - 1 vertices in T. Which implies that $\beta_k(T^*) \leq \beta_k(T) - 1$. Hence:

2||A|| + 2 > (k - 2)|A|

Let $T^* := T - V(A)$. Because T is the minimal counter example

 $2||A|| + 2 > (k - 2)|A| + 2\beta_K(T) - 2\beta_K(T^*)$

We proved that $d_T(x) = k - 1$. But in T^* all of neighbours of x have degree at most k - 2, so some vertex in $\{x\} \cup N(x)$ is in maximum independent set of degree k - 1 vertices in T. Which implies that $\beta_k(T^*) \leq \beta_k(T) - 1$. Hence:

$$2||A|| + 2 > (k - 2)|A|$$

This is a contradiction for $k \geq 4$. \Box

Theorem (Main Theorem)

Every incomplete k-list-critical graph has average degree at least

$$k - 1 + \frac{k - 3}{k^2 - 2k + 2}$$

Proof. Let $G \neq K_k$ be a k-list critical graph. The theorem can easily be proven for $k \leq 3$. Suppose $k \geq 4$.

As stated before it is known that \mathcal{L} is a Gallai tree. By Lemma 1:

$$2||\mathcal{L}|| \le (k-2)|\mathcal{L}| + 2\beta_k(\mathcal{L})$$

As stated before it is known that \mathcal{L} is a Gallai tree. By Lemma 1:

$$2||\mathcal{L}|| \le (k-2)|\mathcal{L}| + 2\beta_k(\mathcal{L})$$

Hence:

$$2||G|| = 2||\mathcal{H}|| + 2||\mathcal{H}, \mathcal{L}|| + 2||\mathcal{L}||$$

= 2||\mathcal{H}|| + 2((k - 1)|\mathcal{L}| - 2||\mathcal{L}||) + 2||\mathcal{L}||
= 2||\mathcal{H}|| + 2(k - 1)|\mathcal{L}| - 2||\mathcal{L}||
\geq 2||\mathcal{H}|| + k|\mathcal{L}| - 2\beta_k(\mathcal{L})

As stated before it is known that \mathcal{L} is a Gallai tree. By Lemma 1:

 $2||\mathcal{L}|| \le (k-2)|\mathcal{L}| + 2\beta_k(\mathcal{L})$

Hence: $2||G|| \ge 2||\mathcal{H}|| + k|\mathcal{L}| - 2\beta_k(\mathcal{L})$

As stated before it is known that \mathcal{L} is a Gallai tree. By Lemma 1:

$$2||\mathcal{L}|| \le (k-2)|\mathcal{L}| + 2\beta_k(\mathcal{L})$$

Hence: $\beta_k(\mathcal{L}) \ge ||\mathcal{H}|| + \frac{k}{2}|\mathcal{L}| - ||G||$

 $\operatorname{mic}(G) := \max_{I} ||I, V(G) \setminus I||$, Where I is a independent set of G

We will use lemma proved by $Kierstead^4$.

Theorem (Kernel Magic)

Every k-list-critical graph G satisfies:

 $2||G|| \ge (k-2)|G| + \mathrm{mic}(G) + 1$

⁴Hal Kierstead and Landon Rabern. Extracting list colorings from large independent sets. 2015. DOI: 10.48550/ARXIV.1512.08130. URL: https://arxiv.org/abs/1512.08130.

L. Selwa (TCS)

 $\operatorname{mic}(G) := \operatorname{max}_{I} ||I, V(G) \setminus I||$, Where I is a independent set of G

We will use lemma proved by $Kierstead^4$.

Theorem (Kernel Magic)

Every k-list-critical graph G satisfies:

 $2||G|| \ge (k-2)|G| + \mathrm{mic}(G) + 1$

Let M be the maximum of $||T, V(G) \setminus T||$ over all independent sets I of G such that $I \subseteq \mathcal{H}$. Clearly: $\operatorname{mic}(G) \geq M + (k-1)\beta_k(\mathcal{L})$

⁴Kierstead and Rabern, Extracting list colorings from large independent sets.

 $\operatorname{mic}(G) := \operatorname{max}_{I} ||I, V(G) \setminus I||$, Where I is a independent set of G

We will use lemma proved by $Kierstead^4$.

Theorem (Kernel Magic)

Every k-list-critical graph G satisfies:

 $2||G|| \ge (k-2)|G| + \mathrm{mic}(G) + 1$

Let M be the maximum of $||T, V(G) \setminus T||$ over all independent sets I of G such that $I \subseteq \mathcal{H}$. Clearly: $\operatorname{mic}(G) \geq M + (k-1)\beta_k(\mathcal{L})$ Combining this with previous inequalities yields:

$$2||G|| \ge (k-2)|G| + mic(G) + 1$$

$$\ge (k-2)|G| + M + (k-1)\beta_k(\mathcal{L}) + 1$$

$$\ge (k-2)|G| + M + (k-1)(||\mathcal{H}|| + \frac{k}{2}|\mathcal{L}| - ||G||) + 1$$

⁴Kierstead and Rabern, *Extracting list colorings from large independent sets*.

