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Notation

• [n] = {1, . . . , n}
• P = {p1, p2, . . . } is the set of all primes

• χ(G ) denotes the chromatic number of graph G

• ω(G ) denotes the clique number of graph G
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χ-boundedness

Definition

A class of graphs C is χ-bounded if there is a function f : N → N such that
χ(G ) ≤ f (ω(G )) for every graph G ∈ C. A χ-bounded class C is polynomially χ-bounded
if such a function f can be chosen to be a polynomial. A class C is hereditary if it is
closed under taking induced subgraphs.

A well-known and fundamental open problem, due to [Esperet, 2017], has been to decide
whether every hereditary χ-bounded class of graphs is polynomially χ-bounded.
We provide a negative answer to this question. More generally, we prove that
χ-boundedness may require arbitrarily fast growing functions.
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Main result

Theorem

For every function f : N → N, there exists a hereditary χ-bounded graph class C which,
for every n ≥ 2, contains a graph G ∈ C such that ω(G ) ≤ n and χ(G ) ≥ f (n).

The proof is heavily based on the idea used by [Carbonero, Hompe, Moore, Spirkl, 2022]
in their recent solution to another well-known problem. They proved that for every k ∈ N,
there is a K4-free graph G with χ(G ) ≥ k such that every triangle-free induced subgraph
of G has chromatic number at most 4. Their proof, in turn, relies on an idea by
[Kierstead, Trotter, 1992], who proved that the class of oriented graphs excluding an
oriented path of length 3 as an induced subgraph is not χ-bounded.
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Proof of Main Result

Lemma (2)

For every k ∈ N, there is a triangle-free graph Gk and an acyclic orientation of its edges
such that χ(Gk) = k and for every pair of vertices u and v, there is at most one directed
path from u to v in Gk .

We can use any standard construction of triangle-free graphs with arbitrarily high
chromatic number, for example Mycielskian (1955), and orient the edges in a way that
follows naturally from the construction.

Source: Wikipedia
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Proof of Main Result

Fix a function f : N → N. Define a new function g : P → N, given by

g(pi ) = max
pi≤n<pi+1

f (n)

• For every p we extend the graph Gg(p) to a graph G ′
p with χ(G ′

p) ≥ g(p) by adding
edges as follows

• Let ≤ be the directed reachability partial order of the vertices of Gg(p), that is,
u ≤ v iff there is a (unique) directed path from u to v in Gg(p)

• For every pair of vertices u and v in Gg(p) such that u ≤ v , let d(u, v) be the length
of the unique directed path from u and v in Gg(p)
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Proof of Main Result

1
2 3 4 5

p=3

• V (G ′
p) := V (Gg(p));

E (G ′
p) := {u → v | u < v and d(u, v) ̸≡p 0}

• G ′
p contains Gg(p) as a subgraph, as original

edges uv satisfy u < v and d(u, v) = 1

• Therefore χ(G ′
p) ≥ χ(Gg(p)) = g(p)
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Proof of Main Result

Lemma (3)

For every prime p, the graph G ′
p has clique number at most p.

Proof.

1

2 3

4

• Suppose C is a clique in G ′
p of size k > p

• Let v1, . . . , vk be the vertices of C ordered so that

v1 < · · · < vk

• By Pigeonhole principle, there are some i < j such that

d(v1, vi ) ≡p d(v1, vj)
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Proof of Main Result

Lemma (3)

For every prime p, the graph G ′
p has clique number at most p.

Proof.

1

2 3

4

• There are i < j such that d(v1, vi ) ≡p d(v1, vj)

• Since the directed path v1 →→ vj is unique, it must go

through vi , which implies d(v1, vj) = d(v1, vi ) + d(vi , vj)

• We conclude that d(vi , vj) ≡p 0, so vivj could not have been

an edge of G ′
p
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Proof of Main Result

g(pi ) = max
pi≤n<pi+1

f (n)

• To construct the class C that witnesses Theorem, we take the graphs G ′
p for all

primes p together with all their induced subgraphs

• The second part of the statement of Theorem follows: for every number n ≥ 2,
where p = pi ≤ n < pi+1, the graph G ′

p ∈ C satisfies χ(G ′
p) ≥ g(p) ≥ f (n) and

ω(G ′
p) ≤ p ≤ n

• It remains to prove that the class C is χ-bounded
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Proof of Main Result

Lemma (4)

Let p be a prime and G be an induced subgraph of G ′
p with n = ω(G ) < p. Then

χ(G ) ≤ nn
2
.

