Separating polynomial y-boundedness
from y-boundedness

Demian Banakh

Department of Theoretical Computer Science
Jagiellonian University

June 2, 2022

1/64



Notation

o [ ={L....n)
o P={p1,pp,...} is the set of all primes

X(G) denotes the chromatic number of graph G

w(G) denotes the clique number of graph G
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Y-boundedness

Definition

A class of graphs C is y-bounded if there is a function f : N — N such that

X(G) < f(w(G)) for every graph G € C. A x-bounded class C is polynomially x-bounded
if such a function f can be chosen to be a polynomial. A class C is hereditary if it is
closed under taking induced subgraphs.
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Y-boundedness

Definition

A class of graphs C is y-bounded if there is a function f : N — N such that

X(G) < f(w(G)) for every graph G € C. A x-bounded class C is polynomially x-bounded
if such a function f can be chosen to be a polynomial. A class C is hereditary if it is
closed under taking induced subgraphs.

A well-known and fundamental open problem, due to [Esperet, 2017], has been to decide
whether every hereditary y-bounded class of graphs is polynomially y-bounded.
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Y-boundedness

Definition

A class of graphs C is y-bounded if there is a function f : N — N such that

X(G) < f(w(G)) for every graph G € C. A x-bounded class C is polynomially x-bounded
if such a function f can be chosen to be a polynomial. A class C is hereditary if it is
closed under taking induced subgraphs.

A well-known and fundamental open problem, due to [Esperet, 2017], has been to decide
whether every hereditary y-bounded class of graphs is polynomially y-bounded.

We provide a negative answer to this question. More generally, we prove that
x-boundedness may require arbitrarily fast growing functions.
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Main result

Theorem
For every function f : N — N, there exists a hereditary x-bounded graph class C which,
for every n > 2, contains a graph G € C such that w(G) < n and x(G) > f(n).
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Main result

Theorem
For every function f : N — N, there exists a hereditary x-bounded graph class C which,
for every n > 2, contains a graph G € C such that w(G) < n and x(G) > f(n).

The proof is heavily based on the idea used by [Carbonero, Hompe, Moore, Spirkl, 2022]
in their recent solution to another well-known problem. They proved that for every k € N,
there is a Ky-free graph G with x(G) > k such that every triangle-free induced subgraph
of G has chromatic number at most 4. Their proof, in turn, relies on an idea by
[Kierstead, Trotter, 1992], who proved that the class of oriented graphs excluding an
oriented path of length 3 as an induced subgraph is not y-bounded.
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Proof of Main Result

Lemma (2)

For every k € N, there is a triangle-free graph Gy and an acyclic orientation of its edges
such that x(Gk) = k and for every pair of vertices u and v, there is at most one directed

path from u to v in Gy.
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Proof of Main Result

Lemma (2)

For every k € N, there is a triangle-free graph Gy and an acyclic orientation of its edges
such that x(Gk) = k and for every pair of vertices u and v, there is at most one directed

path from u to v in Gy.

We can use any standard construction of triangle-free graphs with arbitrarily high
chromatic number, for example Mycielskian (1955), and orient the edges in a way that
follows naturally from the construction.

Source: Wikipedia
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Proof of Main Result

Fix a function f : N — N. Define a new function g : P — N, given by

) — f
glpi) = max f(n)
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Proof of Main Result

Fix a function f : N — N. Define a new function g : P — N, given by

) — f
gle) =, o2, 1)

® For every p we extend the graph G, to a graph G, with x(G,) > g(p) by adding
edges as follows
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Proof of Main Result

Fix a function f : N — N. Define a new function g : P — N, given by

) — f
gle) =, o2, 1)

® For every p we extend the graph G, to a graph G, with x(G,) > g(p) by adding
edges as follows

® Let < be the directed reachability partial order of the vertices of G,
u < v iff there is a (unique) directed path from u to v in Gg(p)

(p) that is,
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Proof of Main Result

Fix a function f : N — N. Define a new function g : P — N, given by

) — f
gle) =, o2, 1)

® For every p we extend the graph G, to a graph G, with x(G,) > g(p) by adding
edges as follows

® Let < be the directed reachability partial order of the vertices of Gg(,), that is,
u < v iff there is a (unique) directed path from u to v in Gg(p)

