Improved Lower Bound for the List Chromatic Number of Graphs with no K_t -minor

Tomasz Mazur

Jagiellonian University

December 13, 2022

문 문 문

2/31

2 Problem setting

문 🛌 🖻

List assignment

A *list assignment* of a given undirected graph G is an assignment $L: V(G) \rightarrow \mathcal{P}(\mathbb{N})$ of finite sets L(v) (called lists) to vertices $v \in V(G)$.

List assignment

A *list assignment* of a given undirected graph G is an assignment $L: V(G) \rightarrow \mathcal{P}(\mathbb{N})$ of finite sets L(v) (called lists) to vertices $v \in V(G)$.

List coloring

An *L*-coloring of an undirected graph *G* and list assignment *L* is a function $c : V(G) \to \mathbb{N}$, such that $c(v) \in L(v)$ for every $v \in V(G)$ and $c(u) \neq c(v)$ for every $\{u, v\} \in E(G)$.

List assignment

A *list assignment* of a given undirected graph G is an assignment $L: V(G) \rightarrow \mathcal{P}(\mathbb{N})$ of finite sets L(v) (called lists) to vertices $v \in V(G)$.

List coloring

An *L*-coloring of an undirected graph *G* and list assignment *L* is a function $c : V(G) \to \mathbb{N}$, such that $c(v) \in L(v)$ for every $v \in V(G)$ and $c(u) \neq c(v)$ for every $\{u, v\} \in E(G)$.

List chromatic number

The *list chromatic number* $\chi_{\ell}(G)$ of an undirected graph G is the smallest number $k \in \mathbb{N}$ such that G admits an L-coloring for every list assignment L for which $|L(v)| \ge k$ for every $v \in V(G)$.

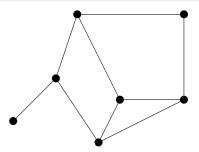
・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

K_t-minor

For a given $t \in \mathbb{N}$, we say a graph *G* has a K_t -minor if there exist pairwise disjoint, non-empty subsets $Z_1, Z_2, \ldots, Z_t \subseteq V(G)$, such for each *i* the induced subgraph $G[Z_i]$ is connected and for every $i \neq j \in [t]$ there exist $u \in Z_i, v \in Z_j$ such that $\{u, v\} \in E(G)$.

K_t -minor

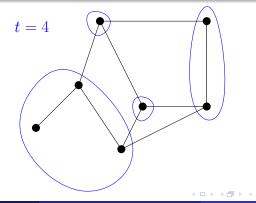
For a given $t \in \mathbb{N}$, we say a graph G has a K_t -minor if there exist pairwise disjoint, non-empty subsets $Z_1, Z_2, \ldots, Z_t \subseteq V(G)$, such for each *i* the induced subgraph $G[Z_i]$ is connected and for every $i \neq j \in [t]$ there exist $u \in Z_i, v \in Z_j$ such that $\{u, v\} \in E(G)$.



Definitions

K_t-minor

For a given $t \in \mathbb{N}$, we say a graph G has a K_t -minor if there exist pairwise disjoint, non-empty subsets $Z_1, Z_2, \ldots, Z_t \subseteq V(G)$, such for each *i* the induced subgraph $G[Z_i]$ is connected and for every $i \neq j \in [t]$ there exist $u \in Z_i, v \in Z_j$ such that $\{u, v\} \in E(G)$.



문 문 문

For every $t \in \mathbb{N}$, if G does not contain a K_t -minor, then $\chi(G) \leq t - 1$, where $\chi(G)$ is the chromatic number of G.