Note

This lemma indeed implies χ-boundedness. Consider the function f ′ : N → N defined as

f ′(n) = max{nn2 , max
P∋q≤n

χ(G ′
q)}

• n = ω(G ) < p, then χ(G ) ≤ nn
2 ≤ f ′(n) from the lemma.

• n = ω(G ) = p, then χ(G ) ≤ χ(G ′
p) ≤ f ′(n), since p ≤ n.
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Proof of Main Result

Lemma (6)

Let G be a graph with an acyclic orientation of edges containing no directed path of
length k. Then G is k-colourable.

Proof.

• For each vertex v of G , let the colour c(v) be the maximum length of a directed
path starting at v , which is an integer in {0, . . . , k − 1}

• We claim that c is a proper colouring. Suppose otherwise, that c(u) = c(v) = c for
some adjacent vertices u and v . Assume WLOG that u → v

• Then u is a starting vertex of a directed path u → v → · · · → p of length c + 1,
where p witnesses c(v). Contradiction

u

v p
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Proof of Lemma 4

Lemma (4)

Let p be a prime and G be an induced subgraph of G ′
p with n = ω(G ) < p. Then

χ(G ) ≤ nn
2
.

Proof.

• Fix 1 ≤ n ∈ N. Let Fn = { s
m | m ∈ [n] and 0 ≤ s ≤ m}. The set Fn ordered by < is

called the Farey sequence of order n.

• We let Φ(n) = |Fn \ {0}|. It is clear from the definition that

Φ(n) ≤ 1 + 2 + · · ·+ n ≤ n2
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Proof of Lemma 4

Lemma (5)

Let p be a prime number and let n ∈ [p − 1]. Then there is a partition of the set [p − 1]
into Φ(n) sets A1, . . . ,AΦ(n) such that for every i ∈ [Φ(n)] and every m ∈ [n], no m (not
necessarily distinct) numbers in Ai sum up to 0 modulo p.

Proof.

• Let Fn = {f0, . . . , fΦ(n)} be the Farey sequence with 0 = f0 < f1 < · · · < fΦ(n) = 1

• For each i ∈ [Φ(n)], let Ai := N ∩ (pfi−1, pfi )

• Since p is a prime, for any m ∈ [n] and s ∈ [m − 1] the number p s
m /∈ N

• Hence {pf0, pf1, . . . , pfΦ(n)} ∩ [p − 1] = ∅, so A1, . . . ,AΦ(n) is a partition of [p − 1]

0

pf0 pf1 pf2 pfΦ(n)
...

p
A1 A2
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• ∃s ∈ [m] such that (fi−1, fi ) ⊆ ( s−1
m , s

m ) since s−1
m and s

m are both members of Fn
• It follows that Ai ⊆ (p s−1

m , p s
m )

• Consequently, the sum of any m numbers in Ai lies in (p(s − 1), ps), so it never
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Proof of Lemma 4

Lemma (4)

Let p be a prime and G be an induced subgraph of G ′
p with n = ω(G ) < p. Then

χ(G ) ≤ nn
2
.

• Let A1, . . . ,AΦ(n) be the partition of [p − 1] given by Lemma 5

• For each i ∈ [Φ(n)], let Ei := {uv ∈ E (G ′
p) | u < v and d(u, v) ∈p Ai}

• It follows that E1, . . . ,EΦ(n) is a partition of the edge set of G ′
p

• For each i ∈ [Φ(n)], let G ∗
i be the subgraph of G obtained by restricting the edge set

to Ei , keeping the orientations of these edges
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Proof of Lemma 4

Claim: The graph G ∗
i contains no directed path of length n.

• Suppose for the sake of contradiction that G ∗
i contains a directed path v0v1 . . . vn

• Thus d(vi−1, vi ) ∈p Ai for 1 ≤ i ≤ n

• For any 0 ≤ i < j ≤ n, we have d(vi , vj) = d(vi , vi+1) + · · ·+ d(vj−1, vj)

• Lemma 5 implies d(vi , vj) ̸≡p 0 (sum of m numbers in Ai ), so vivj is an edge of G ′
p,

and thus of G

• We conclude that {v0, v1, . . . , vn} is a clique in G , which contradicts ω(G ) = n

v0 v1 v2 v3 v4

d3d2d1 d4

54 / 64



Proof of Lemma 4

Claim: The graph G ∗
i contains no directed path of length n.

