Separating polynomial χ-boundedness from χ-boundedness

Demian Banakh
Department of Theoretical Computer Science
Jagiellonian University

June 2, 2022

Notation

- $[n]=\{1, \ldots, n\}$
- $\mathbb{P}=\left\{p_{1}, p_{2}, \ldots\right\}$ is the set of all primes
- $\chi(G)$ denotes the chromatic number of graph G
- $\omega(G)$ denotes the clique number of graph G

χ-boundedness

Definition

A class of graphs \mathcal{C} is χ-bounded if there is a function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that $\chi(G) \leq f(\omega(G))$ for every graph $G \in \mathcal{C}$. A χ-bounded class \mathcal{C} is polynomially χ-bounded if such a function f can be chosen to be a polynomial. A class \mathcal{C} is hereditary if it is closed under taking induced subgraphs.

χ-boundedness

Definition

A class of graphs \mathcal{C} is χ-bounded if there is a function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that $\chi(G) \leq f(\omega(G))$ for every graph $G \in \mathcal{C}$. A χ-bounded class \mathcal{C} is polynomially χ-bounded if such a function f can be chosen to be a polynomial. A class \mathcal{C} is hereditary if it is closed under taking induced subgraphs.

A well-known and fundamental open problem, due to [Esperet, 2017], has been to decide whether every hereditary χ-bounded class of graphs is polynomially χ-bounded.

χ-boundedness

Definition

A class of graphs \mathcal{C} is χ-bounded if there is a function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that $\chi(G) \leq f(\omega(G))$ for every graph $G \in \mathcal{C}$. A χ-bounded class \mathcal{C} is polynomially χ-bounded if such a function f can be chosen to be a polynomial. A class \mathcal{C} is hereditary if it is closed under taking induced subgraphs.

A well-known and fundamental open problem, due to [Esperet, 2017], has been to decide whether every hereditary χ-bounded class of graphs is polynomially χ-bounded. We provide a negative answer to this question. More generally, we prove that χ-boundedness may require arbitrarily fast growing functions.

Main result

Theorem

For every function $f: \mathbb{N} \rightarrow \mathbb{N}$, there exists a hereditary χ-bounded graph class \mathcal{C} which, for every $n \geq 2$, contains a graph $G \in \mathcal{C}$ such that $\omega(G) \leq n$ and $\chi(G) \geq f(n)$.

Main result

Theorem

For every function $f: \mathbb{N} \rightarrow \mathbb{N}$, there exists a hereditary χ-bounded graph class \mathcal{C} which, for every $n \geq 2$, contains a graph $G \in \mathcal{C}$ such that $\omega(G) \leq n$ and $\chi(G) \geq f(n)$.

The proof is heavily based on the idea used by [Carbonero, Hompe, Moore, Spirkl, 2022] in their recent solution to another well-known problem. They proved that for every $k \in \mathbb{N}$, there is a K_{4}-free graph G with $\chi(G) \geq k$ such that every triangle-free induced subgraph of G has chromatic number at most 4. Their proof, in turn, relies on an idea by [Kierstead, Trotter, 1992], who proved that the class of oriented graphs excluding an oriented path of length 3 as an induced subgraph is not χ-bounded.

Proof of Main Result

Lemma (2)

For every $k \in \mathbb{N}$, there is a triangle-free graph G_{k} and an acyclic orientation of its edges such that $\chi\left(G_{k}\right)=k$ and for every pair of vertices u and v, there is at most one directed path from u to v in G_{k}.

Proof of Main Result

Lemma (2)

For every $k \in \mathbb{N}$, there is a triangle-free graph G_{k} and an acyclic orientation of its edges such that $\chi\left(G_{k}\right)=k$ and for every pair of vertices u and v, there is at most one directed path from u to v in G_{k}.

We can use any standard construction of triangle-free graphs with arbitrarily high chromatic number, for example Mycielskian (1955), and orient the edges in a way that follows naturally from the construction.