® For every pair of vertices u and v in Gg(,) such that u < v, let d(u, v) be the length
of the unique directed path from v and v in Gg(p)
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Proof of Main Result
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Proof of Main Result

p=3 L4 V(G;)) = V(Gg(p));
E(G,) :=={u— v|u<vandd(uv)#,0}
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Proof of Main Result

L4 V(GI/?) = V(Gg(p));
E(G,) :=={u— v|u<vandd(uv)#,0}

° G;, contains Gg(,) as a subgraph, as original

edges uv satisfy u < v and d(u,v) =1
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Proof of Main Result

L4 V(GI/?) = V(Gg(p));
E(G,) :=={u— v|u<vandd(uv)#,0}

° G;, contains Gg(,) as a subgraph, as original

edges uv satisfy u < v and d(u,v) =1

® Therefore x(G,) > x(Gg(p)) = &(P)
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Proof of Main Result

Lemma (3)

For every prime p, the graph G;l» has clique number at most p.
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Proof of Main Result

Lemma (3)

For every prime p, the graph G;,: has clique number at most p.

® Suppose C is a clique in GI’, of size k > p

2 3
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Proof of Main Result

Lemma (3)

For every prime p, the graph G,’, has clique number at most p.

® Suppose C is a clique in GI’, of size k > p

2 3

® |et vy,...,Vx be the vertices of C ordered so that

v < - < Vg
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Proof of Main Result

Lemma (3)

For every prime p, the graph G,’, has clique number at most p.

® Suppose C is a clique in GI’, of size k > p

2 3
® |et vy,...,Vx be the vertices of C ordered so that
v < - < Vg
® By Pigeonhole principle, there are some i < j such that
1 n d(v1,vi) =p d(v1,vj)
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Proof of Main Result

Lemma (3)

For every prime p, the graph G;,: has clique number at most p.

® There are i < j such that d(vq,v;) =, d(vi1, v))

2 3
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Proof of Main Result

Lemma (3)

For every prime p, the graph G,’, has clique number at most p.

® There are i < j such that d(vq,v;) =, d(vi1, v))

2 3

e Since the directed path vi —— v; is unique, it must go

through v;, which implies d(v1, vj) = d(v1,v;) + d(vi, v})
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Proof of Main Result

Lemma (3)

For every prime p, the graph G,’, has clique number at most p.

Proof.
® There are i < j such that d(vq,v;) =, d(vi1, v))
2
e Since the directed path vi —— v; is unique, it must go
through v;, which implies d(v1, vj) = d(v1,v;) + d(vi, v})

® We conclude that d(vj,v;) =, 0, so v;v; could not have been

an edge of G,
[
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Proof of Main Result

) — f
glpi) = max ()
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Proof of Main Result

) — f
elp) =, 02, )

® To construct the class C that witnesses Theorem, we take the graphs G,’, for all
primes p together with all their induced subgraphs
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Proof of Main Result

) — f
s(p) =, iz, 1)

® To construct the class C that witnesses Theorem, we take the graphs G,’, for all
primes p together with all their induced subgraphs

® The second part of the statement of Theorem follows: for every number n > 2,
where p = p; < n < p;y1, the graph GI’, € C satisfies X(G",) > g(p) > f(n) and
w(Gy)<p<n
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Proof of Main Result

) — f
s(p) =, iz, 1)

® To construct the class C that witnesses Theorem, we take the graphs G,’, for all
primes p together with all their induced subgraphs

® The second part of the statement of Theorem follows: for every number n > 2,

where p = p; < n < p;y1, the graph GI’, € C satisfies X(G",) > g(p) > f(n) and
w(Gp)<p<n

® |t remains to prove that the class C is y-bounded

28 /64



Proof of Main Result

Lemma (4)
Let p be a prime and G be an induced subgraph of G, with n = w(G) < p. Then
x(G) < ™.
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Proof of Main Result

Lemma (4)
Let p be a prime and G be an induced subgraph of G, with n = w(G) < p. Then
x(G) < ™.

Note
This lemma indeed implies y-boundedness. Consider the function ' : N — N defined as

/ _ n? /
f'(n) = max{n ’F'Q,?;(,,X(Gq)}
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Proof of Main Result

Lemma (4)
Let p be a prime and G be an induced subgraph of G, with n = w(G) < p. Then
x(G) < ™.

