The Lovász Local Lemma is Not About Probability

Dimitris Achlioptas Kostas Zampetakis

Prepared by Justyna Jaworska

Given a collection of independent events (F_i) with probabilities $0 < p_i < 1$, the probability that none of them occurs is strictly positive.

$$\mathbb{P}(\overline{F_1} \cap \ldots \cap \overline{F_n}) = (1 - p_1) \cdot \ldots \cdot (1 - p_n) > 0$$

Given a collection of independent events (F_i) with probabilities $0 < p_i < 1$, the probability that none of them occurs is strictly positive.

But what if some of them *are* dependent?

Given a collection of independent events (F_i) with probabilities $0 < p_i < 1$, the probability that none of them occurs is strictly positive.

But what if some of them *are* dependent?

In general, the union bound is the best we can do:

$$\mathbb{P}(\overline{F_1} \cap \ldots \cap \overline{F_n}) \ge 1 - p_1 - p_2 - \ldots - p_n$$

Given a collection of independent events (F_i) with probabilities $0 < p_i < 1$, the probability that none of them occurs is strictly positive.

But what if some of them *are* dependent?

$$\mathbb{P}(\overline{F_1} \cap \ldots \cap \overline{F_n}) \ge 1 - p_1 - p_2 - \ldots - p_n$$

We must somehow limit the dependencies between events.

(Lopsi)dependency graph

A graph G on n vertices is a dependency graph for events $F_1, F_2, \ldots F_n$, if for every vertex i and any set $\{j_1, \ldots, j_k\} \subset [n] \setminus \{\{i\} \cup \Gamma_i\}$ of vertices **non**-adjacent to i, the following holds:

$$\mathbb{P}(F_i|\overline{F_{j1}}\cap\ldots\overline{F_{jn}})=\mathbb{P}(F_i)$$

In other words, F_i is independent from avoiding its non-neighbouring events.

(Lopsi)dependency graph

A graph G on n vertices is a dependency graph for events $F_1, F_2, \ldots F_n$, if for every vertex i and any set $\{j_1, \ldots, j_k\} \subset [n] \setminus \{\{i\} \cup \Gamma_i\}$ of vertices **non**-adjacent to i, the following holds:

$$\mathbb{P}(F_i|\overline{F_{j1}}\cap\ldots\overline{F_{jn}})=\mathbb{P}(F_i)$$

In other words, F_i is independent from avoiding its non-neighbouring events.

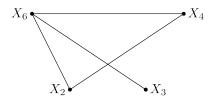
In practice, we can assume a weaker property:

$$\mathbb{P}(F_i | \overline{F_{j1}} \cap \dots \overline{F_{jn}}) \le \mathbb{P}(F_i)$$

A graph G with this property is sometimes called lopside pendency graph

(Lopsi)dependency graph

Imagine we choose a number n from the set $\{1, 2, ..., 60\}$ uniformly at random. Let X_i be the event where i|n. This is an example dependency graph for G:



 X_5

Theorem (Lovász-Erdős, 1973). If a dependency graph G for a set of events F_1, F_2, \ldots, F_n has maximum degree d and for every i:

$$p_i = \mathbb{P}(F_i) \le \frac{1}{4d}$$

Then $P(\overline{F_1} \cap \ldots \cap \overline{F_n}) > 0$.

Theorem (Lovász-Erdős, 1973). If a dependency graph G for a set of events F_1, F_2, \ldots, F_n has maximum degree d and for every i:

$$p_i = \mathbb{P}(F_i) \le \frac{1}{4d}$$

Then $P(\overline{F_1} \cap \ldots \cap \overline{F_n}) > 0.$

• avoid(\mathbf{p}, G) := the smallest possible value of the *avoidance* probability $\mathbb{P}(\overline{F_1} \cap \ldots \cap \overline{F_n})$. **Theorem (Lovász-Erdős, 1975)** If there exist $r_1, \ldots, r_n \in [0, 1)$ such that for every *i*:

$$p_i \le r_i \prod_{j \in \Gamma_i} (1 - r_j)$$

Then avoid $(\mathbf{p}, G) \ge \prod_{i \in [n]} (1 - r_i) > 0.$

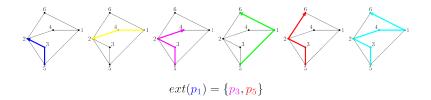
Part 1.