For every $t \in \mathbb{N}$, if G does not contain a K_t -minor, then $\chi(G) \leq t - 1$, where $\chi(G)$ is the chromatic number of G. **Unsolved.**

For every $t \in \mathbb{N}$, if G does not contain a K_t -minor, then $\chi(G) \leq t - 1$, where $\chi(G)$ is the chromatic number of G. **Unsolved.**

Results

• $t = 5 \iff 4$ color theorem (Wagner - 1937)

For every $t \in \mathbb{N}$, if G does not contain a K_t -minor, then $\chi(G) \leq t - 1$, where $\chi(G)$ is the chromatic number of G. **Unsolved.**

Results

- $t = 5 \iff 4$ color theorem (Wagner 1937)
- t = 5 (Appel, Haken and Koch 1977)

For every $t \in \mathbb{N}$, if G does not contain a K_t -minor, then $\chi(G) \leq t - 1$, where $\chi(G)$ is the chromatic number of G. **Unsolved.**

Results

- $t = 5 \iff 4$ color theorem (Wagner 1937)
- t = 5 (Appel, Haken and Koch 1977)
- t = 6 (Robertson, Seymour, Thomas 1993)

For every $t \in \mathbb{N}$, if G does not contain a K_t -minor, then $\chi(G) \leq t - 1$, where $\chi(G)$ is the chromatic number of G. **Unsolved.**

Results

- $t = 5 \iff 4$ color theorem (Wagner 1937)
- t = 5 (Appel, Haken and Koch 1977)
- t = 6 (Robertson, Seymour, Thomas 1993)

Linear Hadwiger Conjecture

There exists an absolute constant c > 0 for which every G not containing a K_t -minor, satisfies $\chi(G) \leq ct$.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

For every $t \in \mathbb{N}$, if G does not contain a K_t -minor, then $\chi(G) \leq t - 1$, where $\chi(G)$ is the chromatic number of G. **Unsolved.**

Results

- $t = 5 \iff 4$ color theorem (Wagner 1937)
- t = 5 (Appel, Haken and Koch 1977)
- t = 6 (Robertson, Seymour, Thomas 1993)

Linear Hadwiger Conjecture

There exists an absolute constant c > 0 for which every G not containing a K_t -minor, satisfies $\chi(G) \leq ct$. **Unsolved.** Current best bound is $\chi(G) \in O(t \log \log t)$ (Delcourt and Postle - 2021).

э

(日)

There exists an absolute constant c > 0 for which every G not containing a K_t -minor, satisfies $\chi_{\ell}(G) \leq ct$.

There exists an absolute constant c > 0 for which every G not containing a K_t -minor, satisfies $\chi_{\ell}(G) \leq ct$.

Results

• Conjecture:
$$\chi_{\ell}(G) \leqslant t - 1$$
. (Borowiecki - 1993)

There exists an absolute constant c > 0 for which every G not containing a K_t -minor, satisfies $\chi_{\ell}(G) \leq ct$.

Results

- Conjecture: $\chi_{\ell}(G) \leqslant t-1$. (Borowiecki 1993)
- Example of planar graph with $\chi_{\ell}(G) = 5$. (Voigt 1993)

There exists an absolute constant c > 0 for which every G not containing a K_t -minor, satisfies $\chi_{\ell}(G) \leq ct$.

Results

- Conjecture: $\chi_\ell(G)\leqslant t-1$. (Borowiecki 1993)
- Example of planar graph with $\chi_{\ell}(G) = 5$. (Voigt 1993)
- c = 1 for t = 5. (Thomassen 1994)

8/31

There exists an absolute constant c > 0 for which every G not containing a K_t -minor, satisfies $\chi_{\ell}(G) \leq ct$.

Results

- Conjecture: $\chi_\ell(G)\leqslant t-1$. (Borowiecki 1993)
- Example of planar graph with $\chi_{\ell}(G) = 5$. (Voigt 1993)

•
$$c = 1$$
 for $t = 5$. (Thomassen - 1994)

• $\chi_\ell(G) \in O(t(\log t)^{1/4+o(1)})$ (Norine and Postle - 2020)

8/31

There exists an absolute constant c > 0 for which every G not containing a K_t -minor, satisfies $\chi_{\ell}(G) \leq ct$.

