Majority colorings of sparse digraphs

Michael Anastos, Ander Lamaison, Raphael Steiner, Tibor Szabó
Prepared by Kamil Galewski

Jagiellonian University, Kraków

November 17, 2022

Introduction

Majority coloring

Definition

A majority coloring of digraph D with k colors is an assignment $c: V(D) \rightarrow[k]$, such that
$\forall v \in V(D)$ at most half of all out-neighbours of v have the same color as v.

Every digraph is majority 4-colorable

Theorem (Kreutzer et al, 2017)
Every digraph is majority 4-colorable.

Every digraph is majority 4-colorable

Theorem (Kreutzer et al, 2017)
Every digraph is majority 4-colorable.

Observation

Every acyclic digraph is majority 2-colorable.

Every digraph is majority 4-colorable

Theorem (Kreutzer et al, 2017)
Every digraph is majority 4-colorable.

Observation

Every acyclic digraph is majority 2-colorable.

Proof.

Fix any order on the vertices, split edges into two sets by the direction they are going, color obtained graphs with two colors. Product of those colorings is a proper majority 4-coloring.

Majority 3-colorability

There are known digraphs that are majority 3-colorable and not majority 2-colorable. The canonical examples are odd directed cycles.

Majority 3-colorability

There are known digraphs that are majority 3-colorable and not majority 2-colorable. The canonical examples are odd directed cycles.

However, we don't know any digraph that is not majority 3-colorable.

Majority 3-colorability

There are known digraphs that are majority 3-colorable and not majority 2-colorable. The canonical examples are odd directed cycles.

However, we don't know any digraph that is not majority 3-colorable.
Conjecture (Kreutzer et al, 2017)
Every digraph is majority 3-colorable.

What we know about majority 3-colorability?

We know that "most" digraphs are majority 3-colorable: authors of the conjecture used Lovasz Local Lemma to prove that digraphs holding certain local density conditions are majority 3-colorable:

What we know about majority 3-colorability?

We know that "most" digraphs are majority 3-colorable: authors of the conjecture used Lovasz Local Lemma to prove that digraphs holding certain local density conditions are majority 3-colorable:

Theorem (Kreutzer et al, 2017)
All digraphs D satisfying

- $\delta^{+}(D)>72 \ln (3|V(D)|)$, or
- $\delta^{+}(D) \geq 1200$ and $\Delta^{-}(D) \leq \frac{\exp \left(\delta^{+}(D) / 72\right)}{12 \delta^{+}(D)}$
are majority 3-colorable
Theorem (Kreutzer et al, 2017)
All r-regular graphs for $r \geq 144$ are majority 3-colorable

What we know about majority 3-colorability?

We know that "most" digraphs are majority 3-colorable: authors of the conjecture used Lovasz Local Lemma to prove that digraphs holding certain local density conditions are majority 3 -colorable:

Theorem (Kreutzer et al, 2017)
All digraphs D satisfying

- $\delta^{+}(D)>72 \ln (3|V(D)|)$, or
- $\delta^{+}(D) \geq 1200$ and $\Delta^{-}(D) \leq \frac{\exp \left(\delta^{+}(D) / 72\right)}{12 \delta^{+}(D)}$
are majority 3-colorable
Theorem (Kreutzer et al, 2017)
All r-regular graphs for $r \geq 144$ are majority 3-colorable
Girão, Kittipassorn, and Popielarz studied tournaments in particular:
Theorem (Girão, Kittipassorn, Popielarz; 2017)
All tournaments with minimum out-degree at least 55 are majority 3 colorable.

Motivation

"All the proofs use the Local Lemma for a random coloring and hence require some upper bound on the maximum in-degree in terms of the minimum out-degree."
"... large maximum in-degrees seem to be outside the realm of any such probabilistic approach and it looks like it constitutes the main difficulty of the problem. This is also illustrated by the fact that it was not even known whether planar digraphs are majority 3-colorable"
"In this paper our main motivation is to complement the existing results on digraphs with balanced in- and out-degrees, and provide approaches for natural, broad families of digraphs, without any restriction on the maximum in-degree."

Results

Majority coloring vs chromatic number

It is easy to see that every proper coloring of digraph is also it's proper majority coloring.

Majority coloring vs chromatic number

It is easy to see that every proper coloring of digraph is also it's proper majority coloring.

Hence every digraph D with $\chi(D) \leq 3$ is also majority 3 -colorable. What about digraphs with larger chromatic number?

Majority coloring vs chromatic number

It is easy to see that every proper coloring of digraph is also it's proper majority coloring.

Hence every digraph D with $\chi(D) \leq 3$ is also majority 3 -colorable. What about digraphs with larger chromatic number?