• Suppose for the sake of contradiction that G ∗
i contains a directed path v0v1 . . . vn

• Thus d(vi−1, vi ) ∈p Ai for 1 ≤ i ≤ n

• For any 0 ≤ i < j ≤ n, we have d(vi , vj) = d(vi , vi+1) + · · ·+ d(vj−1, vj)

• Lemma 5 implies d(vi , vj) ̸≡p 0 (sum of m numbers in Ai ), so vivj is an edge of G ′
p,

and thus of G

• We conclude that {v0, v1, . . . , vn} is a clique in G , which contradicts ω(G ) = n

v0 v1 v2 v3 v4

d3d2d1 d4

55 / 64



Proof of Lemma 4

Claim: The graph G ∗
i contains no directed path of length n.

• Suppose for the sake of contradiction that G ∗
i contains a directed path v0v1 . . . vn

• Thus d(vi−1, vi ) ∈p Ai for 1 ≤ i ≤ n

• For any 0 ≤ i < j ≤ n, we have d(vi , vj) = d(vi , vi+1) + · · ·+ d(vj−1, vj)

• Lemma 5 implies d(vi , vj) ̸≡p 0 (sum of m numbers in Ai ), so vivj is an edge of G ′
p,

and thus of G

• We conclude that {v0, v1, . . . , vn} is a clique in G , which contradicts ω(G ) = n

v0 v1 v2 v3 v4

d3d2d1 d4

56 / 64



Proof of Lemma 4

Claim: The graph G ∗
i contains no directed path of length n.

• Suppose for the sake of contradiction that G ∗
i contains a directed path v0v1 . . . vn

• Thus d(vi−1, vi ) ∈p Ai for 1 ≤ i ≤ n

• For any 0 ≤ i < j ≤ n, we have d(vi , vj) = d(vi , vi+1) + · · ·+ d(vj−1, vj)

• Lemma 5 implies d(vi , vj) ̸≡p 0 (sum of m numbers in Ai ), so vivj is an edge of G ′
p,

and thus of G

• We conclude that {v0, v1, . . . , vn} is a clique in G , which contradicts ω(G ) = n

v0 v1 v2 v3 v4

d3d2d1 d4

57 / 64



Proof of Lemma 4

Claim: The graph G ∗
i contains no directed path of length n.

• Suppose for the sake of contradiction that G ∗
i contains a directed path v0v1 . . . vn

• Thus d(vi−1, vi ) ∈p Ai for 1 ≤ i ≤ n

• For any 0 ≤ i < j ≤ n, we have d(vi , vj) = d(vi , vi+1) + · · ·+ d(vj−1, vj)

• Lemma 5 implies d(vi , vj) ̸≡p 0 (sum of m numbers in Ai ), so vivj is an edge of G ′
p,

and thus of G

• We conclude that {v0, v1, . . . , vn} is a clique in G , which contradicts ω(G ) = n

v0 v1 v2 v3 v4

d3d2d1 d4

58 / 64



Proof of Lemma 4

Claim: The graph G ∗
i contains no directed path of length n.

• Suppose for the sake of contradiction that G ∗
i contains a directed path v0v1 . . . vn

• Thus d(vi−1, vi ) ∈p Ai for 1 ≤ i ≤ n

• For any 0 ≤ i < j ≤ n, we have d(vi , vj) = d(vi , vi+1) + · · ·+ d(vj−1, vj)

• Lemma 5 implies d(vi , vj) ̸≡p 0 (sum of m numbers in Ai ), so vivj is an edge of G ′
p,

and thus of G

• We conclude that {v0, v1, . . . , vn} is a clique in G , which contradicts ω(G ) = n

v0 v1 v2 v3 v4

d3d2d1 d4

59 / 64



Proof of Lemma 4

• The previous Claim and Lemma (6) imply that each G ∗
i is n-colourable via some ci

• Then the product colouring c(v) := (c1(v), . . . , cΦ(n)(v)) is n
Φ(n)-colouring of G

• Since Φ(n) ≤ n2, we conclude that χ(G ) ≤ nn
2
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