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Every triangle-free graph can be made bipartite by

removing at most n2

23.5 edges

Does every triangle-free graph contain a subset of
n
2 vertices with at most n2

50 edges?

Can every triangle-free graph be made bipartite by

removing at most n2

25 edges?
Can every K4-free graph be made bipartite by

removing at most n2

9 edges?

Sudakov, 2007
Every triangle-free graph can be made bipartite by

removing at most n2

9 edges

Does every K4-free graph contain a subset of n
2

vertices with at most n2

18 edges?

Reiher, 2022
Every K4-free graph has a subset of size n

2

containing at most n2

18 edges



K4-free graphs



K4-free graphs

N(v)

v



K4-free graphs

N(v)

v



K4-free graphs

N(v)

v

N(v) is always triangle-free



K4-free graphs

N(v)

v

N(v) is always triangle-free

u

v

u

v

N(u, v)



K4-free graphs

N(v)

v

N(v) is always triangle-free

u

v

u

v

N(u, v)



K4-free graphs

N(v)

v

N(v) is always triangle-free

u

v

u

v

N(u, v) is an independent set when (u, v) ∈ E(G)

N(u, v)



K4-free graphs

N(v)

v

N(v) is always triangle-free

u

v

u

v

N(u, v) is an independent set when (u, v) ∈ E(G)

N(u, v)

Turán’s theorem

If H is K4-free, then e(H) ≤ |H|2
3



K4-free graphs

N(v)

v

N(v) is always triangle-free

u

v

u

v

N(u, v) is an independent set when (u, v) ∈ E(G)

N(u, v)

Turán’s theorem

If H is K4-free, then e(H) ≤ |H|2
3

Mantel’s theorem

If e(H) ≥ |H|2
4 , then H contains a triangle
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Every X ⊂ V (G) of size m spans at least q edges.
Then e(G) ≥ nq

2m−n

1. there exists x, so that d(x) ≤ n−m

(n,m, q,G) - minimal counterexample w. r. t. n

q − d > 2(m−1)2

9

(n− 1,m− 1, q − d,G′)

2. d(x) > n−m for every x

q ≤ e(R) = e(V \N(x)) + e(R ∩N(x), V \N(x))

q ≤ e(V \N(x)) + d(x)−(n−m)
d(x) e(N(x), V \N(x))

n−m
d(x) e(N(x), V \N(x)) ≤ e(G)− q

Every X has at least q − d edges

x

d := d(x)

G′ := G \ {x}

|R| = m
N(x)

x

|X| = m− 1



e(G) should be large, right?

e(G) = e(G′) + d ≥ (n−1)(q−d)
2m−n−1 + d > nq

2m−n

G - △-free, m, q - integers such that q ≥ 2
9m

2 and
n ≥ m
Every X ⊂ V (G) of size m spans at least q edges.
Then e(G) ≥ nq

2m−n

1. there exists x, so that d(x) ≤ n−m

(n,m, q,G) - minimal counterexample w. r. t. n

q − d > 2(m−1)2

9

(n− 1,m− 1, q − d,G′)

2. d(x) > n−m for every x

q ≤ e(R) = e(V \N(x)) + e(R ∩N(x), V \N(x))

q ≤ e(V \N(x)) + d(x)−(n−m)
d(x) e(N(x), V \N(x))

n−m
d(x) e(N(x), V \N(x)) ≤ e(G)− q

Sum over x
2(n−m)e(G) ≤ n(e(G)− q)

Every X has at least q − d edges

x

d := d(x)

G′ := G \ {x}

|R| = m
N(x)

x

|X| = m− 1



Lower bounds on e(G)

G - extremal , A,B ⊆ V (G) - disjoint, indpendent
sets
Then 2

9n
2 + e(A,B) ≤ |E|

A

B

C



Lower bounds on e(G)

G - extremal , A,B ⊆ V (G) - disjoint, indpendent
sets
Then 2

9n
2 + e(A,B) ≤ |E|

A

B

|A|+ |Z| = n
2

n2

18 ≤ e(A,Z) + e(Z)

C

Z



Lower bounds on e(G)

G - extremal , A,B ⊆ V (G) - disjoint, indpendent
sets
Then 2

9n
2 + e(A,B) ≤ |E|

A

B

|A|+ |Z| = n
2

n2

18 ≤ e(A,Z) + e(Z)

n2

18 ≤
1
2n−|A|

|C| e(A,C) +

(
1
2n−|A|

|C|

)2

e(C)

C

Z



Lower bounds on e(G)

G - extremal , A,B ⊆ V (G) - disjoint, indpendent
sets
Then 2

9n
2 + e(A,B) ≤ |E|

A

B

|A|+ |Z| = n
2

n2

18 ≤ e(A,Z) + e(Z)

n2

18 ≤
1
2n−|A|

|C| e(A,C) +

(
1
2n−|A|

|C|

)2

e(C)

n2|C|
9(n−2|A|) ≤ e(A,C) +

1
2n−|A|

|C| e(C)

C

Z



Lower bounds on e(G)

