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Introduction

Given a collection of independent events (Fi) with probabilities
0 < pi < 1, the probability that none of them occurs is strictly
positive.

P(F1 ∩ . . . ∩ Fn) = (1 − p1) · . . . · (1 − pn) > 0
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Introduction

Given a collection of independent events (Fi) with probabilities
0 < pi < 1, the probability that none of them occurs is strictly
positive.

But what if some of them are dependent?
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Introduction

Given a collection of independent events (Fi) with probabilities
0 < pi < 1, the probability that none of them occurs is strictly
positive.

But what if some of them are dependent?

In general, the union bound is the best we can do:

P(F1 ∩ . . . ∩ Fn) ≥ 1 − p1 − p2 − . . . − pn
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Introduction

Given a collection of independent events (Fi) with probabilities
0 < pi < 1, the probability that none of them occurs is strictly
positive.

But what if some of them are dependent?

P(F1 ∩ . . . ∩ Fn) ≥ 1 − p1 − p2 − . . . − pn

We must somehow limit the dependencies between events.
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(Lopsi)dependency graph

A graph G on n vertices is a dependency graph for events
F1, F2, . . . Fn, if for every vertex i and any set
{j1, . . . jk} ⊂ [n] \ {{i} ∪ Γi} of vertices non-adjacent to i, the
following holds:

P(Fi|Fj1 ∩ . . . Fjn) = P(Fi)

In other words, Fi is independent from avoiding its
non-neighbouring events.
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(Lopsi)dependency graph

A graph G on n vertices is a dependency graph for events
F1, F2, . . . Fn, if for every vertex i and any set
{j1, . . . jk} ⊂ [n] \ {{i} ∪ Γi} of vertices non-adjacent to i, the
following holds:

P(Fi|Fj1 ∩ . . . Fjn) = P(Fi)

In other words, Fi is independent from avoiding its
non-neighbouring events.
In practice, we can assume a weaker property:

P(Fi|Fj1 ∩ . . . Fjn) ≤ P(Fi)

A graph G with this property is sometimes called lopsidependency
graph
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(Lopsi)dependency graph
Imagine we choose a number n from the set {1, 2, . . . , 60}
uniformly at random. Let Xi be the event where i|n.
This is an example dependency graph for G:
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Lovász Local Lemma

Theorem (Lovász-Erdős, 1973). If a dependency graph G
for a set of events F1, F2, . . . Fn has maximum degree d and for
every i:

pi = P(Fi) ≤ 1
4d

Then P (F1 ∩ . . . ∩ Fn) > 0.
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Lovász Local Lemma

Theorem (Lovász-Erdős, 1973). If a dependency graph G
for a set of events F1, F2, . . . Fn has maximum degree d and for
every i:

pi = P(Fi) ≤ 1
4d

Then P (F1 ∩ . . . ∩ Fn) > 0.

▶ avoid(p, G) := the smallest possible value of the avoidance
probability P(F1 ∩ . . . ∩ Fn).
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Asymmetric LLL

Theorem (Lovász-Erdős, 1975) If there exist
r1, . . . , rn ∈ [0, 1) such that for every i:

pi ≤ ri

∏
j∈Γi

(1 − rj)

Then avoid(p, G) ≥
∏

i∈[n](1 − ri) > 0.
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Part 1.
Connection to walks on graphs
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A couple of definitions

▶ Let W be a (not necessarily finite) set of walks on a graph
G.

▶ t(w) denotes the last vertex of a walk w ∈ W.
▶ For any w ∈ (W ), let Ext(w) denote the set of paths in W

which extend w by exactly one vertex.
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A couple of definitions

▶ Let W be a (not necessarily finite) set of walks on a graph
G.

▶ t(w) denotes the last vertex of a walk w ∈ W.
▶ For any w ∈ (W ), let Ext(w) denote the set of paths in W

which extend w by exactly one vertex.