Source: Wikipedia

Proof of Main Result

Fix a function $f: \mathbb{N} \rightarrow \mathbb{N}$. Define a new function $g: \mathbb{P} \rightarrow \mathbb{N}$, given by

$$
g\left(p_{i}\right)=\max _{p_{i} \leq n<p_{i+1}} f(n)
$$

Proof of Main Result

Fix a function $f: \mathbb{N} \rightarrow \mathbb{N}$. Define a new function $g: \mathbb{P} \rightarrow \mathbb{N}$, given by

$$
g\left(p_{i}\right)=\max _{p_{i} \leq n<p_{i+1}} f(n)
$$

- For every p we extend the graph $G_{g(p)}$ to a graph G_{p}^{\prime} with $\chi\left(G_{p}^{\prime}\right) \geq g(p)$ by adding edges as follows

Proof of Main Result

Fix a function $f: \mathbb{N} \rightarrow \mathbb{N}$. Define a new function $g: \mathbb{P} \rightarrow \mathbb{N}$, given by

$$
g\left(p_{i}\right)=\max _{p_{i} \leq n<p_{i+1}} f(n)
$$

- For every p we extend the graph $G_{g(p)}$ to a graph G_{p}^{\prime} with $\chi\left(G_{p}^{\prime}\right) \geq g(p)$ by adding edges as follows
- Let \leq be the directed reachability partial order of the vertices of $G_{g(p)}$, that is, $u \leq v$ iff there is a (unique) directed path from u to v in $G_{g(p)}$

Proof of Main Result

Fix a function $f: \mathbb{N} \rightarrow \mathbb{N}$. Define a new function $g: \mathbb{P} \rightarrow \mathbb{N}$, given by

$$
g\left(p_{i}\right)=\max _{p_{i} \leq n<p_{i+1}} f(n)
$$

- For every p we extend the graph $G_{g(p)}$ to a graph G_{p}^{\prime} with $\chi\left(G_{p}^{\prime}\right) \geq g(p)$ by adding edges as follows
- Let \leq be the directed reachability partial order of the vertices of $G_{g(p)}$, that is, $u \leq v$ iff there is a (unique) directed path from u to v in $G_{g(p)}$
- For every pair of vertices u and v in $G_{g(p)}$ such that $u \leq v$, let $d(u, v)$ be the length of the unique directed path from u and v in $G_{g(p)}$

Proof of Main Result

Proof of Main Result

- $V\left(G_{p}^{\prime}\right):=V\left(G_{g(p)}\right)$;

$$
E\left(G_{p}^{\prime}\right):=\left\{u \rightarrow v \mid u<v \text { and } d(u, v) \not \equiv_{p} 0\right\}
$$

Proof of Main Result

$$
\mathrm{p}=3
$$

- $V\left(G_{p}^{\prime}\right):=V\left(G_{g(p)}\right)$;
$E\left(G_{p}^{\prime}\right):=\{u \rightarrow v \mid u<v$ and $d(u, v) \not \equiv p 0\}$
- G_{p}^{\prime} contains $G_{g(p)}$ as a subgraph, as original edges $u v$ satisfy $u<v$ and $d(u, v)=1$

Proof of Main Result

$$
\mathrm{p}=3
$$

- $V\left(G_{p}^{\prime}\right):=V\left(G_{g(p)}\right)$;
$E\left(G_{p}^{\prime}\right):=\{u \rightarrow v \mid u<v$ and $d(u, v) \not \equiv p 0\}$
- G_{p}^{\prime} contains $G_{g(p)}$ as a subgraph, as original edges $u v$ satisfy $u<v$ and $d(u, v)=1$
- Therefore $\chi\left(G_{p}^{\prime}\right) \geq \chi\left(G_{g(p)}\right)=g(p)$

Proof of Main Result

Lemma (3)

For every prime p, the graph G_{p}^{\prime} has clique number at most p.

Proof of Main Result

Lemma (3)
For every prime p, the graph G_{p}^{\prime} has clique number at most p.

Proof.

- Suppose C is a clique in G_{p}^{\prime} of size $k>p$

Proof of Main Result

Lemma (3)
For every prime p, the graph G_{p}^{\prime} has clique number at most p.

Proof.