Connection to walks on graphs

Lovász Local Lemma

A couple of definitions

- Let \mathcal{W} be a (not necessarily finite) set of walks on a graph G.
- ▶ t(w) denotes the last vertex of a walk $w \in \mathcal{W}$.
- For any $w \in (W)$, let Ext(w) denote the set of paths in \mathcal{W} which extend w by exactly one vertex.



A couple of definitions

- Let \mathcal{W} be a (not necessarily finite) set of walks on a graph G.
- ▶ t(w) denotes the last vertex of a walk $w \in \mathcal{W}$.
- For any $w \in (W)$, let Ext(w) denote the set of paths in \mathcal{W} which extend w by exactly one vertex.

We will say that $\mathbf{p} \in [0,1)^n$ is valid for \mathcal{W} if there exists $L : \mathcal{W} \to [0,1)$ satysfying:

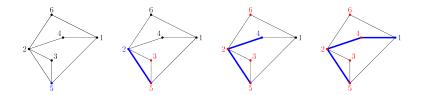
$$p_{t(w)} \le L(w) \prod_{y \in \text{Ext}(w)} (1 - L(y))$$

Self-bounding walks

Given is graph G on [n]. A walk on G is called *self-bounding* if in each step:

- 1. it proceeds from the current vertex i to a non-forbidden neighbour j
- 2. adds to the set of forbidden vertices the vertex i and all neighbours of i greater than j.

We will denote the set of all self-bounding walks on G as $\mathcal{B}(G)$.



Self-bounding walks

Reminder: We will say that $\mathbf{p} \in [0, 1)^n$ is valid for \mathcal{W} if there exists $L : \mathcal{W} \to [0, 1)$ satysfying:

$$p_{t(w)} \le L(w) \prod_{y \in \operatorname{Ext}(w)} (1 - L(y))$$

Theorem 1. avoid $(\mathbf{p}, G) > 0 \iff \mathbf{p}$ is valid for $\mathcal{B}(G)$.

Self-bounding walks

Reminder: We will say that $\mathbf{p} \in [0, 1)^n$ is valid for \mathcal{W} if there exists $L : \mathcal{W} \to [0, 1)$ satysfying:

$$p_{t(w)} \le L(w) \prod_{y \in \text{Ext}(w)} (1 - L(y))$$

Theorem 1. avoid $(\mathbf{p}, G) > 0 \iff \mathbf{p}$ is valid for $\mathcal{B}(G)$.

This isn't an easy condition to work with. But we can use this **Observation.** For a family of walks $\mathcal{W} \supseteq \mathcal{B}(G)$:

 \mathbf{p} is valid for $\mathcal{W} \implies \mathbf{p}$ is valid for $\mathcal{B}(G)$

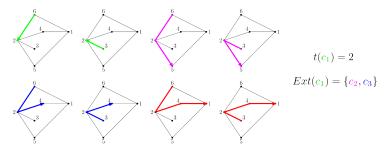
Equivalence classes

Let \sim be the relation where:

 $w \sim w'$ if t(w) = t(w') and $\{z : wz \in \mathcal{W}\} = \{z : w'z \in \mathcal{W}\}$

- We will denote equivalency class of w by \tilde{w}
- ▶ We will denote the set of equivalence classes of \mathcal{W} by $\mathcal{C}(\mathcal{W})$

• We can define $t(\tilde{w})$ and $\text{Ext}(\tilde{w})$



Equivalence classes

Reminder: We will say that $\mathbf{p} \in [0, 1)^n$ is valid for \mathcal{W} if there exists $L : \mathcal{W} \to [0, 1)$ satysfying:

$$p_{t(w)} \le L(w) \prod_{y \in \text{Ext}(w)} (1 - L(y))$$

Theorem. The following are equivalent:

- 1. \mathbf{p} is valid for \mathcal{W}
- 2. For every $\tilde{w} \in \mathcal{C}(\mathcal{W})$ there exists $r_{\tilde{w}} \in [0,1)$ such that

$$p_{t(\tilde{w})} \le r_{\tilde{w}} \prod_{y \in \operatorname{Ext}(\tilde{w})} (1 - r_{\tilde{y}})$$

 $(t(\tilde{w}) \text{ and } \operatorname{Ext}(\tilde{w}) \text{ are well defined functions})$

Equivalence classes

Reminder: We will say that $\mathbf{p} \in [0, 1)^n$ is valid for \mathcal{W} if there exists $L : \mathcal{W} \to [0, 1)$ satysfying:

$$p_{t(w)} \le L(w) \prod_{y \in \text{Ext}(w)} (1 - L(y))$$

Theorem. The following are equivalent:

- 1. **p** is valid for \mathcal{W}
- 2. For every $\tilde{w} \in \mathcal{C}(\mathcal{W})$ there exists $r_{\tilde{w}} \in [0,1)$ such that

$$p_{t(\tilde{w})} \le r_{\tilde{w}} \prod_{y \in \operatorname{Ext}(\tilde{w})} (1 - r_{\tilde{y}})$$

 $(t(\tilde{w}) \text{ and } \operatorname{Ext}(\tilde{w}) \text{ are well defined functions})$

 $\mathbf p$ is valid for $\mathcal W\iff \mathbf p$ "is valid for" $\mathcal C(\mathcal W)$

Lovász Local Lemma

The Corollary

Reminder:

 $\mathbf{p} \text{ is valid for } \mathcal{W} \supseteq \mathcal{B}(G) \implies \mathbf{p} \text{ is valid for } \mathcal{B}(G)$ $\mathbf{p} \text{ is valid for } \mathcal{W} \iff \mathbf{p} \text{ "is valid for" } \mathcal{C}(\mathcal{W})$

There exists a set of walks $\mathcal{W} \supseteq \mathcal{B}(G)$ and $r : \mathcal{C}(\mathcal{W}) \to [0, 1)$ s.t.: $p_{t(\tilde{w})} \leq r_{\tilde{w}} \prod_{y \in \operatorname{Ext}(\tilde{w})} (1 - r_{\tilde{y}})$

 $\operatorname{avoid}(\mathbf{p},G) > 0$

For different choices of \mathcal{W} we will obtain different conditions for avoid $(\mathbf{p}, G) > 0$.

Example 1. All the walks

If we choose \mathcal{W} to be the set of *all walks* on G, then

$$w \sim w' \iff t(w) = t(w')$$

The equivalence classes $\tilde{w_1}, \ldots \tilde{w_n}$ are bijective with V(G) = [n]. For a class $\tilde{w_i}$ with $t(\tilde{w_i}) = i$ we have $Ext(\tilde{w_i}) = \{\tilde{w_j} : j \in \Gamma_i\}$.

Example 1. All the walks

If we choose \mathcal{W} to be the set of *all walks* on G, then

$$w \sim w' \iff t(w) = t(w')$$

The equivalence classes $\tilde{w_1}, \ldots \tilde{w_n}$ are bijective with V(G) = [n]. For a class $\tilde{w_i}$ with $t(\tilde{w_i}) = i$ we have $Ext(\tilde{w_i}) = \{\tilde{w_j} : j \in \Gamma_i\}$.

Our Corollary yields then the asymmetric Lovász local lemma:

If there exist $r_1, \ldots, r_n \in [0, 1)$ such that for every *i*:

$$p_i \le r_i \prod_{j \in \Gamma_i} (1 - r_j)$$

Then avoid $(\mathbf{p}, G) > 0$.

Example 2. Non-backtracking walks

A walk w is *non-backtracking*, if it doesn't contain the sequence xyx (it doesn't traverse the same edge two times in a row).

All self-bounding walks are also non-backtracking, so we can apply the Corollary to the set \mathcal{W} of non-backtracking walks on G.

- In \mathcal{W} , have an equivalence class:
 - ▶ for every directed pair (u, v) s.t. $uv \in E(G)$ (= for every choice of two last vertices of a walk)
 - for every vertex in G (walks of length 1)

Example 2. Non-backtracking walks

We obtain the *non-backtracking LLL*:

Let
$$A = \{(u, v) : uv \in E\}$$
. For $a = (u, v) \in A$, let
 $\Gamma_a = \{(v, w) \in A : w \neq u\}$. If there exist
 $0 \leq \{r_i\}_{i \in [n]}, \{r_a\}_{a \in A} < 1$ such that for all $i \in [n]$ and
 $a = (u, v) \in A$:

$$p_i \le r_i \prod_{j \in \Gamma_i} (1 - r_{(i,j)})$$
 and $p_j \le r_a \prod_{y \in \Gamma_a} (1 - r_y)$

then avoid $(\mathbf{p}, G) > 0$.