We will say that p ∈ [0, 1)n is valid for W if there exists L : W →
[0, 1) satysfying:

pt(w) ≤ L(w)
∏

y∈Ext(w)
(1 − L(y))
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Self-bounding walks

Given is graph G on [n]. A walk on G is called self-bounding if
in each step:

1. it procedes from the current vertex i to a non-forbidden
neighbour j

2. adds to the set of forbidden vertices the vertex i and all
neighbours of i greater than j.

We will denote the set of all self-bounding walks on G as B(G).
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Self-bounding walks

Reminder : We will say that p ∈ [0, 1)n is valid for W if there
exists L : W → [0, 1) satysfying:

pt(w) ≤ L(w)
∏

y∈Ext(w)
(1 − L(y))

Theorem 1. avoid(p, G) > 0 ⇐⇒ p is valid for B(G).
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Self-bounding walks

Reminder : We will say that p ∈ [0, 1)n is valid for W if there
exists L : W → [0, 1) satysfying:

pt(w) ≤ L(w)
∏

y∈Ext(w)
(1 − L(y))

Theorem 1. avoid(p, G) > 0 ⇐⇒ p is valid for B(G).

This isn’t an easy condition to work with. But we can use this
Observation. For a family of walks W ⊇ B(G):

p is valid for W =⇒ p is valid for B(G)
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Equivalence classes
Let ∼ be the relation where:

w ∼ w′ if t(w) = t(w′) and {z : wz ∈ W} = {z : w′z ∈ W}

▶ We will denote equivalency class of w by w̃

▶ We will denote the set of equivalence classes of W by C(W)
▶ We can define t(w̃) and Ext(w̃)
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Equivalence classes
Reminder : We will say that p ∈ [0, 1)n is valid for W if there
exists L : W → [0, 1) satysfying:

pt(w) ≤ L(w)
∏

y∈Ext(w)
(1 − L(y))

Theorem. The following are equivalent:
1. p is valid for W
2. For every w̃ ∈ C(W) there exists rw̃ ∈ [0, 1) such that

pt(w̃) ≤ rw̃

∏
y∈Ext(w̃)

(1 − rỹ)

(t(w̃) and Ext(w̃) are well defined functions)
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Equivalence classes
Reminder : We will say that p ∈ [0, 1)n is valid for W if there
exists L : W → [0, 1) satysfying:

pt(w) ≤ L(w)
∏

y∈Ext(w)
(1 − L(y))

Theorem. The following are equivalent:
1. p is valid for W
2. For every w̃ ∈ C(W) there exists rw̃ ∈ [0, 1) such that

pt(w̃) ≤ rw̃

∏
y∈Ext(w̃)

(1 − rỹ)

(t(w̃) and Ext(w̃) are well defined functions)

p is valid for W ⇐⇒ p “is valid for” C(W)
Lovász Local Lemma



The Corollary

Reminder:

p is valid for W ⊇ B(G) =⇒ p is valid for B(G)
p is valid for W ⇐⇒ p “is valid for” C(W)

There exists a set of walks W ⊇ B(G) and r : C(W) → [0, 1) s.t.:
pt(w̃) ≤ rw̃

∏
y∈Ext(w̃)(1 − rỹ)

=⇒

avoid(p, G) > 0

For different choices of W we will obtain different conditions for
avoid(p, G) > 0.
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Example 1. All the walks

If we choose W to be the set of all walks on G, then

w ∼ w′ ⇐⇒ t(w) = t(w′)

The equivalence classes w̃1, . . . w̃n are bijective with V (G) = [n].
For a class w̃i with t(w̃i) = i we have Ext(w̃i) = {w̃j : j ∈ Γi}.
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Example 1. All the walks

If we choose W to be the set of all walks on G, then

w ∼ w′ ⇐⇒ t(w) = t(w′)

The equivalence classes w̃1, . . . w̃n are bijective with V (G) = [n].
For a class w̃i with t(w̃i) = i we have Ext(w̃i) = {w̃j : j ∈ Γi}.

Our Corollary yields then the asymmetric Lovász local lemma:

If there exist r1, . . . , rn ∈ [0, 1) such that for every i:

pi ≤ ri

∏
j∈Γi

(1 − rj)

Then avoid(p, G) > 0.
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Example 2. Non-backtracking walks

A walk w is non-backtracking, if it doesn’t contain the sequence
xyx (it doesn’t traverse the same edge two times in a row).