- Suppose C is a clique in G_{p}^{\prime} of size $k>p$

- Let v_{1}, \ldots, v_{k} be the vertices of C ordered so that

$$
v_{1}<\cdots<v_{k}
$$

Proof of Main Result

Lemma (3)

For every prime p, the graph G_{p}^{\prime} has clique number at most p.

Proof.

- Suppose C is a clique in G_{p}^{\prime} of size $k>p$3
- Let v_{1}, \ldots, v_{k} be the vertices of C ordered so that

$$
v_{1}<\cdots<v_{k}
$$

- By Pigeonhole principle, there are some $i<j$ such that $d\left(v_{1}, v_{i}\right) \equiv{ }_{p} d\left(v_{1}, v_{j}\right)$

Proof of Main Result

Lemma (3)
For every prime p, the graph G_{p}^{\prime} has clique number at most p.

Proof.

- There are $i<j$ such that $d\left(v_{1}, v_{i}\right) \equiv{ }_{p} d\left(v_{1}, v_{j}\right)$

Proof of Main Result

Lemma (3)

For every prime p, the graph G_{p}^{\prime} has clique number at most p.

Proof.

- There are $i<j$ such that $d\left(v_{1}, v_{i}\right) \equiv_{p} d\left(v_{1}, v_{j}\right)$

- Since the directed path $v_{1} \rightarrow \rightarrow v_{j}$ is unique, it must go through v_{i}, which implies $d\left(v_{1}, v_{j}\right)=d\left(v_{1}, v_{i}\right)+d\left(v_{i}, v_{j}\right)$

Proof of Main Result

Lemma (3)

For every prime p, the graph G_{p}^{\prime} has clique number at most p.

Proof.

- There are $i<j$ such that $d\left(v_{1}, v_{i}\right) \equiv{ }_{p} d\left(v_{1}, v_{j}\right)$

- Since the directed path $v_{1} \rightarrow \rightarrow v_{j}$ is unique, it must go through v_{i}, which implies $d\left(v_{1}, v_{j}\right)=d\left(v_{1}, v_{i}\right)+d\left(v_{i}, v_{j}\right)$
- We conclude that $d\left(v_{i}, v_{j}\right) \equiv{ }_{p} 0$, so $v_{i} v_{j}$ could not have been an edge of G_{p}^{\prime}

Proof of Main Result

$$
g\left(p_{i}\right)=\max _{p_{i} \leq n<p_{i+1}} f(n)
$$

Proof of Main Result

$$
g\left(p_{i}\right)=\max _{p_{i} \leq n<p_{i+1}} f(n)
$$

- To construct the class \mathcal{C} that witnesses Theorem, we take the graphs G_{p}^{\prime} for all primes p together with all their induced subgraphs

Proof of Main Result

$$
g\left(p_{i}\right)=\max _{p_{i} \leq n<p_{i+1}} f(n)
$$

- To construct the class \mathcal{C} that witnesses Theorem, we take the graphs G_{p}^{\prime} for all primes p together with all their induced subgraphs
- The second part of the statement of Theorem follows: for every number $n \geq 2$, where $p=p_{i} \leq n<p_{i+1}$, the graph $G_{p}^{\prime} \in \mathcal{C}$ satisfies $\chi\left(G_{p}^{\prime}\right) \geq g(p) \geq f(n)$ and $\omega\left(G_{p}^{\prime}\right) \leq p \leq n$

Proof of Main Result

$$
g\left(p_{i}\right)=\max _{p_{i} \leq n<p_{i+1}} f(n)
$$

- To construct the class \mathcal{C} that witnesses Theorem, we take the graphs G_{p}^{\prime} for all primes p together with all their induced subgraphs
- The second part of the statement of Theorem follows: for every number $n \geq 2$, where $p=p_{i} \leq n<p_{i+1}$, the graph $G_{p}^{\prime} \in \mathcal{C}$ satisfies $\chi\left(G_{p}^{\prime}\right) \geq g(p) \geq f(n)$ and $\omega\left(G_{p}^{\prime}\right) \leq p \leq n$
- It remains to prove that the class \mathcal{C} is χ-bounded

Proof of Main Result

Lemma (4)

Let p be a prime and G be an induced subgraph of G_{p}^{\prime} with $n=\omega(G)<p$. Then $\chi(G) \leq n^{n^{2}}$.