Results

- Conjecture: $\chi_{\ell}(G) \leqslant t 1$. (Borowiecki 1993)
- Example of planar graph with $\chi_{\ell}(G) = 5$. (Voigt 1993)

•
$$c = 1$$
 for $t = 5$. (Thomassen - 1994)

- $\chi_\ell(G) \in O(t(\log t)^{1/4+o(1)})$ (Norine and Postle 2020)
- $\chi_{\ell}(G) \in O(t(\log \log t)^6)$ (Postle 2020)

There exists an absolute constant c > 0 for which every G not containing a K_t -minor, satisfies $\chi_{\ell}(G) \leq ct$.

Results

- Conjecture: $\chi_\ell(G)\leqslant t-1$. (Borowiecki 1993)
- Example of planar graph with $\chi_{\ell}(G) = 5$. (Voigt 1993)

•
$$c = 1$$
 for $t = 5$. (Thomassen - 1994)

- $\chi_\ell(G) \in O(t(\log t)^{1/4+o(1)})$ (Norine and Postle 2020)
- $\chi_{\ell}(G) \in O(t(\log \log t)^6)$ (Postle 2020)
- $\chi_{\ell}(G) \in O(t(\log \log t)^2)$ (Delcourt and Postle 2021)

There exists an absolute constant c > 0 for which every G not containing a K_t -minor, satisfies $\chi_{\ell}(G) \leq ct$.

Bounds on *c*

• Conjecture: $c\leqslant 3/2$ (Kawarabayashi and Mohar - 2007)

There exists an absolute constant c > 0 for which every G not containing a K_t -minor, satisfies $\chi_{\ell}(G) \leq ct$.

Bounds on c

- Conjecture: $c\leqslant 3/2$ (Kawarabayashi and Mohar 2007)
- $c \ge 4/3$ (Barát, Joret and Wood 2011)

There exists an absolute constant c > 0 for which every G not containing a K_t -minor, satisfies $\chi_{\ell}(G) \leq ct$.

Bounds on c

- Conjecture: $c\leqslant 3/2$ (Kawarabayashi and Mohar 2007)
- $c \ge 4/3$ (Barát, Joret and Wood 2011)
- *c* ≥ 2 (Steiner 2021)

9/31

There exists an absolute constant c > 0 for which every G not containing a K_t -minor, satisfies $\chi_{\ell}(G) \leq ct$.

Bounds on c

- Conjecture: $c\leqslant 3/2$ (Kawarabayashi and Mohar 2007)
- $c \ge 4/3$ (Barát, Joret and Wood 2011)
- c ≥ 2 (Steiner 2021)
- Question: $c \leq 2$? (Steiner 2021)

2 Problem setting

문 🛌 🖻

Theorem

For every $\varepsilon \in (0, 1)$ there is a $t_0 = t(\varepsilon)$ such that for every $t \ge t_0$ there exists an undirected graph with no K_t -minor and list chromatic number at least $(2 - \varepsilon)t$.

Theorem

For every $\varepsilon \in (0, 1)$ there is a $t_0 = t(\varepsilon)$ such that for every $t \ge t_0$ there exists an undirected graph with no K_t -minor and list chromatic number at least $(2 - \varepsilon)t$.

Corollary

For every constant c < 2 there is a t_0 such that for $t \ge t_0$ there exists an undirected graph G with no K_t -minor and $\chi_\ell(G) > ct$.

11/31

Bipartite Erdős-Renyi Graph

For $n \in \mathbb{N}$ and $p \in [0, 1]$ we define G(n, n, p) as a random bipartite graph G with bipartition $V(G) = A \cup B, A \cap B = \emptyset$ such that |A| = |B| = n and $\mathbb{P}((a, b) \in E) = p$ for every $a \in A, b \in B$ with probabilities for every pair being independent.