All self-bounding walks are also non-backtracking, so we can
apply the Corollary to the set W of non-backtracking walks on
G.

In W, have an equivalence class:
▶ for every directed pair (u, v) s.t. uv ∈ E(G) (= for every

choice of two last vertices of a walk)
▶ for every vertex in G (walks of length 1)
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Example 2. Non-backtracking walks

We obtain the non-backtracking LLL:

Let A = {(u, v) : uv ∈ E}. For a = (u, v) ∈ A, let
Γa = {(v, w) ∈ A : w ̸= u}. If there exist
0 ≤ {ri}i∈[n], {ra}a∈A < 1 such that for all i ∈ [n] and
a = (u, v) ∈ A:

pi ≤ ri

∏
j∈Γi

(1 − r(i,j)) and pj ≤ ra

∏
y∈Γa

(1 − ry)

then avoid(p, G) > 0.
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Example 3. Self-bounding walks

And what if W = B(G)? We recover the Shearer’s criterion:

Theorem (Shearer, 1985). Let ZG(x) =
∑

I∈Ind(G)
∏

i∈I xi

denote the independent set polynomial of G. (For S ⊆ [n] we
also write ZG(x, S) = ZG[S](x).) Then:

avoid(p, G) > 0 ⇐⇒ ∀S⊆[n]ZG(−p, S) > 0
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Example 3. Self-bounding walks

avoid(p, G) > 0 ⇐⇒ ∀S⊆[n]ZG(−p, S) > 0

ZG(x) = 1 + x1 + x2 + x3 +
x4 + x5 + x6 + x1x2 + x1x3 +
x3x4 + x3x6 + x4x5 + x3x4x6

ZG(x, {1, 2, 3, 4}) = 1 + x1 +
x2 +x3 +x4 +x1x2 +x1x3 +x3x4
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Do It Yourself

The authors suggest that a good framework for defining own
condition for avoid(p, G) > 0 would be to choose a subset of
P(V (G)) as ‘filters’ and consider a following family of walks W:

w ∈ W if any contiguous sub-walk of w which lies entirely
within a filter Fi is self-bounding in Fi
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Do It Yourself

The authors suggest that a good framework for defining own
condition for avoid(p, G) > 0 would be to choose a subset of
P(V (G)) as ‘filters’ and consider a following family of walks W:

w ∈ W if any contiguous sub-walk of w which lies entirely
within a filter Fi is self-bounding in Fi

In particular, if we choose F = {{u, v} : uv ∈ E} then W is the
set of non-backtracking walks on G.
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Part 2.

‘The Lovász Local Lemma is not about probability’
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Supermodular Functions

Let f : P(n) → R≥0.
▶ For S ⊆ [n] \ {i},

∆if(S) = f(S ∪ {i}) − f(S)

is the discrete derivative
▶ f is supermodular if ∆i(S) is increasing:

∀i∈[n], S⊂T ⊆[n]\{i} ∆i(S) ≤ ∆i(T )
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Supermodular Functions

We will consider decreasing supermodular functions:
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Supermodular functions

We will say that a function f factorizes according to p, G if for
all i ∈ [n] and S ⊆ [n] \ (Γi ∪ {i}):

f(S ∪ {i}) ≥ (1 − pi)f(S)
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Supermodular functions

We will say that a function f factorizes according to p, G if for
all i ∈ [n] and S ⊆ [n] \ (Γi ∪ {i}):

f(S ∪ {i}) ≥ (1 − pi)f(S)

This generalizes our previous ‘probabilistic’ setting:

If µ is a probability measure s.t. µ(Fi) = pi, then
G is a dependency graph for the events F1, . . . , Fn iff

f(Fi1, . . . , Fik) := µ(Fi1, . . . , Fik) factorizes according to p, G.