Proof of Main Result

Lemma (4)

Let p be a prime and G be an induced subgraph of G_{p}^{\prime} with $n=\omega(G)<p$. Then $\chi(G) \leq n^{n^{2}}$.

Note

This lemma indeed implies χ-boundedness. Consider the function $f^{\prime}: \mathbb{N} \rightarrow \mathbb{N}$ defined as

$$
f^{\prime}(n)=\max \left\{n^{n^{2}}, \max _{\mathbb{P} \ni q \leq n} \chi\left(G_{q}^{\prime}\right)\right\}
$$

Proof of Main Result

Lemma (4)

Let p be a prime and G be an induced subgraph of G_{p}^{\prime} with $n=\omega(G)<p$. Then $\chi(G) \leq n^{n^{2}}$.

Note

This lemma indeed implies χ-boundedness. Consider the function $f^{\prime}: \mathbb{N} \rightarrow \mathbb{N}$ defined as

$$
f^{\prime}(n)=\max \left\{n^{n^{2}}, \max _{\mathbb{P} \ni q \leq n} \chi\left(G_{q}^{\prime}\right)\right\}
$$

- $n=\omega(G)<p$, then $\chi(G) \leq n^{n^{2}} \leq f^{\prime}(n)$ from the lemma.

Proof of Main Result

Lemma (4)

Let p be a prime and G be an induced subgraph of G_{p}^{\prime} with $n=\omega(G)<p$. Then $\chi(G) \leq n^{n^{2}}$.

Note

This lemma indeed implies χ-boundedness. Consider the function $f^{\prime}: \mathbb{N} \rightarrow \mathbb{N}$ defined as

$$
f^{\prime}(n)=\max \left\{n^{n^{2}}, \max _{\mathbb{P} \ni q \leq n} \chi\left(G_{q}^{\prime}\right)\right\}
$$

- $n=\omega(G)<p$, then $\chi(G) \leq n^{n^{2}} \leq f^{\prime}(n)$ from the lemma.
- $n=\omega(G)=p$, then $\chi(G) \leq \chi\left(G_{p}^{\prime}\right) \leq f^{\prime}(n)$, since $p \leq n$.

Proof of Main Result

Lemma (6)

Let G be a graph with an acyclic orientation of edges containing no directed path of length k. Then G is k-colourable.

Proof of Main Result

Lemma (6)

Let G be a graph with an acyclic orientation of edges containing no directed path of length k. Then G is k-colourable.

Proof.

- For each vertex v of G, let the colour $c(v)$ be the maximum length of a directed path starting at v, which is an integer in $\{0, \ldots, k-1\}$

Proof of Main Result

Lemma (6)

Let G be a graph with an acyclic orientation of edges containing no directed path of length k. Then G is k-colourable.

Proof.

- For each vertex v of G, let the colour $c(v)$ be the maximum length of a directed path starting at v, which is an integer in $\{0, \ldots, k-1\}$
- We claim that c is a proper colouring. Suppose otherwise, that $c(u)=c(v)=c$ for some adjacent vertices u and v. Assume WLOG that $u \rightarrow v$

Proof of Main Result

Lemma (6)

Let G be a graph with an acyclic orientation of edges containing no directed path of length k. Then G is k-colourable.

Proof.

- For each vertex v of G, let the colour $c(v)$ be the maximum length of a directed path starting at v, which is an integer in $\{0, \ldots, k-1\}$
- We claim that c is a proper colouring. Suppose otherwise, that $c(u)=c(v)=c$ for some adjacent vertices u and v. Assume WLOG that $u \rightarrow v$
- Then u is a starting vertex of a directed path $u \rightarrow v \rightarrow \cdots \rightarrow p$ of length $c+1$, where p witnesses $c(v)$. Contradiction

Proof of Lemma 4

$$
\begin{aligned}
& \text { Lemma (4) } \\
& \text { Let } p \text { be a prime and } G \text { be an induced subgraph of } G_{p}^{\prime} \text { with } n=\omega(G)<p \text {. Then } \\
& \chi(G) \leq n^{n^{2}} \text {. }
\end{aligned}
$$

Proof.