 $\operatorname{mic}(G) := \max_{I} ||I, V(G) \setminus I||$, Where I is a independent set of G

We will use lemma proved by Kierstead⁴.

Theorem (Kernel Magic)

Every k-list-critical graph G satisfies:

 $2||G|| \ge (k-2)|G| + \mathrm{mic}(G) + 1$

Let M be the maximum of $||T, V(G) \setminus T||$ over all independent sets I of G such that $I \subseteq \mathcal{H}$. Clearly: $\operatorname{mic}(G) \geq M + (k-1)\beta_k(\mathcal{L})$ Combining this with previous inequalities yields:

$$(k+1)||G|| \ge (k-2)|G| + M + (k-1)||\mathcal{H}|| + \frac{k(k-1)}{2}|\mathcal{L}| + 1$$

⁴Kierstead and Rabern, *Extracting list colorings from large independent sets*.

- \mathcal{C} is the set of all connected components of $G[\mathcal{H}]$
- $\alpha(C)$ is the independent number of C for any $C \in \mathcal{C}$
- $\chi(C)$ is the coloring number of C for any $C \in \mathcal{C}$

- \mathcal{C} is the set of all connected components of $G[\mathcal{H}]$
- $\alpha(C)$ is the independent number of C for any $C \in \mathcal{C}$
- $\chi(C)$ is the coloring number of C for any $C \in \mathcal{C}$

1. Min degree of k-list-critical graph	2. Lower bound on $\alpha(C)$		
$\min\{d_G(v): v \in V(G)\} = k - 1$	$\alpha(C) \ge \frac{ C }{\chi(C)}$		

- \mathcal{C} is the set of all connected components of $G[\mathcal{H}]$
- $\alpha(C)$ is the independent number of C for any $C \in \mathcal{C}$
- $\chi(C)$ is the coloring number of C for any $C \in \mathcal{C}$

1. Min degree of k-list-critical graph	2. Lower bound on $\alpha(C)$
$\min\{d_G(v): v \in V(G)\} = k - 1$	$\alpha(C) \ge \frac{ C }{\chi(C)}$
$M \geq \sum_{C \in \mathcal{C}} k \alpha(C)$	Because $\forall_{v \in M} d_G(v) \ge k$
$\geq \sum_{C \in \mathcal{C}} k \frac{ C }{\chi(C)}$	Because of Fact 2

- \mathcal{C} is the set of all connected components of $G[\mathcal{H}]$
- $\alpha(C)$ is the independent number of C for any $C \in \mathcal{C}$
- $\chi(C)$ is the coloring number of C for any $C \in \mathcal{C}$

1. Min degree of k-list-critical graph

$$\min\{d_G(v): v \in V(G)\} = k - 1$$
2. Lower bound on $\alpha(C)$
 $\alpha(C) \ge \frac{|C|}{\chi(C)}$
 $M \ge \sum_{C \in \mathcal{C}} k \frac{|C|}{\chi(C)}$

- \mathcal{C} is the set of all connected components of $G[\mathcal{H}]$
- $\alpha(C)$ is the independent number of C for any $C \in \mathcal{C}$
- $\chi(C)$ is the coloring number of C for any $C \in \mathcal{C}$

1. Min degree of k-list-critical graph

$$\min\{d_G(v): v \in V(G)\} = k - 1$$

$$M + (k - 1)||\mathcal{H}|| \ge \sum_{C \in \mathcal{C}} k \frac{|C|}{\chi(C)} + (k - 1)||C||$$

We now claim that $k \frac{|C|}{\chi(C)} + (k-1)||C|| \ge (k-\frac{1}{2})|C|.$

We now claim that $k \frac{|C|}{\chi(C)} + (k-1)||C|| \ge (k-\frac{1}{2})|C|.$

• If |C| = 1 then the statement is true.

We now claim that $k \frac{|C|}{\chi(C)} + (k-1)||C|| \ge (k-\frac{1}{2})|C|.$

- If |C| = 1 then the statement is true.
- If C is not a tree then $||C|| \ge |C|$, hence

$$k\frac{|C|}{\chi(C)} + (k-1)||C|| \ge k\frac{|C|}{k-1} + (k-1)|C| \ge (k-\frac{1}{2})|C|$$

We now claim that $k \frac{|C|}{\chi(C)} + (k-1)||C|| \ge (k-\frac{1}{2})|C|.$

- If |C| = 1 then the statement is true.
- If C is not a tree then $||C|| \ge |C|$, hence

$$k\frac{|C|}{\chi(C)} + (k-1)||C|| \ge k\frac{|C|}{k-1} + (k-1)|C| \ge (k-\frac{1}{2})|C|$$

• If C is a tree then $\chi(C) \le 2$, ||C|| = |C| - 1, so

$$k\frac{|C|}{\chi(C)} + (k-1)||C|| \ge k\frac{|C|}{2} + (k-1)(|C|-1) \ge (k-\frac{1}{2})|C|$$

Lastly, we need a basic bound on $|\mathcal{L}|$. It is easy to see that.