G - extremal , A,B ⊆ V (G) - disjoint, indpendent
sets
Then 2

9n
2 + e(A,B) ≤ |E|

A

B

|A|+ |Z| = n
2

n2

18 ≤ e(A,Z) + e(Z)

n2

18 ≤
1
2n−|A|

|C| e(A,C) +

(
1
2n−|A|

|C|

)2

e(C)

n2|C|
9(n−2|A|) ≤ e(A,C) +

1
2n−|A|

|C| e(C)

n2|C|
9

(
1

n−2|A| +
1

n−2|B|

)
≤ |E| − e(A,B)

C

Z



Lower bounds on e(G)

G - extremal , A,B ⊆ V (G) - disjoint, indpendent
sets
Then 2

9n
2 + e(A,B) ≤ |E|

A

B

|A|+ |Z| = n
2

n2

18 ≤ e(A,Z) + e(Z)

n2

18 ≤
1
2n−|A|

|C| e(A,C) +

(
1
2n−|A|

|C|

)2

e(C)

n2|C|
9(n−2|A|) ≤ e(A,C) +

1
2n−|A|

|C| e(C)

n2|C|
9

(
1

n−2|A| +
1

n−2|B|

)
≤ |E| − e(A,B)

n2|C|
9

2
|C| ≤ |E| − e(A,B)

C

Z



e(G) ≥ 7
24
n2 - preparations

G - △-free, m - natural
Every X ⊆ G of size m spans at least 2

9m
2 edges

There exist A,B ⊆ G, A,B independent so that
t = |A|+ |B|, n ≤ m

3 + 3t
4



e(G) ≥ 7
24
n2 - preparations

G - △-free, m - natural
Every X ⊆ G of size m spans at least 2

9m
2 edges

There exist A,B ⊆ G, A,B independent so that
t = |A|+ |B|, n ≤ m

3 + 3t
4

A = α(G)

B = α(G \A)



e(G) ≥ 7
24
n2 - preparations

G - △-free, m - natural
Every X ⊆ G of size m spans at least 2

9m
2 edges

There exist A,B ⊆ G, A,B independent so that
t = |A|+ |B|, n ≤ m

3 + 3t
4

m ≥ 3
4n

A = α(G)

B = α(G \A)



e(G) ≥ 7
24
n2 - preparations

G - △-free, m - natural
Every X ⊆ G of size m spans at least 2

9m
2 edges

There exist A,B ⊆ G, so that A,B disjoint,
independent and t = |A|+ |B|, n ≤ m

3 + 3t
4

G - △-free, m, q - integers such that q ≥ 2
9m

2 and
n ≥ m
Every X ⊂ V (G) of size m spans at least q edges.
Then e(G) ≥ nq

2m−n



e(G) ≥ 7
24
n2 - preparations

d(x) ≥ n
2

G - △-free, m - natural
Every X ⊆ G of size m spans at least 2

9m
2 edges

There exist A,B ⊆ G, so that A,B disjoint,
independent and t = |A|+ |B|, n ≤ m

3 + 3t
4

x

N(x)

G - △-free, m, q - integers such that q ≥ 2
9m

2 and
n ≥ m
Every X ⊂ V (G) of size m spans at least q edges.
Then e(G) ≥ nq

2m−n

G - extremal



e(G) ≥ 7
24
n2 - preparations

d(x) ≥ n
2

G - △-free, m - natural
Every X ⊆ G of size m spans at least 2

9m
2 edges

There exist A,B ⊆ G, so that A,B disjoint,
independent and t = |A|+ |B|, n ≤ m

3 + 3t
4

x

N(x)

G := N(x),m := n
2

There exist A,B ⊆ N(x), so that A,B - independent and
|A|+ |B| ≥ 4

3d(x)−
2
9n ≥ 4

9n

G - △-free, m, q - integers such that q ≥ 2
9m

2 and
n ≥ m
Every X ⊂ V (G) of size m spans at least q edges.
Then e(G) ≥ nq

2m−n

G - extremal



e(G) ≥ 7
24
n2 - preparations

d(x) ≥ n
2

G - △-free, m - natural
Every X ⊆ G of size m spans at least 2

9m
2 edges

There exist A,B ⊆ G, so that A,B disjoint,
independent and t = |A|+ |B|, n ≤ m

3 + 3t
4

x

N(x)

G := N(x),m := n
2

q := n2

18

There exist A,B ⊆ N(x), so that A,B - independent and
|A|+ |B| ≥ 4

3d(x)−
2
9n ≥ 4

9n

G - △-free, m, q - integers such that q ≥ 2
9m

2 and
n ≥ m
Every X ⊂ V (G) of size m spans at least q edges.
Then e(G) ≥ nq

2m−n

G - extremal



e(G) ≥ 7
24
n2 - preparations

d(x) ≥ n
2

e(N(x)) ≥ n2

18 · d(x)
n−d(x)

G - △-free, m - natural
Every X ⊆ G of size m spans at least 2

9m
2 edges

There exist A,B ⊆ G, so that A,B disjoint,
independent and t = |A|+ |B|, n ≤ m

3 + 3t
4

x

N(x)