Let $\varepsilon \in (0,1)$ be fixed and now let $f = f(\varepsilon) \in \mathbb{N}, \delta = \delta(\varepsilon) \in (0,1)$ be constants chosen such that $f\delta < 1$. Let $p = p(n) = n^{-\delta}$. Then $\mathcal{P} \to 1$ as $n \to \infty$ where \mathcal{P} is the probability that the graph G(n, n, p(n)) satisfies the following properties:

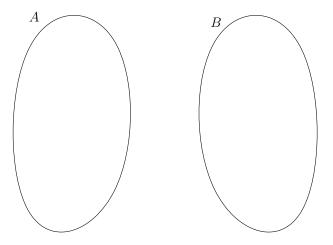
Let $\varepsilon \in (0,1)$ be fixed and now let $f = f(\varepsilon) \in \mathbb{N}, \delta = \delta(\varepsilon) \in (0,1)$ be constants chosen such that $f\delta < 1$. Let $p = p(n) = n^{-\delta}$. Then $\mathcal{P} \to 1$ as $n \to \infty$ where \mathcal{P} is the probability that the graph G(n, n, p(n)) satisfies the following properties:

• G has maximum degree εn

Let $\varepsilon \in (0,1)$ be fixed and now let $f = f(\varepsilon) \in \mathbb{N}, \delta = \delta(\varepsilon) \in (0,1)$ be constants chosen such that $f\delta < 1$. Let $p = p(n) = n^{-\delta}$. Then $\mathcal{P} \to 1$ as $n \to \infty$ where \mathcal{P} is the probability that the graph G(n, n, p(n)) satisfies the following properties:

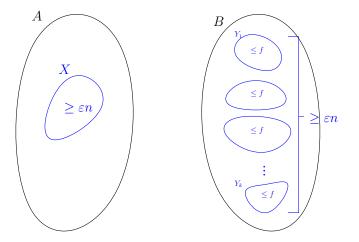
• G has maximum degree εn

For every X ⊆ A such that |X| ≥ εn and every family of disjoint and non-empty subsets Y₁, Y₂,..., Y_k ⊆ B such that k ≥ εn and max{|Y₁|, |Y₂|,..., |Y_k|} ≤ f, there exists a vertex x ∈ X and a j ∈ [k] for which G contains all edges {x, y} for y ∈ Y_j.

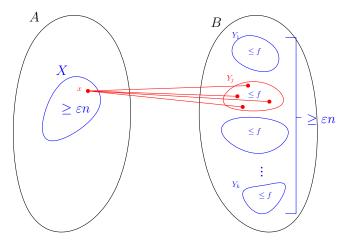


イロト イヨト イヨト イヨト

2



イロト イヨト イヨト イヨト



イロン イ理 とくほとう ほんし

Lemma 1

Let $\varepsilon \in (0,1)$ be fixed and now let $f = f(\varepsilon) \in \mathbb{N}, \delta = \delta(\varepsilon) \in (0,1)$ be constants chosen such that $f\delta < 1$. Let $p = p(n) = n^{-\delta}$. Then $\mathcal{P} \to 1$ as $n \to \infty$ where \mathcal{P} is the probability that the graph G(n, n, p) satisfies the following properties:

- G has maximum degree εn
- For every X ⊆ A such that |X| ≥ εn and every family of disjoint and non-empty subsets Y₁, Y₂,..., Y_k ⊆ B such that k ≥ εn and max{|Y₁|, |Y₂|,..., |Y_k|} ≤ f, there exists a vertex x ∈ X and a j ∈ [k] for which G contains all edges {x, y} for y ∈ Y_j.