Proof of Lemma 4

Lemma (4)

Let p be a prime and G be an induced subgraph of G_{p}^{\prime} with $n=\omega(G)<p$. Then $\chi(G) \leq n^{n^{2}}$.

Proof.

- Fix $1 \leq n \in \mathbb{N}$. Let $F_{n}=\left\{\left.\frac{s}{m} \right\rvert\, m \in[n]\right.$ and $\left.0 \leq s \leq m\right\}$. The set F_{n} ordered by $<$ is called the Farey sequence of order n.

Proof of Lemma 4

Lemma (4)

Let p be a prime and G be an induced subgraph of G_{p}^{\prime} with $n=\omega(G)<p$. Then $\chi(G) \leq n^{n^{2}}$.

Proof.

- Fix $1 \leq n \in \mathbb{N}$. Let $F_{n}=\left\{\left.\frac{s}{m} \right\rvert\, m \in[n]\right.$ and $\left.0 \leq s \leq m\right\}$. The set F_{n} ordered by $<$ is called the Farey sequence of order n.
- We let $\Phi(n)=\left|F_{n} \backslash\{0\}\right|$. It is clear from the definition that

$$
\Phi(n) \leq 1+2+\cdots+n \leq n^{2}
$$

Proof of Lemma 4

Lemma (5)

Let p be a prime number and let $n \in[p-1]$. Then there is a partition of the set $[p-1]$ into $\Phi(n)$ sets $A_{1}, \ldots, A_{\Phi(n)}$ such that for every $i \in[\Phi(n)]$ and every $m \in[n]$, no m (not necessarily distinct) numbers in A_{i} sum up to 0 modulo p.

Proof of Lemma 4

Lemma (5)

Let p be a prime number and let $n \in[p-1]$. Then there is a partition of the set $[p-1]$ into $\Phi(n)$ sets $A_{1}, \ldots, A_{\Phi(n)}$ such that for every $i \in[\Phi(n)]$ and every $m \in[n]$, no m (not necessarily distinct) numbers in A_{i} sum up to 0 modulo p.

Proof.

- Let $F_{n}=\left\{f_{0}, \ldots, f_{\Phi(n)}\right\}$ be the Farey sequence with $0=f_{0}<f_{1}<\cdots<f_{\Phi(n)}=1$

Proof of Lemma 4

Lemma (5)

Let p be a prime number and let $n \in[p-1]$. Then there is a partition of the set $[p-1]$ into $\Phi(n)$ sets $A_{1}, \ldots, A_{\Phi(n)}$ such that for every $i \in[\Phi(n)]$ and every $m \in[n]$, no m (not necessarily distinct) numbers in A_{i} sum up to 0 modulo p.

Proof.

- Let $F_{n}=\left\{f_{0}, \ldots, f_{\Phi(n)}\right\}$ be the Farey sequence with $0=f_{0}<f_{1}<\cdots<f_{\Phi(n)}=1$
- For each $i \in[\Phi(n)]$, let $A_{i}:=\mathbb{N} \cap\left(p f_{i-1}, p f_{i}\right)$

Proof of Lemma 4

Lemma (5)

Let p be a prime number and let $n \in[p-1]$. Then there is a partition of the set $[p-1]$ into $\Phi(n)$ sets $A_{1}, \ldots, A_{\Phi(n)}$ such that for every $i \in[\Phi(n)]$ and every $m \in[n]$, no m (not necessarily distinct) numbers in A_{i} sum up to 0 modulo p.

Proof.

