Factorizing regular graphs

Filip Konieczny

Based on Thomassen, C. (2019). *Factorizing regular graphs*

November 24, 2022

Filip Konieczny

Factorizing regular graphs

November 24, 2022

1/19

Regular graphs

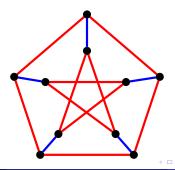
Graph G = (V, E) is k-regular if for every vertex $v \in V \deg_G(v) = k$.

q - factor

q-factor of a graph is its spanning q-regular subgraph.

q - factorization

q-factorization is partition of edges of a graph into disjoint q-factors.



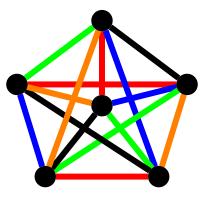
1-factorization of complete graphs

Complete graphs of even order have 1-factorization.

э

1-factorization of complete graphs

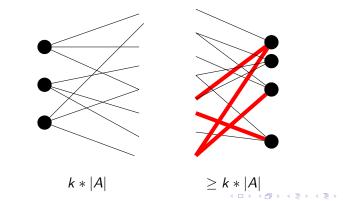
Complete graphs of even order have 1-factorization.



k-regular bipartite graphs

k-regular graphs have 1-factorization (because they have perfect matching).

Proof: Hall's theorem. There is $k \cdot |A|$ edges from the left. Every vertex from the N(A) has at most k edges, so there is at least |A| of them.



2k-regular graphs of even order have k-factorization.

æ

2k-regular graphs of even order have k-factorization.

Proof: Euler's cycle.

э

2k-regular graphs of even order have k-factorization.

Proof: Euler's cycle.

2-factorization

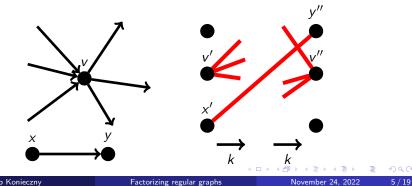
2k-regular graphs have 2-factorization.

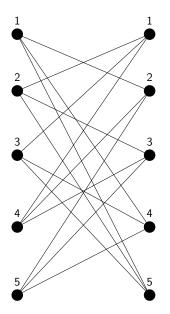
2k-regular graphs of even order have k-factorization.

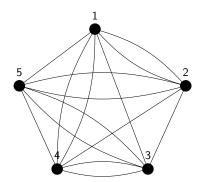
Proof: Euler's cycle.

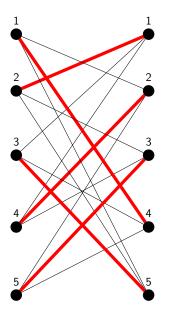
2-factorization

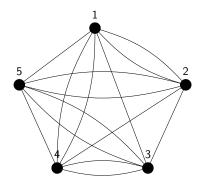
2k-regular graphs have 2-factorization.



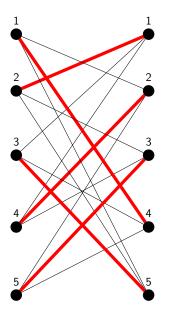


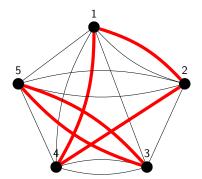






▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 三厘





▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 三厘

Conclusion

qk-regular graphs have *q*-factorization for even *q*.

æ

Conclusion

qk-regular graphs have q-factorization for even q.

What about when q is odd?

Conclusion

qk-regular graphs have *q*-factorization for even *q*.

What about when q is odd?

Such general statement is unfortunately not true for odd q (e.g. triangle, Petersen graph have no 1-factorization).

Conjecture

Every 4-connected graph has an orientation of edges such that every vertex has same in- and outdegree modulo 3.

Conjecture

Every 4-connected graph has an orientation of edges such that every vertex has same in- and outdegree modulo 3.

Conjecture

Every 4-connected graph has an orientation of edges such that every vertex has same in- and outdegree modulo 3.