15/31

Lemma 1

Let $\varepsilon \in (0,1)$ be fixed and now let $f = f(\varepsilon) \in \mathbb{N}, \delta = \delta(\varepsilon) \in (0,1)$ be constants chosen such that $f\delta < 1$. Let $p = p(n) = n^{-\delta}$. Then $\mathcal{P} \to 1$ as $n \to \infty$ where \mathcal{P} is the probability that the graph G(n, n, p) satisfies the following properties:

- G has maximum degree εn
- For every X ⊆ A such that |X| ≥ εn and every family of disjoint and non-empty subsets Y₁, Y₂,..., Y_k ⊆ B such that k ≥ εn and max{|Y₁|, |Y₂|,..., |Y_k|} ≤ f, there exists a vertex x ∈ X and a j ∈ [k] for which G contains all edges {x, y} for y ∈ Y_j.

Proof Sketch

• Union bound argument to prove that probability of negation of second property tends to 0 as $n \to \infty$.

Lemma 1

Let $\varepsilon \in (0,1)$ be fixed and now let $f = f(\varepsilon) \in \mathbb{N}, \delta = \delta(\varepsilon) \in (0,1)$ be constants chosen such that $f\delta < 1$. Let $p = p(n) = n^{-\delta}$. Then $\mathcal{P} \to 1$ as $n \to \infty$ where \mathcal{P} is the probability that the graph G(n, n, p) satisfies the following properties:

- G has maximum degree εn
- For every X ⊆ A such that |X| ≥ εn and every family of disjoint and non-empty subsets Y₁, Y₂,..., Y_k ⊆ B such that k ≥ εn and max{|Y₁|, |Y₂|,..., |Y_k|} ≤ f, there exists a vertex x ∈ X and a j ∈ [k] for which G contains all edges {x, y} for y ∈ Y_j.

Proof Sketch

- Union bound argument to prove that probability of negation of second property tends to 0 as $n \to \infty$.
- Chernoff bounds + union bound to prove second property.

Main Theorem - Construction

Lemma 2

For every $\varepsilon \in (0,1)$ there exists $n_0 = n_0(\varepsilon)$ such that for every $n \ge n_0$, there exists a graph H such that

For every $\varepsilon \in (0,1)$ there exists $n_0 = n_0(\varepsilon)$ such that for every $n \ge n_0$, there exists a graph H such that

• $V(H) = A \cup B$ where A, B are disjoint sets of vertices of size n and G[A], G[B] are cliques.

For every $\varepsilon \in (0,1)$ there exists $n_0 = n_0(\varepsilon)$ such that for every $n \ge n_0$, there exists a graph H such that

- $V(H) = A \cup B$ where A, B are disjoint sets of vertices of size n and G[A], G[B] are cliques.
- deg $(v) \ge (2 \varepsilon)n 1$ for every $v \in V(H)$. (Every vertex has at most εn non-neighbors.)

For every $\varepsilon \in (0,1)$ there exists $n_0 = n_0(\varepsilon)$ such that for every $n \ge n_0$, there exists a graph H such that

- $V(H) = A \cup B$ where A, B are disjoint sets of vertices of size n and G[A], G[B] are cliques.
- deg(v) ≥ (2 − ε)n − 1 for every v ∈ V(H). (Every vertex has at most εn non-neighbors.)
- *H* does not have a K_t -minor for every $t \ge (1+2\varepsilon)n$.

For every $\varepsilon \in (0,1)$ there exists $n_0 = n_0(\varepsilon)$ such that for every $n \ge n_0$, there exists a graph H such that

- $V(H) = A \cup B$ where A, B are disjoint sets of vertices of size n and G[A], G[B] are cliques.
- deg(v) ≥ (2 − ε)n − 1 for every v ∈ V(H). (Every vertex has at most εn non-neighbors.)
- *H* does not have a K_t -minor for every $t \ge (1+2\varepsilon)n$.

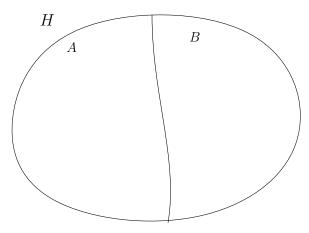
Proof sketch

Taking H to be the complement of the graph from Lemma 1 is sufficient. Only the third property is non-trivial.