 $|\mathcal{L}| \ge k|G| - 2||G||$

Lastly, we need a basic bound on $|\mathcal{L}|$. It is easy to see that.

 $|\mathcal{L}| \ge k|G| - 2||G||$

We put number k on every vertices in G and subtract from it the $d_G(v)$.

- The vertices in \mathcal{L} end up with number 1 because $\forall_{v \in \mathcal{L}} d_G(v) = k 1$
- The vertices in $V(G) \setminus \mathcal{L}$ end up with a non-positive number because $\forall_{v \in \mathcal{L}} d_G(v) \ge k$

In summary we proved that for k-list-critical graph G the following inequalities are true

$$\begin{array}{l} 1 \quad (k+1)||G|| \geq (k-2)|G| + M + (k-1)||\mathcal{H}|| + \frac{k(k-1)}{2}|\mathcal{L}| + 1 \\ \\ 2 \quad M + (k-1)||\mathcal{H}|| \geq \sum_{C \in \mathcal{C}} k \frac{|C|}{\chi(C)} + (k-1)||C|| \\ \\ 3 \quad k \frac{|C|}{\chi(C)} + (k-1)||C|| \geq (k - \frac{1}{2})|C| \\ \\ \\ 4 \quad |\mathcal{L}| \geq k|G| - 2||G|| \\ \end{array}$$

In summary we proved that for k-list-critical graph G the following inequalities are true

$$\begin{array}{l} \bullet \quad (k+1)||G|| \geq (k-2)|G| + M + (k-1)||\mathcal{H}|| + \frac{k(k-1)}{2}|\mathcal{L}| + 1 \\ \bullet \quad M + (k-1)||\mathcal{H}|| \geq \sum_{C \in \mathcal{C}} k \frac{|C|}{\chi(C)} + (k-1)||C|| \\ \bullet \quad k \frac{|C|}{\chi(C)} + (k-1)||C|| \geq (k - \frac{1}{2})|C| \\ \bullet \quad |\mathcal{L}| \geq k|G| - 2||G|| \\ \end{array}$$

After combining all o them we get that

$$2||G|| \ge \left(k - 1 + \frac{k - 3}{k^2 - 2k + 2}\right)|G| + \frac{2}{k^2 - 2k + 2}$$

In summary we proved that for k-list-critical graph G the following inequalities are true

$$\begin{array}{l} \bullet \quad (k+1)||G|| \geq (k-2)|G| + M + (k-1)||\mathcal{H}|| + \frac{k(k-1)}{2}|\mathcal{L}| + 1 \\ \bullet \quad M + (k-1)||\mathcal{H}|| \geq \sum_{C \in \mathcal{C}} k \frac{|C|}{\chi(C)} + (k-1)||C|| \\ \bullet \quad k \frac{|C|}{\chi(C)} + (k-1)||C|| \geq (k - \frac{1}{2})|C| \\ \bullet \quad |\mathcal{L}| \geq k|G| - 2||G|| \\ \end{array}$$

After combining all o them we get that

$$2||G|| \ge \left(k - 1 + \frac{k - 3}{k^2 - 2k + 2}\right)|G| + \frac{2}{k^2 - 2k + 2}$$

This proves that

$$\tfrac{2||G||}{|G|} \geq k - 1 \tfrac{k-3}{k^2 - 2k + 2}$$

Which means the average degree of a k-list-critical graph is at least $k - 1 + \frac{k-3}{k^2 - 2k+2}$. \Box

Cranston, Daniel and Landon Rabern. "Brooks' Theorem and Beyond". In: Journal of Graph Theory 80 (Dec. 2014). DOI: 10.1002/jgt.21847.

- . "Edge Lower Bounds for List Critical Graphs, Via Discharging".
 In: Combinatorica 38 (Feb. 2016). DOI: 10.1007/s00493-016-3584-6.
 - Kierstead, Hal and Landon Rabern. Extracting list colorings from large independent sets. 2015. DOI: 10.48550/ARXIV.1512.08130. URL: https://arxiv.org/abs/1512.08130.
 - Rabern, Landon. A better lower bound on average degree of 4-list-critical graphs. 2016. DOI: 10.48550/ARXIV.1602.08532. URL: https://arxiv.org/abs/1602.08532.