Note

This lemma indeed implies y-boundedness. Consider the function ' : N — N defined as
/ _ n? /
f'(n) = max{n ’P'Q,?g‘,,X(Gq)}

° n=w(G) < p, then x(G) < n™ < f'(n) from the lemma.
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Proof of Main Result

Lemma (4)
Let p be a prime and G be an induced subgraph of G, with n = w(G) < p. Then
x(G) < n"

Note
This lemma indeed implies y-boundedness. Consider the function ' : N — N defined as

/ _ n? /
f'(n) = max{n ’p';“,?g‘,,X(Gq)}

* n=w(G) < p, then x(G)

< f’(n) from the lemma.
* n=w(G) = p, then x(G) !

gn
< x(Gp) < f'(n), since p < n.
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Proof of Main Result

Lemma (6)

Let G be a graph with an acyclic orientation of edges containing no directed path of
length k. Then G is k-colourable.
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Proof of Main Result

Lemma (6)

Let G be a graph with an acyclic orientation of edges containing no directed path of
length k. Then G is k-colourable.

Proof.
® For each vertex v of G, let the colour ¢(v) be the maximum length of a directed
path starting at v, which is an integer in {0,..., k — 1}
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Proof of Main Result

Lemma (6)
Let G be a graph with an acyclic orientation of edges containing no directed path of
length k. Then G is k-colourable.

Proof.
® For each vertex v of G, let the colour ¢(v) be the maximum length of a directed
path starting at v, which is an integer in {0,..., k — 1}

e We claim that c is a proper colouring. Suppose otherwise, that c(u) = ¢(v) = ¢ for
some adjacent vertices u and v. Assume WLOG that v — v

u
y St
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Proof of Main Result

Lemma (6)
Let G be a graph with an acyclic orientation of edges containing no directed path of
length k. Then G is k-colourable.

Proof.
® For each vertex v of G, let the colour ¢(v) be the maximum length of a directed
path starting at v, which is an integer in {0,..., k — 1}
e We claim that c is a proper colouring. Suppose otherwise, that c(u) = ¢(v) = ¢ for
some adjacent vertices u and v. Assume WLOG that v — v

® Then v is a starting vertex of a directed path u — v — --- — p of length ¢ + 1,
where p witnesses c(v). Contradiction

U/\_,r/
\/L/\Jp
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Proof of Lemma 4

Lemma (4)
Let p be a prime and G be an induced subgraph of G|, with n = w(G) < p. Then
X(G) < n".
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Proof of Lemma 4

Lemma (4)
Let p be a prime and G be an induced subgraph of G|, with n = w(G) < p. Then
X(G) < n".

Proof.
® Fix1<neN. Let F,={=|me&[n]and 0 <s < m}. Theset F, ordered by < is
called the Farey sequence of order n.
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Proof of Lemma 4

Lemma (4)
Let p be a prime and G be an induced subgraph of G|, with n = w(G) < p. Then
X(G) < n".

Proof.
® Fix1<neN. Let F,={=|me&[n]and 0 <s < m}. Theset F, ordered by < is
called the Farey sequence of order n.
e We let ®(n) = |F, \ {0}|. It is clear from the definition that

d(n)<1+24---+n<n?
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Proof of Lemma 4

Lemma (5)

Let p be a prime number and let n € [p — 1]|. Then there is a partition of the set [p — 1]
into ®(n) sets Ay, ..., Ap(n) Such that for every i € [®(n)] and every m € [n], no m (not
necessarily distinct) numbers in A; sum up to 0 modulo p.
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Proof of Lemma 4

Lemma (5)

Let p be a prime number and let n € [p — 1]|. Then there is a partition of the set [p — 1]
into ®(n) sets Ay, ..., Ap(n) Such that for every i € [®(n)] and every m € [n], no m (not
necessarily distinct) numbers in A; sum up to 0 modulo p.

® Let F = {fo,...,fo(n)} be the Farey sequence with 0 =fo < f <--- < fo(,) =1
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Proof of Lemma 4

Lemma (5)

Let p be a prime number and let n € [p — 1]|. Then there is a partition of the set [p — 1]
into ®(n) sets Ay, ..., Ap(n) Such that for every i € [®(n)] and every m € [n], no m (not
necessarily distinct) numbers in A; sum up to 0 modulo p.