- Let $F_{n}=\left\{f_{0}, \ldots, f_{\Phi(n)}\right\}$ be the Farey sequence with $0=f_{0}<f_{1}<\cdots<f_{\Phi(n)}=1$
- For each $i \in[\Phi(n)]$, let $A_{i}:=\mathbb{N} \cap\left(p f_{i-1}, p f_{i}\right)$
- Since p is a prime, for any $m \in[n]$ and $s \in[m-1]$ the number $p \frac{s}{m} \notin \mathbb{N}$

Proof of Lemma 4

Lemma (5)

Let p be a prime number and let $n \in[p-1]$. Then there is a partition of the set $[p-1]$ into $\Phi(n)$ sets $A_{1}, \ldots, A_{\Phi(n)}$ such that for every $i \in[\Phi(n)]$ and every $m \in[n]$, no m (not necessarily distinct) numbers in A_{i} sum up to 0 modulo p.

Proof.

- Let $F_{n}=\left\{f_{0}, \ldots, f_{\Phi(n)}\right\}$ be the Farey sequence with $0=f_{0}<f_{1}<\cdots<f_{\Phi(n)}=1$
- For each $i \in[\Phi(n)]$, let $A_{i}:=\mathbb{N} \cap\left(p f_{i-1}, p f_{i}\right)$
- Since p is a prime, for any $m \in[n]$ and $s \in[m-1]$ the number $p \frac{s}{m} \notin \mathbb{N}$
- Hence $\left\{p f_{0}, p f_{1}, \ldots, p f_{\Phi(n)}\right\} \cap[p-1]=\emptyset$, so $A_{1}, \ldots, A_{\Phi(n)}$ is a partition of $[p-1]$

Proof of Lemma 4

Lemma (5)

Let p be a prime number and let $n \in[p-1]$. Then there is a partition of the set $[p-1]$ into $\Phi(n)$ sets $A_{1}, \ldots, A_{\Phi(n)}$ such that for every $i \in[\Phi(n)]$ and every $m \in[n]$, no m (not necessarily distinct) numbers in A_{i} sum up to 0 modulo p.

Proof.

Fix $i \in[\Phi(n)]$ and $m \in[n]$. It remains to show that no m numbers in A_{i} sum up to 0 .

Proof of Lemma 4

Lemma (5)

Let p be a prime number and let $n \in[p-1]$. Then there is a partition of the set $[p-1]$ into $\Phi(n)$ sets $A_{1}, \ldots, A_{\Phi(n)}$ such that for every $i \in[\Phi(n)]$ and every $m \in[n]$, no m (not necessarily distinct) numbers in A_{i} sum up to 0 modulo p.

Proof.

Fix $i \in[\Phi(n)]$ and $m \in[n]$. It remains to show that no m numbers in A_{i} sum up to 0 .

- $\exists s \in[m]$ such that $\left(f_{i-1}, f_{i}\right) \subseteq\left(\frac{s-1}{m}, \frac{s}{m}\right)$ since $\frac{s-1}{m}$ and $\frac{s}{m}$ are both members of F_{n}

Proof of Lemma 4

Lemma (5)

Let p be a prime number and let $n \in[p-1]$. Then there is a partition of the set $[p-1]$ into $\Phi(n)$ sets $A_{1}, \ldots, A_{\Phi(n)}$ such that for every $i \in[\Phi(n)]$ and every $m \in[n]$, no m (not necessarily distinct) numbers in A_{i} sum up to 0 modulo p.

Proof.

Fix $i \in[\Phi(n)]$ and $m \in[n]$. It remains to show that no m numbers in A_{i} sum up to 0 .

- $\exists s \in[m]$ such that $\left(f_{i-1}, f_{i}\right) \subseteq\left(\frac{s-1}{m}, \frac{s}{m}\right)$ since $\frac{s-1}{m}$ and $\frac{s}{m}$ are both members of F_{n}
- It follows that $A_{i} \subseteq\left(p \frac{s-1}{m}, p \frac{s}{m}\right)$

Proof of Lemma 4

Lemma (5)

Let p be a prime number and let $n \in[p-1]$. Then there is a partition of the set $[p-1]$ into $\Phi(n)$ sets $A_{1}, \ldots, A_{\Phi(n)}$ such that for every $i \in[\Phi(n)]$ and every $m \in[n]$, no m (not necessarily distinct) numbers in A_{i} sum up to 0 modulo p.