Example 3. Self-bounding walks

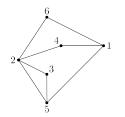
And what if $\mathcal{W} = \mathcal{B}(G)$? We recover the Shearer's criterion:

Theorem (Shearer, 1985). Let $Z_G(\mathbf{x}) = \sum_{I \in \text{Ind}(G)} \prod_{i \in I} x_i$ denote the independent set polynomial of G. (For $S \subseteq [n]$ we also write $Z_G(\mathbf{x}, S) = Z_{G[S]}(\mathbf{x})$.) Then:

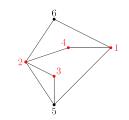
$$\operatorname{avoid}(\mathbf{p},G) > 0 \iff \forall_{S \subseteq [n]} Z_G(-\mathbf{p},S) > 0$$

Example 3. Self-bounding walks

avoid
$$(\mathbf{p}, G) > 0 \iff \forall_{S \subseteq [n]} Z_G(-\mathbf{p}, S) > 0$$



 $Z_G(\mathbf{x}) = 1 + x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_1x_2 + x_1x_3 + x_3x_4 + x_3x_6 + x_4x_5 + x_3x_4x_6$

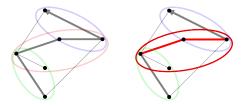


 $Z_G(\mathbf{x}, \{1, 2, 3, 4\}) = 1 + x_1 + x_2 + x_3 + x_4 + x_1 x_2 + x_1 x_3 + x_3 x_4$

Do It Yourself

The authors suggest that a good framework for defining own condition for avoid $(\mathbf{p}, G) > 0$ would be to choose a subset of $\mathcal{P}(V(G))$ as 'filters' and consider a following family of walks \mathcal{W} :

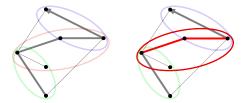
 $w \in W$ if any contiguous sub-walk of w which lies entirely within a filter F_i is self-bounding in F_i



Do It Yourself

The authors suggest that a good framework for defining own condition for avoid $(\mathbf{p}, G) > 0$ would be to choose a subset of $\mathcal{P}(V(G))$ as 'filters' and consider a following family of walks \mathcal{W} :

 $w \in W$ if any contiguous sub-walk of w which lies entirely within a filter F_i is self-bounding in F_i



In particular, if we choose $F = \{\{u, v\} : uv \in E\}$ then \mathcal{W} is the set of non-backtracking walks on G.

Part 2.

'The Lovász Local Lemma is not about probability'

Lovász Local Lemma

Supermodular Functions

Let
$$f : \mathcal{P}(n) \to \mathbb{R}_{\geq 0}$$
.
For $S \subseteq [n] \setminus \{i\}$,

$$\Delta_i f(S) = f(S \cup \{i\}) - f(S)$$

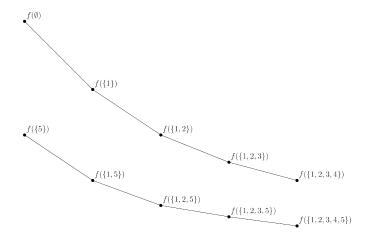
is the discrete derivative

• f is supermodular if $\Delta_i(S)$ is increasing:

$$\forall_{i \in [n], \ S \subset T \subseteq [n] \setminus \{i\}} \ \Delta_i(S) \le \Delta_i(T)$$

Supermodular Functions

We will consider decreasing supermodular functions:



Supermodular functions

We will say that a function f factorizes according to \mathbf{p}, G if for all $i \in [n]$ and $S \subseteq [n] \setminus (\Gamma_i \cup \{i\})$:

 $f(S \cup \{i\}) \ge (1 - p_i)f(S)$

Supermodular functions

We will say that a function f factorizes according to \mathbf{p}, G if for all $i \in [n]$ and $S \subseteq [n] \setminus (\Gamma_i \cup \{i\})$:

$$f(S \cup \{i\}) \ge (1 - p_i)f(S)$$

This generalizes our previous 'probabilistic' setting:

If μ is a probability measure s.t. $\mu(F_i) = p_i$, then G is a dependency graph for the events F_1, \ldots, F_n iff $f(F_{i1}, \ldots, F_{ik}) := \mu(\overline{F_{i1}}, \ldots, \overline{F_{ik}})$ factorizes according to \mathbf{p}, G .

(It is easy to verify that f defined this way is supermodular)

Generalizing Shearer's criterion

Reminder: Shearer's criterion states that:

avoid
$$(\mathbf{p}, G) > 0 \iff \forall_{S \subseteq [n]} Z_G(-\mathbf{p}, S) > 0$$

Theorem. Let G be a graph on [n], and $\mathbf{p} \in [0, 1)^n$.