® Let F = {fo,...,fo(n)} be the Farey sequence with 0 =fo < f <--- < fo(,) =1
® For each i € [®(n)], let Aj := NN (pfi_1, pfi)
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Proof of Lemma 4

Lemma (5)
Let p be a prime number and let n € [p — 1]|. Then there is a partition of the set [p — 1]
into ®(n) sets Ay, ..., Ag(n) such that for every i € [®(n)] and every m € [n], no m (not

necessarily distinct) numbers in A; sum up to 0 modulo p.

® Let F = {fo,...,fo(n)} be the Farey sequence with 0 =fo < f <--- < fo(,) =1
® For each i € [®(n)], let A; := NN (pfi_1, pf;)
® Since p is a prime, for any m € [n] and s € [m — 1] the number p> ¢ N
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Proof of Lemma 4

Lemma (5)
Let p be a prime number and let n € [p — 1]|. Then there is a partition of the set [p — 1]
into ®(n) sets Ay, ..., Ag(n) such that for every i € [®(n)] and every m € [n], no m (not

necessarily distinct) numbers in A; sum up to 0 modulo p.

® Let F = {fo,...,fo(n)} be the Farey sequence with 0 =fo < f <--- < fo(,) =1
® For each i € [®(n)], let A; := NN (pfi_1, pf;)
® Since p is a prime, for any m € [n] and s € [m — 1] the number p> ¢ N

® Hence {pfy, pfi,..., pfom)} N[p—1] =0, so A1, ..., As(n) is a partition of [p — 1]

Al Az

R A
pfo ph  ph Plo(n)
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Proof of Lemma 4

Lemma (5)

Let p be a prime number and let n € [p — 1]. Then there is a partition of the set [p — 1]
into ®(n) sets Ay, ..., Ap(n) such that for every i € [®(n)] and every m € [n], no m (not
necessarily distinct) numbers in A; sum up to 0 modulo p.

Proof.
Fix i € [®(n)] and m € [n]. It remains to show that no m numbers in A; sum up to 0.
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Proof of Lemma 4

Lemma (5)

Let p be a prime number and let n € [p — 1]. Then there is a partition of the set [p — 1]
into ®(n) sets Ay, ..., Ap(n) such that for every i € [®(n)] and every m € [n], no m (not
necessarily distinct) numbers in A; sum up to 0 modulo p.

Proof.
Fix i € [®(n)] and m € [n]. It remains to show that no m numbers in A; sum up to 0.

® 3s € [m] such that (fi_1,f;) C (=2, £) since =1 and = are both members of F,

m ' m
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Proof of Lemma 4

Lemma (5)

Let p be a prime number and let n € [p — 1]. Then there is a partition of the set [p — 1]
into ®(n) sets Ay, ..., Ap(n) such that for every i € [®(n)] and every m € [n], no m (not
necessarily distinct) numbers in A; sum up to 0 modulo p.

Proof.
Fix i € [®(n)] and m € [n]. It remains to show that no m numbers in A; sum up to 0.
® 3s € [m] such that (fi_1,f;) C (=2, £) since =1 and = are both members of F,

® It follows that A; C (p=-1,p2)
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Proof of Lemma 4

Lemma (5)

Let p be a prime number and let n € [p — 1]. Then there is a partition of the set [p — 1]
into ®(n) sets Ay, ..., Ap(n) such that for every i € [®(n)] and every m € [n], no m (not
necessarily distinct) numbers in A; sum up to 0 modulo p.

Proof.

Fix i € [®(n)] and m € [n]. It remains to show that no m numbers in A; sum up to 0.

® 3s € [m] such that (fi_1,f;) C (=2, £) since =1 and = are both members of F,

mom
® It follows that A; C (p=-1,p2)
e Consequently, the sum of any m numbers in A; lies in (p(s — 1), ps), so it never
equals 0 modulo p, as required
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Proof of Lemma 4

Lemma (4)
Let p be a prime and G be an induced subgraph of G, with n = w(G) < p. Then
x(G) < n".
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Proof of Lemma 4

Lemma (4)
Let p be a prime and G be an induced subgraph of G, with n = w(G) < p. Then
x(G) < n".