Theorem (M. Anastos, A. Lamaison, R. Steiner, T. Szabó; 2019)
Every digraph D with $\chi(D) \leq 6$ is majority 3 -colorable.
In particular, every planar digraph is majority 3 -colorable.

Majority coloring vs dichromatic number

Definition

For a digraph D, its dichromatic number $\vec{\chi}(D)$ is the smallest number of colors needed to color the vertices of D in such a way that there are no monochromatic cycles.

Majority coloring vs dichromatic number

Definition

For a digraph D, its dichromatic number $\vec{\chi}(D)$ is the smallest number of colors needed to color the vertices of D in such a way that there are no monochromatic cycles.

Theorem (M. Anastos, A. Lamaison, R. Steiner, T. Szabó; 2019)
Every digraph D with $\vec{\chi}(D) \leq 3$ is majority 3-colorable.

List coloring

"For our proofs it will be crucial to work in a more general framework, involving the list coloring version of majority coloring."

Definition

We call a digraph D majority \boldsymbol{k}-choosable if for every k-list assignment L (i.e., assignment $L: V(D) \rightarrow 2^{\mathbb{N}}$ with $|L(v)|=k$ for every $\left.v \in V(D)\right)$ there is a majority coloring c satisfying $\forall_{v \in V(D)} c(v) \in L(v)$.

List coloring - results

```
Fact
All the results about dense digraphs using the Local Lemma remain valid for majority 3-choosability.
```


List coloring - results

Fact

All the results about dense digraphs using the Local Lemma remain valid for majority 3-choosability.

Theorem (M. Anholcer, B. Bosek, J. Grytczuk; 2017)
Every digraph is majority 4-choosable.

List coloring - results

Fact

All the results about dense digraphs using the Local Lemma remain valid for majority 3-choosability.

Theorem (M. Anholcer, B. Bosek, J. Grytczuk; 2017)
Every digraph is majority 4-choosable.

Theorem (M. Anastos, A. Lamaison, R. Steiner, T. Szabó; 2019)
Let D be a digraph whose underlying undirected graph is 6 -choosable. Then D is majority 3-choosable.

Theorem (M. Anastos, A. Lamaison, R. Steiner, T. Szabó; 2019)
Let D be a digraph with $\vec{\chi}_{l}(D) \leq 3$. Then D is majority 3-choosable.

Regular graphs

Theorem (M. Anastos, A. Lamaison, R. Steiner, T. Szabó; 2019) If $\Delta^{+}(D) \leq 4$ or $\Delta(U(D)) \leq 6$ or $\Delta(D) \leq 7$, then D is majority 3-choosable

Corollary
All 3- and 4-regular digraphs are majority 3-choosable.

Which digraphs are majority 2-colorable?

Question

Is there a characterisation of digraphs that have a majority 2-colouring (or a polynomial time algorithm to recognise such digraphs)?

Which digraphs are majority 2-colorable?

Question

Is there a characterisation of digraphs that have a majority 2-colouring (or a polynomial time algorithm to recognise such digraphs)?

Theorem (M. Anastos, A. Lamaison, R. Steiner, T. Szabó; 2022)
Deciding whether a given digraph is majority 2-colorable is NP-complete

Theorem (M. Anastos, A. Lamaison, R. Steiner, T. Szabó; 2019)
If D is a digraph without odd directed cycles, then D is majority 2-choosable.

Stable sets

Definition

A set S of vertices in a digraph D is a stable set if for each vertex $v \in S$, at most half the out-neighbours of v are also in S.

Note that a majority coloring is a partition of vertices into stable sets.

Fractional coloring

$S(D):=$ set of all stables sets in $V(D)$
$S(D, v):=\{T \in S(D): v \in T\}$
Definition
A fractional majority coloring is a function $f: S(D) \rightarrow \mathbb{R}_{\geq 0}$, such that

$$
\forall_{v \in V(D)} \sum_{T \in S(D, v)} f(T) \geq 1
$$

The total weight of a fractional majority coloring is simply $\sum_{T \in S(D)} f(T)$

Fractional coloring

$S(D):=$ set of all stables sets in $V(D)$
$S(D, v):=\{T \in S(D): v \in T\}$
Definition
A fractional majority coloring is a function $f: S(D) \rightarrow \mathbb{R}_{\geq 0}$, such that

$$
\forall_{v \in V(D)} \sum_{T \in S(D, v)} f(T) \geq 1
$$

The total weight of a fractional majority coloring is simply $\sum_{T \in S(D)} f(T)$

Question

What is the minimum K such that every digraph admits a fractional majority coloring with total weight at most K ?