Proof.

Fix $i \in[\Phi(n)]$ and $m \in[n]$. It remains to show that no m numbers in A_{i} sum up to 0 .

- $\exists s \in[m]$ such that $\left(f_{i-1}, f_{i}\right) \subseteq\left(\frac{s-1}{m}, \frac{s}{m}\right)$ since $\frac{s-1}{m}$ and $\frac{s}{m}$ are both members of F_{n}
- It follows that $A_{i} \subseteq\left(p \frac{s-1}{m}, p \frac{s}{m}\right)$
- Consequently, the sum of any m numbers in A_{i} lies in $(p(s-1), p s)$, so it never equals 0 modulo p, as required

Proof of Lemma 4

Lemma (4)

Let p be a prime and G be an induced subgraph of G_{p}^{\prime} with $n=\omega(G)<p$. Then $\chi(G) \leq n^{n^{2}}$.

Proof of Lemma 4

Lemma (4)

Let p be a prime and G be an induced subgraph of G_{p}^{\prime} with $n=\omega(G)<p$. Then $\chi(G) \leq n^{n^{2}}$.

- Let $A_{1}, \ldots, A_{\Phi(n)}$ be the partition of $[p-1]$ given by Lemma 5

Proof of Lemma 4

Lemma (4)

Let p be a prime and G be an induced subgraph of G_{p}^{\prime} with $n=\omega(G)<p$. Then $\chi(G) \leq n^{n^{2}}$.

- Let $A_{1}, \ldots, A_{\Phi(n)}$ be the partition of $[p-1]$ given by Lemma 5
- For each $i \in[\Phi(n)]$, let $E_{i}:=\left\{u v \in E\left(G_{p}^{\prime}\right) \mid u<v\right.$ and $\left.d(u, v) \in_{p} A_{i}\right\}$

Proof of Lemma 4

Lemma (4)

Let p be a prime and G be an induced subgraph of G_{p}^{\prime} with $n=\omega(G)<p$. Then $\chi(G) \leq n^{n^{2}}$.

- Let $A_{1}, \ldots, A_{\Phi(n)}$ be the partition of $[p-1]$ given by Lemma 5
- For each $i \in[\Phi(n)]$, let $E_{i}:=\left\{u v \in E\left(G_{p}^{\prime}\right) \mid u<v\right.$ and $\left.d(u, v) \in_{p} A_{i}\right\}$
- It follows that $E_{1}, \ldots, E_{\Phi(n)}$ is a partition of the edge set of G_{p}^{\prime}

Proof of Lemma 4

Lemma (4)

Let p be a prime and G be an induced subgraph of G_{p}^{\prime} with $n=\omega(G)<p$. Then $\chi(G) \leq n^{n^{2}}$.

- Let $A_{1}, \ldots, A_{\Phi(n)}$ be the partition of $[p-1]$ given by Lemma 5
- For each $i \in[\Phi(n)]$, let $E_{i}:=\left\{u v \in E\left(G_{p}^{\prime}\right) \mid u<v\right.$ and $\left.d(u, v) \in_{p} A_{i}\right\}$
- It follows that $E_{1}, \ldots, E_{\Phi(n)}$ is a partition of the edge set of G_{p}^{\prime}
- For each $i \in[\Phi(n)]$, let G_{i}^{*} be the subgraph of G obtained by restricting the edge set to E_{i}, keeping the orientations of these edges

Proof of Lemma 4

Claim: The graph G_{i}^{*} contains no directed path of length n.

Proof of Lemma 4

Claim: The graph G_{i}^{*} contains no directed path of length n.

- Suppose for the sake of contradiction that G_{i}^{*} contains a directed path $v_{0} v_{1} \ldots v_{n}$

Proof of Lemma 4

Claim: The graph G_{i}^{*} contains no directed path of length n.

- Suppose for the sake of contradiction that G_{i}^{*} contains a directed path $v_{0} v_{1} \ldots v_{n}$
- Thus $d\left(v_{i-1}, v_{i}\right) \in_{p} A_{i}$ for $1 \leq i \leq n$

Proof of Lemma 4

Claim: The graph G_{i}^{*} contains no directed path of length n.