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

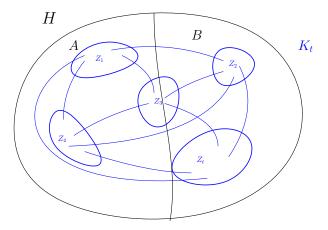
Complement of graph from Lemma 1

For every $X \subseteq A$ such that $|X| \ge \varepsilon n$ and every familty of disjoint non-empty subsets $Y_1, Y_2, \ldots, Y_k \subseteq B$ such that $k \ge \varepsilon n$ and $|Y_i| \le f$, there exists a vertex $x \in X$ and a $j \in [k]$ for which x has no edges to any $y \in Y_j$.

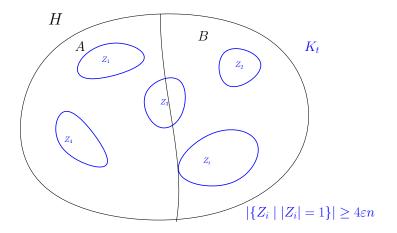


イロト イヨト イヨト イヨト

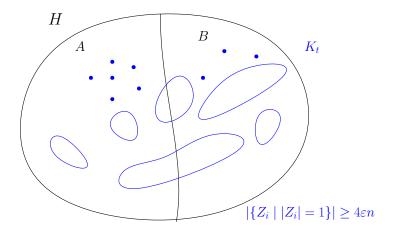
Ξ.



イロト イヨト イヨト イヨト

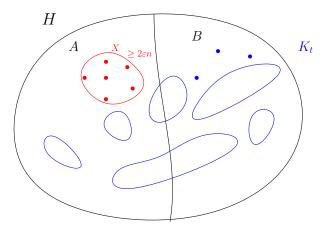


<ロト <問ト < 目ト < 目ト

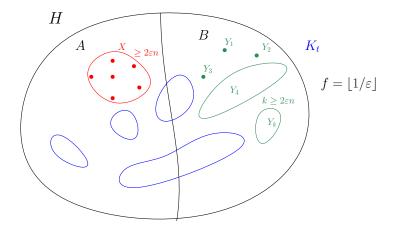


æ

< □ > < 同 > < 回 > < 回 > < 回 >



<ロト <問ト < 目ト < 目ト



<ロト <問ト < 目ト < 目ト

Complement of graph from Lemma 1

For every $X \subseteq A$ such that $|X| \ge \varepsilon n$ and every family of disjoint non-empty subsets $Y_1, Y_2, \ldots, Y_k \subseteq B$ such that $k \ge \varepsilon n$ and $|Y_i| \le f$, there exists a vertex $x \in X$ and a $j \in [k]$ for which x has no edges to any $y \in Y_i$.

Complement of graph from Lemma 1

For every $X \subseteq A$ such that $|X| \ge \varepsilon n$ and every family of disjoint non-empty subsets $Y_1, Y_2, \ldots, Y_k \subseteq B$ such that $k \ge \varepsilon n$ and $|Y_i| \le f$, there exists a vertex $x \in X$ and a $j \in [k]$ for which x has no edges to any $y \in Y_i$.

Lemma 2

For every $\varepsilon \in (0, 1)$ there exists $n_0 = n_0(\varepsilon)$ such that for every $n \ge n_0$, there exists a graph H such that

- $V(H) = A \cup B$ where A, B are disjoint sets of vertices of size n and G[A], G[B] are cliques.
- $\deg(v) \ge (2-\varepsilon)n-1$ for every $v \in V(H)$. (Every vertex has at most εn non-neighbors.)
- *H* does not have a K_t -minor for every $t \ge (1+2\varepsilon)n$.