® Let Ay,...,Ap(n) be the partition of [p — 1] given by Lemma 5
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Proof of Lemma 4

Lemma (4)
Let p be a prime and G be an induced subgraph of G, with n = w(G) < p. Then
x(G) < n".

® Let Ay,...,Ap(n) be the partition of [p — 1] given by Lemma 5
® For each i € [®(n)], let E; := {uv € E(G,) | u< v and d(u,v) €, Aj}
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Proof of Lemma 4

Lemma (4)
Let p be a prime and G be an induced subgraph of G, with n = w(G) < p. Then
x(G) < n".

® Let Ay,...,Ap(n) be the partition of [p — 1] given by Lemma 5
® For each i € [®(n)], let E; := {uv € E(G,) | u< v and d(u,v) €, Aj}
® It follows that Ey, ..., Eg(p) is a partition of the edge set of G;,
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Proof of Lemma 4

Lemma (4)
Let p be a prime and G be an induced subgraph of G, with n = w(G) < p. Then
x(G) < n".

® Let Ay,...,Ap(n) be the partition of [p — 1] given by Lemma 5
® For each i € [®(n)], let E; := {uv € E(G,) | u< v and d(u,v) €, Aj}
® It follows that Ey, ..., Eg(p) is a partition of the edge set of G;,

® For each i € [®(n)], let G be the subgraph of G obtained by restricting the edge set
to E;, keeping the orientations of these edges
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Proof of Lemma 4

Claim: The graph G/ contains no directed path of length n.
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Proof of Lemma 4

Claim: The graph G/ contains no directed path of length n.

® Suppose for the sake of contradiction that G;* contains a directed path vpvy ... v,

1) %1 %) V3 Vg
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Proof of Lemma 4

Claim: The graph G/ contains no directed path of length n.

® Suppose for the sake of contradiction that G;* contains a directed path vpvy ... v,
® Thus d(vj_1,vi) €p Aj for 1 <i<n

1) %1 %) V3 V4

di d> d3 da
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Proof of Lemma 4

Claim: The graph G/ contains no directed path of length n.
® Suppose for the sake of contradiction that G;* contains a directed path vpvy ... v,
® Thus d(vj_1,vi) €p Aj for 1 <i<n
® Forany 0 < i< j <n, we have d(vj,v;) = d(vi, vit1) + - - + d(vj_1, v))
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Proof of Lemma 4

Claim: The graph G/ contains no directed path of length n.

® Suppose for the sake of contradiction that G;* contains a directed path vpvy ... v,
® Thus d(vj_1,vi) €p Aj for 1 <i<n
® Forany 0 < i< j <n, we have d(vj,v;) = d(vi, vit1) + - - + d(vj_1, v))

® Lemma 5 implies d(vj, v;) Zp 0 (sum of m numbers in A;), so v;v; is an edge of G,
and thus of G
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Proof of Lemma 4

Claim: The graph G/ contains no directed path of length n.

Suppose for the sake of contradiction that G;* contains a directed path vyvy ... v,
Thus d(vi_1,v;) €p Aj for 1 <i<n
For any 0 </ < j < n, we have d(vj,v;) = d(vi, vit1) + -+ -+ d(vj_1, v})

Lemma 5 implies d(vj, vj) Zp 0 (sum of m numbers in A;), so v;v; is an edge of G/,
and thus of G

We conclude that {vy, v1,...,v,} is a clique in G, which contradicts w(G) = n

1) %1 %) V3 V4

59 /64



Proof of Lemma 4

® The previous Claim and Lemma (6) imply that each G} is n-colourable via some ¢;
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Proof of Lemma 4

® The previous Claim and Lemma (6) imply that each G} is n-colourable via some ¢;

® Then the product colouring c(v) := (c1(v), ..., Co(m(Vv)) is n®()_colouring of G
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Proof of Lemma 4

® The previous Claim and Lemma (6) imply that each G} is n-colourable via some ¢;
® Then the product colouring c(v) := (c1( -5 Cony(V)) is n®("_colouring of G

v),..
® Since ®(n) < n?, we conclude that x(G) < n"
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