(i) If $Z_G(-\mathbf{p}; S) > 0$ for every $S \subseteq [n]$ and f is a supermodular function with $f(\emptyset) > 0$ that factorizes according to G, \mathbf{p} , then for every $S \subseteq [n]$:

$$f(S) \ge f(\emptyset) \cdot Z_G(-\mathbf{p}, S) > 0$$

(ii) If $Z_G(-\mathbf{p}; S) < 0$ for some $S \subseteq [n]$ then there exists a supermodular function f with $f(\emptyset) > 0$ that factorizes according to G, \mathbf{p} , such that $f(\mathbf{S}) = 0$ for some $S \subseteq [n]$

As a corollary, we obtain:

Theorem. If f is a supermodular function with $f(\emptyset) > 0$ that factorizes according to \mathbf{p}, G and there exist $r_1, \ldots r_n \in [0, 1)$ such that $p_i \leq r_i \prod_{j \in \Gamma_i} (1 - r_j)$ for all $i \in [n]$, then for every $S \subseteq [n]$ $f(S) \geq f(\emptyset) \prod (1 - r_i) > 0$

 $i \in S$

Given a vector space V and its subspaces X_1, X_2, \ldots, X_n , we seek a condition for dim $(X_1 \cap X_2 \cap \ldots \cap X_n) > 0$.

- ▶ For a subspace $X \subseteq V$, let $R(X) := \frac{\dim(X)}{\dim(V)}$ be the relative dimension of X with respect to V.
- ▶ $R(X|Y) := \frac{R(X \cap Y)}{R(Y)} = \frac{\dim(X)}{\dim(Y)}$ relative dimension of X with respect to Y.
- ► X is mutually R-independent of $X_1, \ldots X_l$ if $R(X \cap X_1 \cap \ldots \cap X_l) = R(X)R(X_1 \cap \ldots \cap X_l).$
- ► A graph G on [n] is an *R*-dependency graph for subspaces X_1, \ldots, X_n if for every $i \in [n]$ and every $S \subseteq [n] (\Gamma_i \cup \{i\}), X_i$ is mutually *R*-independent of subspaces $\{X_j\}_{j \in S}$.

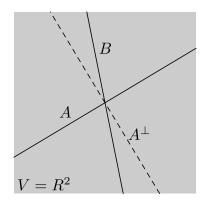
Given a vector space V and its subspaces X_1, X_2, \ldots, X_n , we seek a condition for dim $(X_1 \cap X_2 \cap \ldots \cap X_n) > 0$.

What makes this problem different from the probabilistic analogue is that while for any random events

 $\mathbb{P}(A|B) + \mathbb{P}(\overline{A}|B) = 1$

it is not always the case that

$$R(A|B) + R(A^{\perp}|B) = 1$$



Given a vector space V and its subspaces X_1, X_2, \ldots, X_n , we seek a condition for dim $(X_1 \cap X_2 \cap \ldots \cap X_n) > 0$.

We define \mathbf{p} : $p_i = 1 - R(X_i)$.

It turns out that $f(S) := R(\bigcap_{j \in S} X_j)$ is supermodular and it factorizes according to \mathbf{p}, G . Using the supermodular lemmata from above, we easily obtain those two results (which were shown independently before):

Given a vector space V and its subspaces X_1, X_2, \ldots, X_n , we seek a condition for dim $(X_1 \cap X_2 \cap \ldots \cap X_n) > 0$.

We define \mathbf{p} : $p_i = 1 - R(X_i)$.

It turns out that $f(S) := R(\bigcap_{j \in S} X_j)$ is supermodular and it factorizes according to \mathbf{p}, G . Using the supermodular lemmata from above, we easily obtain those two results (which were shown independently before):

Quantum LLL (2012) If there exist $r_1, \ldots, r_n \in [0, 1)$ s.t. $p_i \leq r_i \prod_{j \in \Gamma_i} (1-r_j)$ for all $i \in [n]$, then $R(\bigcap_{i=1}^n X_i) \geq \prod_{i \in [n]} (1-r_i) > 0$

Given a vector space V and its subspaces X_1, X_2, \ldots, X_n , we seek a condition for dim $(X_1 \cap X_2 \cap \ldots \cap X_n) > 0$.

We define \mathbf{p} : $p_i = 1 - R(X_i)$.

It turns out that $f(S) := R(\bigcap_{j \in S} X_j)$ is supermodular and it factorizes according to \mathbf{p}, G . Using the supermodular lemmata from above, we easily obtain those two results (which were shown independently before):

Quantum Shearer (2016) avoid $(\mathbf{p}, G) > 0 \iff R(\cap_{i=1}^{n} X_i) > 0$

Thank you!