Main Theorem - Construction

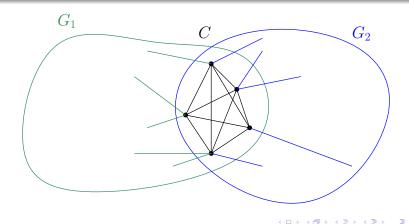
Pasting Lemma

Let G_1 and G_2 be K_t -minor-free graphs and $V(G_1) \cap V(G_2) = C$. If both $G_1[C]$ and $G_2[C]$ are cliques, then $G_1 \cup G_2$ is also has no K_t -minor.

Main Theorem - Construction

Pasting Lemma

Let G_1 and G_2 be K_t -minor-free graphs and $V(G_1) \cap V(G_2) = C$. If both $G_1[C]$ and $G_2[C]$ are cliques, then $G_1 \cup G_2$ is also has no K_t -minor.



Graph Construction

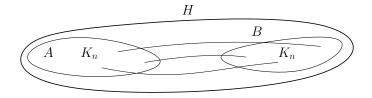
Let ε be given. We know that there exists $n_0 = n_0(\varepsilon)$ such that there exists a graph which satisfies the conditions in Lemma 2. $V(G) = A \cup B$ for A, B disjoint cliques of size n, every vertex has at most εn non-neighbors and H is K_t -minor-free for $t \ge (1 + 2\varepsilon)n$.

Graph Construction

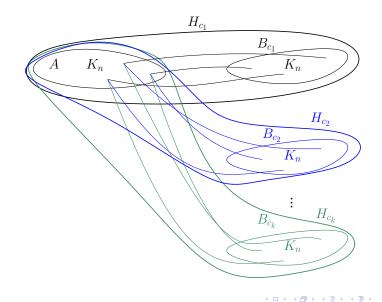
Let ε be given. We know that there exists $n_0 = n_0(\varepsilon)$ such that there exists a graph which satisfies the conditions in Lemma 2. $V(G) = A \cup B$ for A, B disjoint cliques of size n, every vertex has at most εn non-neighbors and H is K_t -minor-free for $t \ge (1 + 2\varepsilon)n$.

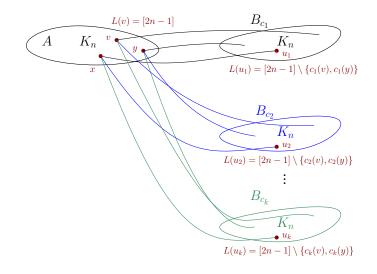
Graph Construction

For every possible coloring $c \in [2n-1]^A$ of A using colors from [2n-1]we create a copy H_c of H. Furthermore, these copies made in such a way, that they all share A, but have separate B_c $(H_{c_1} \cap H_{c_2} = A)$. From the Pasting Lemma we know, that the graph $\mathcal{G} = \bigcup_c H_c$ is K_t -minor-free for $t \ge (1+2\varepsilon)n$.



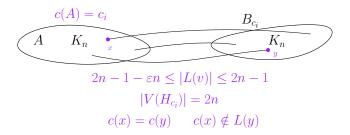
문 문 문





(日)

э



< 47 ▶

< ∃⇒

э

We showed that \mathcal{G} is K_t -minor-free for $t \ge t_0 = (1 + 2\varepsilon)n$ and can't be colored using lists of length $\ge (2 - \varepsilon)n - 1$ colors. Therefore $\chi_{\ell}(\mathcal{G}) \ge (2 - \varepsilon)n$ for all $n \ge n_0$.

We showed that \mathcal{G} is K_t -minor-free for $t \ge t_0 = (1 + 2\varepsilon)n$ and can't be colored using lists of length $\ge (2 - \varepsilon)n - 1$ colors. Therefore $\chi_{\ell}(\mathcal{G}) \ge (2 - \varepsilon)n$ for all $n \ge n_0$.