Fractional coloring - results

Theorem (M. Anastos, A. Lamaison, R. Steiner, T. Szabó; 2019)
Every digraph D admits a fractional majority coloring with total weight at most 3.9602.

Theorem (M. Anastos, A. Lamaison, R. Steiner, T. Szabó; 2019)
There exists a constant $C>0$ such that for every $\epsilon>0$ and every digraph D with $\delta^{+}(D) \geq C(1 / \epsilon)^{2} \ln (2 / \epsilon)$, there exists a fractional majority coloring of D with total weight at most $2+\epsilon$.

Proofs

Lemma 1

Lemma

Let D be a digraph which contains no odd directed cycles. Then D is majority 2-colorable. Moreover, any given pre-coloring of the sinks of D can be extended to a majority 2-coloring of D.

Lemma 1

Lemma

Let D be a digraph which contains no odd directed cycles. Then D is majority 2-colorable. Moreover, any given pre-coloring of the sinks of D can be extended to a majority 2-coloring of D.

Proof sketch.
(1) A digraph D contains no odd directed cycles if and only if all its strong components are bipartite.
(2) Induction over the number of strong components of D.

Theorem 4

Theorem

Let D be a digraph and for each $v \in V(D)$ let $L(v)$ be a list of two colors. Suppose that there exists no odd directed cycle in D all whose vertices are assigned the same list. Then there is a majority-coloring c of D such that $c(v) \in L(v)$ for all $v \in V(D)$.

Theorem 4 - proof (1/2)

$$
\begin{aligned}
& X_{\{a, b\}}:=\text { set of vertices with } L(v)=\{a, b\} \\
& D_{\{a, b\}}:=D\left[X_{\{a, b\}} \cup N^{+}\left(X_{\{a, b\}}\right)\right]
\end{aligned}
$$

Theorem 4 - proof (1/2)

$X_{\{a, b\}}:=$ set of vertices with $L(v)=\{a, b\}$
$D_{\{a, b\}}:=D\left[X_{\{a, b\}} \cup N^{+}\left(X_{\{a, b\}}\right)\right]$

Observation 1: $D_{\{a, b\}}$ does not contain odd cycles. Observation 2: Vertices in $N^{+}\left(X_{\{a, b\}}\right) \backslash X_{\{a, b\}}$ are sinks.

Theorem 4 - proof (2/2)

For each $y \in N^{+}\left(X_{\{a, b\}}\right) \backslash X_{\{a, b\}}$, assign to it color from $L(y) \cap\{a, b\}$ (or ignore it if it's impossible).

Theorem 4 - proof (2/2)

For each $y \in N^{+}\left(X_{\{a, b\}}\right) \backslash X_{\{a, b\}}$, assign to it color from $L(y) \cap\{a, b\}$ (or ignore it if it's impossible).

We can color remaining vertices to obtain majority coloring $c_{\{a, b\}}$ (Lemma 1). Then coloring $c(x):=c_{\{a, b\}}(x)$ for $L(x)=\{a, b\}$ is a proper majority coloring of the entire graph D.

Implications of Theorem 4

Theorem
If D is a digraph without odd directed cycles, then D is majority 2-choosable.

Implications of Theorem 4

Theorem
If D is a digraph without odd directed cycles, then D is majority 2-choosable.

Theorem

Let D be a digraph. Suppose there is a partition $\left\{X_{1}, X_{2}, X_{3}\right\}$ of the vertex set such that for every $i \in\{1,2,3\}, D\left[X_{i}\right]$ contains no odd directed cycles. Then D is majority 3-colorable.

Implications of Theorem 4

Theorem

If D is a digraph without odd directed cycles, then D is majority 2-choosable.

Theorem

Let D be a digraph. Suppose there is a partition $\left\{X_{1}, X_{2}, X_{3}\right\}$ of the vertex set such that for every $i \in\{1,2,3\}, D\left[X_{i}\right]$ contains no odd directed cycles. Then D is majority 3-colorable.

Corollary

Let D be a digraph such that $\chi(D) \leq 6$. Then D is majority 3-colorable. Proof: $\left\{Y_{1} \cup Y_{2}, Y_{3} \cup Y_{4}, Y_{5} \cup Y_{6}\right\}$

Implications of Theorem 4

Theorem

If D is a digraph without odd directed cycles, then D is majority 2-choosable.

Theorem
Let D be a digraph. Suppose there is a partition $\left\{X_{1}, X_{2}, X_{3}\right\}$ of the vertex set such that for every $i \in\{1,2,3\}, D\left[X_{i}\right]$ contains no odd directed cycles. Then D is majority 3-colorable.