- Suppose for the sake of contradiction that G_{i}^{*} contains a directed path $v_{0} v_{1} \ldots v_{n}$
- Thus $d\left(v_{i-1}, v_{i}\right) \in_{p} A_{i}$ for $1 \leq i \leq n$
- For any $0 \leq i<j \leq n$, we have $d\left(v_{i}, v_{j}\right)=d\left(v_{i}, v_{i+1}\right)+\cdots+d\left(v_{j-1}, v_{j}\right)$

Proof of Lemma 4

Claim: The graph G_{i}^{*} contains no directed path of length n.

- Suppose for the sake of contradiction that G_{i}^{*} contains a directed path $v_{0} v_{1} \ldots v_{n}$
- Thus $d\left(v_{i-1}, v_{i}\right) \in_{p} A_{i}$ for $1 \leq i \leq n$
- For any $0 \leq i<j \leq n$, we have $d\left(v_{i}, v_{j}\right)=d\left(v_{i}, v_{i+1}\right)+\cdots+d\left(v_{j-1}, v_{j}\right)$
- Lemma 5 implies $d\left(v_{i}, v_{j}\right) \not \equiv{ }_{p} 0$ (sum of m numbers in A_{i}), so $v_{i} v_{j}$ is an edge of G_{p}^{\prime}, and thus of G

Proof of Lemma 4

Claim: The graph G_{i}^{*} contains no directed path of length n.

- Suppose for the sake of contradiction that G_{i}^{*} contains a directed path $v_{0} v_{1} \ldots v_{n}$
- Thus $d\left(v_{i-1}, v_{i}\right) \in_{p} A_{i}$ for $1 \leq i \leq n$
- For any $0 \leq i<j \leq n$, we have $d\left(v_{i}, v_{j}\right)=d\left(v_{i}, v_{i+1}\right)+\cdots+d\left(v_{j-1}, v_{j}\right)$
- Lemma 5 implies $d\left(v_{i}, v_{j}\right) \not \equiv p_{p} 0$ (sum of m numbers in A_{i}), so $v_{i} v_{j}$ is an edge of G_{p}^{\prime}, and thus of G
- We conclude that $\left\{v_{0}, v_{1}, \ldots, v_{n}\right\}$ is a clique in G, which contradicts $\omega(G)=n$

Proof of Lemma 4

- The previous Claim and Lemma (6) imply that each G_{i}^{*} is n-colourable via some c_{i}

Proof of Lemma 4

- The previous Claim and Lemma (6) imply that each G_{i}^{*} is n-colourable via some c_{i}
- Then the product colouring $c(v):=\left(c_{1}(v), \ldots, c_{\Phi(n)}(v)\right)$ is $n^{\Phi(n)}$-colouring of G

Proof of Lemma 4

- The previous Claim and Lemma (6) imply that each G_{i}^{*} is n-colourable via some c_{i}
- Then the product colouring $c(v):=\left(c_{1}(v), \ldots, c_{\Phi(n)}(v)\right)$ is $n^{\Phi(n)}$-colouring of G
- Since $\Phi(n) \leq n^{2}$, we conclude that $\chi(G) \leq n^{n^{2}}$

References

嘓 Marcin Briański, James Davies and Bartosz Walczak (2022)
Separating polynomial χ-boundedness from χ-boundedness
arXiv
Tive Alvaro Carbonero, Patrick Hompe, Benjamin Moore and Sophie Spirkl (2022)
A counterexample to a conjecture about triangle-free induced subgraphs of graphs with large chromatic number
arXiv
Louis Esperet (2017)
Graph colorings, flows and perfect matchings
Habilitation thesis, Universit 'e Grenoble Alpes

Hal A. Kierstead and William T. Trotter (1992)
Colorful induced subgraphs
Discrete Mathematics 101, 165-169

Jan Mycielski (1955)
Sur le coloriage des graphes
Colloq. Math, 3 (2): 161-162

The End