Proof

To achieve the bound $\chi_{\ell}(\mathcal{G}) \ge (2 - \varepsilon)t$, we substitute ε , n_0 , t_0 in the proof with ε' , n'_0 , t'_0 such that:

We showed that \mathcal{G} is K_t -minor-free for $t \ge t_0 = (1 + 2\varepsilon)n$ and can't be colored using lists of length $\ge (2 - \varepsilon)n - 1$ colors. Therefore $\chi_{\ell}(\mathcal{G}) \ge (2 - \varepsilon)n$ for all $n \ge n_0$.

Proof

To achieve the bound $\chi_{\ell}(\mathcal{G}) \ge (2 - \varepsilon)t$, we substitute ε , n_0 , t_0 in the proof with ε' , n'_0 , t'_0 such that:

•
$$\frac{2-\varepsilon'}{1+2\varepsilon'} \ge 2-\frac{\varepsilon}{2}$$

< 円

We showed that \mathcal{G} is K_t -minor-free for $t \ge t_0 = (1 + 2\varepsilon)n$ and can't be colored using lists of length $\ge (2 - \varepsilon)n - 1$ colors. Therefore $\chi_{\ell}(\mathcal{G}) \ge (2 - \varepsilon)n$ for all $n \ge n_0$.

Proof

To achieve the bound $\chi_{\ell}(\mathcal{G}) \ge (2 - \varepsilon)t$, we substitute ε , n_0 , t_0 in the proof with ε' , n'_0 , t'_0 such that:

•
$$\frac{2-\varepsilon'}{1+2\varepsilon'} \ge 2-\frac{\varepsilon}{2}$$

• $n'_0 = n_0(\varepsilon')$

< 円

We showed that \mathcal{G} is K_t -minor-free for $t \ge t_0 = (1 + 2\varepsilon)n$ and can't be colored using lists of length $\ge (2 - \varepsilon)n - 1$ colors. Therefore $\chi_{\ell}(\mathcal{G}) \ge (2 - \varepsilon)n$ for all $n \ge n_0$.

Proof

To achieve the bound $\chi_{\ell}(\mathcal{G}) \ge (2 - \varepsilon)t$, we substitute ε , n_0 , t_0 in the proof with ε' , n'_0 , t'_0 such that:

•
$$\frac{2-\varepsilon'}{1+2\varepsilon'} \ge 2-\frac{\varepsilon}{2}$$

• $n'_0 = n_0(\varepsilon')$
• $t'_0 = \max(\lceil (1+2\varepsilon')n \rceil, \lceil \frac{4}{\varepsilon} \rceil)$

31 / 31

< 円

We showed that \mathcal{G} is K_t -minor-free for $t \ge t_0 = (1 + 2\varepsilon)n$ and can't be colored using lists of length $\ge (2 - \varepsilon)n - 1$ colors. Therefore $\chi_{\ell}(\mathcal{G}) \ge (2 - \varepsilon)n$ for all $n \ge n_0$.

Proof

To achieve the bound $\chi_{\ell}(\mathcal{G}) \ge (2 - \varepsilon)t$, we substitute ε , n_0 , t_0 in the proof with ε' , n'_0 , t'_0 such that:

•
$$\frac{2-\varepsilon'}{1+2\varepsilon'} \ge 2 - \frac{\varepsilon}{2}$$

• $n'_0 = n_0(\varepsilon')$
• $t'_0 = \max(\lceil (1+2\varepsilon')n \rceil, \lceil \frac{4}{\varepsilon} \rceil)$

Then for every $t \ge t_0$ and $n = \left\lfloor \frac{t}{1+2\varepsilon'} \right\rfloor$ we get that $\chi_{\ell}(\mathcal{G}) \ge (2-\varepsilon')n$ implies $\chi_{\ell}(\mathcal{G}) \ge (2-\varepsilon)t$, which finishes the proof of the Main Theorem.

< < >>