Corollary

Let D be a digraph such that $\chi(D) \leq 6$. Then D is majority 3-colorable. Proof: $\left\{Y_{1} \cup Y_{2}, Y_{3} \cup Y_{4}, Y_{5} \cup Y_{6}\right\}$

Corollary
Let D be a digraph such that $\vec{\chi}(D) \leq 3$. Then D is majority 3 -colorable.

OD-3-choosability

Definition

A digraph D is $\mathbf{O D}$-3-choosable if for any assignment of color lists $L(x), x \in V(D)$ of size 3 to the vertices, there exists a choice function c (i.e. $c(x) \in L(x)$ for all $x \in V(D))$ such that no odd directed cycle in (D, c) is monochromatic.

OD-3-choosability

Definition

A digraph D is OD-3-choosable if for any assignment of color lists $L(x), x \in V(D)$ of size 3 to the vertices, there exists a choice function c (i.e. $c(x) \in L(x)$ for all $x \in V(D))$ such that no odd directed cycle in (D, c) is monochromatic.

Theorem
Let D be a digraph. If D is $O D$-3-choosable, then D is majority 3-choosable.

OD-3-choosability - proof

Proof.
$L:=$ given color list assignment $\left(\forall_{v \in V(D)}|L(v)|=3\right)$
$L^{\prime}(v):=\left\{\left\{C_{1}, C_{2}\right\} \mid C_{1} \neq C_{2} \in L(v)\right\}$ - unordered pairs of colors in $L(v)$.
D is OD-3-choosable \Longrightarrow there exists assignment $L^{\prime \prime}$, such that $L^{\prime \prime}(v) \in L^{\prime}(v)$ and there is no "monochromatic" odd cycle in ($D, L^{\prime \prime}$).
Applying theorem 4 gives us majority coloring c, such that $c(v) \in L^{\prime \prime}(v) \subseteq L(v)$ for every vertex v.

Proof for 6-choosability

Theorem

Let D be a digraph whose underlying undirected graph is 6 -choosable. Then D is majority 3-choosable.

Proof for 6-choosability

Theorem
 Let D be a digraph whose underlying undirected graph is 6 -choosable. Then D is majority 3-choosable.

Proof.
We want to prove that D is OD-3-choosable. $L:=$ given color list assignment $\left(\forall_{v \in V(D)}|L(v)|=3\right)$

Proof for 6-choosability

Theorem

Let D be a digraph whose underlying undirected graph is 6 -choosable. Then D is majority 3-choosable.

Proof.
We want to prove that D is OD-3-choosable. $L:=$ given color list assignment $\left(\forall_{v \in V(D)}|L(v)|=3\right)$
$L_{6}(v):=\left\{C_{1}, C_{1}^{\prime}, C_{2}, C_{2}^{\prime}, C_{3}, C_{3}^{\prime}\right\}\left(C_{i} \in L(v), C_{i}^{\prime}\right.$ is a distinct copy of $\left.C_{i}\right)$.
D is 6 -choosable $\Longrightarrow \exists$ proper coloring c_{6} satisfying $c_{6}(v) \in L_{6}(v)$
$c(v):=C_{i}$ for $c_{6}(v) \in\left\{C_{i}, C_{i}^{\prime}\right\}$. Then $c(v) \in L(v)$ and each color class induces bipartite graph, and hence doesn't contain odd directed cycle.

List dichromatic number

Theorem
Let D be a digraph with $\vec{\chi}_{l}(D) \leq 3$. Then D is majority 3-choosable.

Summary

Open questions

Definition

$\boldsymbol{\alpha}$-majority coloring - at most $\alpha \cdot d^{+}(v)$ vertices in $N^{+}(v)$ have the same color as v.

Open questions

Definition

$\boldsymbol{\alpha}$-majority coloring - at most $\alpha \cdot d^{+}(v)$ vertices in $N^{+}(v)$ have the same color as v.

Conjecture
For every integer $k \geq 1$, every digraph D has a $\frac{1}{k}$-majority ($2 k-1$)-coloring.

Open questions

Definition

$\boldsymbol{\alpha}$-majority coloring - at most $\alpha \cdot d^{+}(v)$ vertices in $N^{+}(v)$ have the same color as v.

Conjecture

For every integer $k \geq 1$, every digraph D has a $\frac{1}{k}$-majority $(2 k-1)$-coloring.

- Is every 5 -regular digraph $\frac{1}{3}$-majority 5 -colorable?
- Does every digraph with $\chi(D) \leq 6$ have a $\frac{1}{3}$-majority 5 -coloring?
- Does every digraph D with $\vec{\chi}(D) \leq 3$ have a $\frac{1}{k}$-majority $(2 k-1)$-coloring for every $k \geq 1$?

Thank you!