Generalized version

For odd k every (2k - 2)-connected graph has an orientation of edges such that every vertex has same in- and outdegree modulo k.

```
False except possibly for k = 3, 5.
```

Proven versions

Lemma

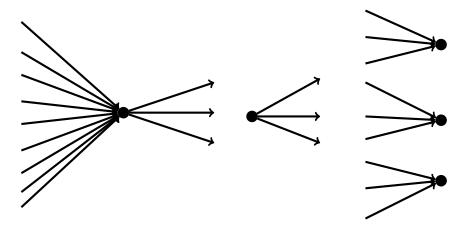
Let k be natural number and let G be $(2k^2 + k)$ -edge-connected graph with vertices v_1, \ldots, v_n . Let d_i be integers such that $\sum d_i \equiv |E|$ modulo k. Then there is an orientation of edges such that i^{th} vertex has outdegree d_i modulo k.

Lemma

Let k be an odd natural number and let G be graph with odd-edge-connectivity at least 3k - 2. Then there is an orientation of edges such that every vertex has same indegree and outdegree modulo k.

Theorem 1.

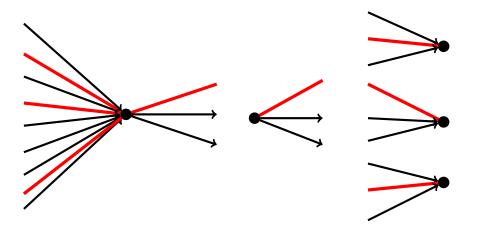
Let G be kq-regular graph for odd q. If k is odd and G has odd-edge-connectivity at least 3k - 2 then G has q-factorization. If k is even and |V| is even and G has edge-connectivity at least $k^2 + 2k$ then G has q-factorization.



 $0 \equiv kq \equiv a + a \equiv 2a \Longrightarrow a \equiv 0$

3

< □ > < □ > < □ > < □ > < □ >



▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 三厘

Theorem 2.

Let *r* be an odd natural number divisible by 3. *G* is an *r*-regular graph with odd-edge-connectivity at least r - 2. Let $r = r_1 + r_2 + ... + r_m$, where $r_i \ge 2$. Then *G* can be decomposed into r_i -factors.

We split G into r/3 3-regular graps $G_1, \ldots, G_{r/3}$ using Theorem 1. r_1, \ldots, r_p are odd and r_{p+1}, \ldots, r_m are even.

$$\bigcup_{i=p+1}^{m} G_i \text{ is regular of even degree.}$$

so can be decomposed into 2-factors. We can use them to construct r_{p+1}, \ldots, r_m -factors and extend G_1, \ldots, G_p to r_1, \ldots, r_p factors.

i

Theorem 3.

Let *r* be an odd natural number divisible by 3 and *G* be (r-3) connected graph of even order and $\Delta(G) \leq r$. Let $r = r_1 + \ldots + r_m$ where $r_i \geq 2$. Then *G* can be edge partitioned into covering subgraphs G_1, \ldots, G_m where $\Delta(G_i) \leq r_i$.

Theorem 4.

Let r be an odd natural number divisible by 3 and G be (r-3) connected graph such that each vertex has odd degree at least r. Let $r = r_1 + \ldots + r_m$ where $r_i \ge 2$. Then G can be edge partitioned into covering subgraphs G_1, \ldots, G_m where $\delta(G_i) \ge r_i$.

Theorem 5.

Every planar, 2-connected, 3q-regular graph has q-factorization.

Filip Konieczny

イロト イヨト イヨト イヨト

э

Conjecture 1.

Theorem 3. holds when r is not divisible by 3.

æ

Conjecture 1.

Theorem 3. holds when r is not divisible by 3.

Conjecture 2.

Can every *r*-regular *r*-connected graph of even order be factorized as 1-factors and one 2-factor?

Weakening of Conjecture 2.

There exists r_0 such that for $r \ge r_0$ every *r*-regular *r*-connected graph has two disjoint 1-factors.

э

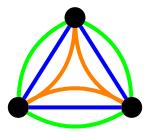
Weakening of Conjecture 2.

There exists r_0 such that for $r \ge r_0$ every *r*-regular *r*-connected graph has two disjoint 1-factors.

Further weakening

If r is an odd natural number \geq 5, then every r-regular r-connected graph can be edge partitioned into 3 odd regular factors.

Thank you for your attention!



	Konieczny