(It is easy to verify that f defined this way is supermodular)
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Generalizing Shearer’s criterion

Reminder: Shearer’s criterion states that:

avoid(p, G) > 0 ⇐⇒ ∀S⊆[n]ZG(−p, S) > 0

Theorem. Let G be a graph on [n], and p ∈ [0, 1)n.
(i) If ZG(−p; S) > 0 for every S ⊆ [n] and f is a supermodular

function with f(∅) > 0 that factorizes according to G, p,
then for every S ⊆ [n]:

f(S) ≥ f(∅) · ZG(−p, S) > 0

(ii) If ZG(−p; S) < 0 for some S ⊆ [n] then there exists a
supermodular function f with f(∅) > 0 that factorizes
according to G, p, such that f(S) = 0 for some S ⊆ [n]
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Supermodular Local Lemma

As a corollary, we obtain:

Theorem. If f is a supermodular function with f(∅) > 0 that
factorizes according to p, G and there exist r1, . . . rn ∈ [0, 1)
such that pi ≤ ri

∏
j∈Γi

(1 − rj) for all i ∈ [n], then for every
S ⊆ [n]

f(S) ≥ f(∅)
∏
i∈S

(1 − ri) > 0
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Application: Quantum LLL
Given a vector space V and its subspaces X1, X2, . . . , Xn, we
seek a condition for dim(X1 ∩ X2 ∩ . . . ∩ Xn) > 0.

▶ For a subspace X ⊆ V , let R(X) := dim(X)
dim(V ) be the relative

dimension of X with respect to V .
▶ R(X|Y ) := R(X∩Y )

R(Y ) = dim(X)
dim(Y ) - relative dimension of X

with respect to Y .
▶ X is mutually R-independent of X1, . . . Xl if

R(X ∩ X1 ∩ . . . ∩ Xl) = R(X)R(X1 ∩ . . . ∩ Xl).
▶ A graph G on [n] is an R-dependency graph for subspaces

X1, . . . , Xn if for every i ∈ [n] and every
S ⊆ [n] − (Γi ∪ {i}), Xi is mutually R-independent of
subspaces {Xj}j∈S .
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Application: Quantum LLL
Given a vector space V and its subspaces X1, X2, . . . , Xn, we
seek a condition for dim(X1 ∩ X2 ∩ . . . ∩ Xn) > 0.

What makes this
problem different from

the probabilistic
analogue is that while
for any random events

P(A|B) + P(A|B) = 1

it is not always the case
that

R(A|B) + R(A⊥|B) = 1
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Application: Quantum LLL
Given a vector space V and its subspaces X1, X2, . . . , Xn, we
seek a condition for dim(X1 ∩ X2 ∩ . . . ∩ Xn) > 0.

We define p: pi = 1 − R(Xi).

It turns out that f(S) := R(∩j∈SXj) is supermodular and it
factorizes according to p, G. Using the supermodular lemmata
from above, we easily obtain those two results (which were shown
independently before):

Lovász Local Lemma



Application: Quantum LLL
Given a vector space V and its subspaces X1, X2, . . . , Xn, we
seek a condition for dim(X1 ∩ X2 ∩ . . . ∩ Xn) > 0.

We define p: pi = 1 − R(Xi).

It turns out that f(S) := R(∩j∈SXj) is supermodular and it
factorizes according to p, G. Using the supermodular lemmata
from above, we easily obtain those two results (which were shown
independently before):

Quantum LLL (2012) If there exist r1, . . . , rn ∈ [0, 1) s.t. pi ≤
ri

∏
j∈Γi

(1−rj) for all i ∈ [n], then R(∩n
i=1Xi) ≥

∏
i∈[n](1−ri) > 0
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Application: Quantum LLL
Given a vector space V and its subspaces X1, X2, . . . , Xn, we
seek a condition for dim(X1 ∩ X2 ∩ . . . ∩ Xn) > 0.

We define p: pi = 1 − R(Xi).

It turns out that f(S) := R(∩j∈SXj) is supermodular and it
factorizes according to p, G. Using the supermodular lemmata
from above, we easily obtain those two results (which were shown
independently before):

Quantum Shearer (2016)
avoid(p, G) > 0 ⇐⇒ R(∩n

i=1Xi) > 0
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Thank you!
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