Complete minors and average degree -- a short proof

Jędrzej Kula

03 November 2022

Definition

An undirected graph H is called a minor of the graph G if H can be formed from G by:

- deleting edges,
- deleting vertices,
- contracting edges.

Figure: G

Figure: G with marked changes

Figure: H

The Hadwiger conjecture in graph theory states that if G is loopless and has no K_t minor then its chromatic number satisfies $\chi(G) < t$. Currently we only know it is true for $1 \le t \le 6$.

In more detail, if all proper colorings of an undirected graph G use t or more colors, then one can find k disjoint connected subgraphs of G such that each subgraph is connected by an edge to each other subgraph. Contracting the edges within each of these subgraphs so that each subgraph collapses to a single vertex produces a complete graph K_t on t vertices as a minor of G.

Figure: All proper colorings of above graph use at least $4\ {\rm colors}\ {\rm and}\ {\rm it}$ is possible to find K_4 as minor

Hadwiger proved its truth for t = 4. The K_4 -minor-free graphs are the series-parallel graphs and their subgraphs.

Hadwiger proved its truth for t = 4. The K_4 -minor-free graphs are the series-parallel graphs and their subgraphs.

Such graphs have a vertex with at most two incident edges, so they are 3-colorable, by removing the such vertex, coloring the remaining graph, and coloring the vertex on a remaining color.

Figure: Four color theorem example

Jędrzej Kula

If the conjecture is true, then every graph which chromatic number is equal or greater than 5 contains K_5 minor and by Wagner's theorem is nonplanar. In 1937 Wagner showed that the case t = 5 is equivalent to the four color theorem, by proving that every graph which has no K_5 minor can be decomposed into components, which have chromatic number equal or less than 4, what shows the 4-colorability of a K_5 -minor-free graph.

So we can observe that the conjecture is a generalization of the four-color theorem and for many it is one of the most important and challenging open problems in the graph theory.

We can observe that it is at least logarithmic in d.

We can observe that it is at least logarithmic in d.

Mader proved it is of order at least $d/\log d$.

We can observe that it is at least logarithmic in d.

Mader proved it is of order at least $d/\log d$.

Kostochka and Thomason independently proved it to be $d/\sqrt{\log d}$. Tightness follows by looking into a random graph. Finally, Thomason found the asymptotic value of this extremal function. The paper provides a short and self-contained proof of the Kostochka-Thomason bound.

Theorem

Let G = (V, E) be a graph with $|E|/|V| \ge d$, where d is a sufficiently large integer. Then G contains a minor of the complete graph on at least $\frac{d}{10\sqrt{\ln d}}$ vertices.

Lemma

Let H = (V, E) be a graph on at most n vertices with $\delta(H) \ge n/6$. Let $t \le \frac{n}{\sqrt{\ln n}}$, and let $A_1, \dots, A_t \subset V$ with $|A_j| \le \frac{n}{e^{\sqrt{\ln n}/3}}$. Then there is $B \subset V$ of size at most $3.1\sqrt{\ln n}$ such that B dominates all but at most $\frac{n}{e^{\sqrt{\ln n}/3}}$ vertices of V, and $B \setminus A_j \neq \emptyset$ for all $j = 1, \dots, t$.

Proof.

Choose $s = 3.1\sqrt{\ln n}$ vertices of V independently at random with repetitions and call it B. For every $v \in V$

$$\Pr[N(v) \cap B = \emptyset] \le e^{-s/6} \,.$$

The expected number of vertices not dominated by B is by Markov's inequality $\leq ne^{-\sqrt{\ln n}/3}$ with probability >1/2. Since $|V|>\delta(H)\geq n/6$, for every A_j

$$\Pr[B \subseteq A_j] < \frac{1}{n}$$

So $P[B \setminus A_j \neq \emptyset]$ for all j is $\geq 1 - 1/\sqrt{\ln n}$. Union bound gives us requested result.

1 Preliminaries

Theorem

Let G = (V, E) be a graph with $|E|/|V| \ge d$, where d is a sufficiently large integer. Then G contains a minor of the complete graph on at least $\frac{d}{10\sqrt{\ln d}}$ vertices.

General proof plan:

- Let H be a subgraph of G which contains a d/3-connected subgraph H_0 with $\delta(H_0) \geq 2d/3.$
- Set i = 0 and repeat the following iteration $d/10\sqrt{\ln d}$ times. Let $H_i = (V_i, E_i) \subseteq H_0$ be the current graph.
- Let A_1,\ldots,A_{i-1} are subsets of V_i with $|A_j| \leq \frac{2d}{e^{\sqrt{\ln(2d)}/3}}.$
- H_i is connected, has $\delta(H_i) > d/3$ and the diameter of H_i is at most 14.
- Apply lemma with $H{:}=H_i,\ n{:}=2d,\ t{:}=i-1$ and A_1,\ldots,A_{i-1} we get a subset B_i such that $|B_i|\leq 3.1\sqrt{\ln(2d)}.$
- Now turn B_i into a connected set by adding some more vertices of H_i.
- We obtain a connected subset B_i with $|B_i| \leq (3.1 + o(1))\sqrt{\ln(2d)}$, dominating all but at most $\frac{2d}{e^{\sqrt{\ln(2d)}/3}}$ vertices of V_i and connected to every previous B_j .

- Update V_{i+1} : = $V_i B_i$, A_i : = $V_{i+1} N_{H_i}(B_i)$, and A_j : = $A_j \cap V_{i+1}$, $j = 1, \dots, i-1$, and proceed to the next iteration.
- Observe the total number of vertices deleted in all iterations satisfies:

$$\big|\cup_i B_i\big| < \frac{d}{3}\,,$$

- Since we started with the d/3-connected graph H_0 with $\delta(H_0) \ge 2d/3$, each H_i is connected and has $\delta(H_i) > d/3$.
- After all iterations, we get a family of $d/10\sqrt{\ln d}$ branch sets B_i , all connected, and with an edge of H_0 between every pair of them. Hence they form a complete minor K_t with $t = d/10\sqrt{\ln d}$.

Bibliography:

- Noga Alon, Michael Krivelevich, Benny Sudakov, 2022, Complete minors and average degree -- a short proof, https://arxiv.org/abs/2202.08530
- wikipedia.org

All of the images where taken from wikipedia.org.