G := N(x),m := n
2

q := n2

18

There exist A,B ⊆ N(x), so that A,B - independent and
|A|+ |B| ≥ 4

3d(x)−
2
9n ≥ 4

9n

G - △-free, m, q - integers such that q ≥ 2
9m

2 and
n ≥ m
Every X ⊂ V (G) of size m spans at least q edges.
Then e(G) ≥ nq

2m−n

G - extremal



e(G) ≥ 7
24
n2

G - extremal , X ⊆ V (G), and |X| ∈ [ 13n;
1
2n]

Then e(X) ≥ 1
18 (3|X| − n)(6|X| − n)

G - extremal , A,B ⊆ V (G) - disjoint, indpendent
sets
Then e(A,B) ≤ |E| − 2

9n
2

In extremal graph G, if d(x) ≥ n
2 , then:

• e(N(x)) ≥ n2

18 · d(x)
n−d(x)

• There exist A,B ⊆ N(x), so that A,B - independent and |A|+ |B| ≥ 4
3d(x)−

2
9n ≥ 4

9n



e(G) ≥ 7
24
n2

|E(G)| = γn2, γ > 1
4

G - extremal , X ⊆ V (G), and |X| ∈ [ 13n;
1
2n]

Then e(X) ≥ 1
18 (3|X| − n)(6|X| − n)

G - extremal , A,B ⊆ V (G) - disjoint, indpendent
sets
Then e(A,B) ≤ |E| − 2

9n
2

There exists x ∈ V (G), so that d(x) ≥ n
2

In extremal graph G, if d(x) ≥ n
2 , then:

• e(N(x)) ≥ n2

18 · d(x)
n−d(x)

• There exist A,B ⊆ N(x), so that A,B - independent and |A|+ |B| ≥ 4
3d(x)−

2
9n ≥ 4

9n



e(G) ≥ 7
24
n2

|E(G)| = γn2, γ > 1
4

A,B - independent, t = |A|+ |B|
t ≥ 4

3d(x)−
2
9n ≥ ( 83γ − 2

9 )n > 4
9

G - extremal , X ⊆ V (G), and |X| ∈ [ 13n;
1
2n]

Then e(X) ≥ 1
18 (3|X| − n)(6|X| − n)

G - extremal , A,B ⊆ V (G) - disjoint, indpendent
sets
Then e(A,B) ≤ |E| − 2

9n
2

There exists x ∈ V (G), so that d(x) ≥ n
2

In extremal graph G, if d(x) ≥ n
2 , then:

• e(N(x)) ≥ n2

18 · d(x)
n−d(x)

• There exist A,B ⊆ N(x), so that A,B - independent and |A|+ |B| ≥ 4
3d(x)−

2
9n ≥ 4

9n



e(G) ≥ 7
24
n2

|E(G)| = γn2, γ > 1
4

A,B - independent, t = |A|+ |B|
t ≥ 4

3d(x)−
2
9n ≥ ( 83γ − 2

9 )n > 4
9

G - extremal , X ⊆ V (G), and |X| ∈ [ 13n;
1
2n]

Then e(X) ≥ 1
18 (3|X| − n)(6|X| − n)

1. t < 1
2n

G - extremal , A,B ⊆ V (G) - disjoint, indpendent
sets
Then e(A,B) ≤ |E| − 2

9n
2

There exists x ∈ V (G), so that d(x) ≥ n
2

In extremal graph G, if d(x) ≥ n
2 , then:

• e(N(x)) ≥ n2

18 · d(x)
n−d(x)

• There exist A,B ⊆ N(x), so that A,B - independent and |A|+ |B| ≥ 4
3d(x)−

2
9n ≥ 4

9n



e(G) ≥ 7
24
n2

|E(G)| = γn2, γ > 1
4

A,B - independent, t = |A|+ |B|
t ≥ 4

3d(x)−
2
9n ≥ ( 83γ − 2

9 )n > 4
9

G - extremal , X ⊆ V (G), and |X| ∈ [ 13n;
1
2n]

Then e(X) ≥ 1
18 (3|X| − n)(6|X| − n)

1. t < 1
2n

G - extremal , A,B ⊆ V (G) - disjoint, indpendent
sets
Then e(A,B) ≤ |E| − 2

9n
2

There exists x ∈ V (G), so that d(x) ≥ n
2

36e(A,B) ≥ 2(n2 − 9nt+ 18t2) ≥ (48γ − 11)n2

In extremal graph G, if d(x) ≥ n
2 , then:

• e(N(x)) ≥ n2

18 · d(x)
n−d(x)

• There exist A,B ⊆ N(x), so that A,B - independent and |A|+ |B| ≥ 4
3d(x)−

2
9n ≥ 4

9n



e(G) ≥ 7
24
n2

|E(G)| = γn2, γ > 1
4

A,B - independent, t = |A|+ |B|
t ≥ 4

3d(x)−
2
9n ≥ ( 83γ − 2

9 )n > 4
9

G - extremal , X ⊆ V (G), and |X| ∈ [ 13n;
1
2n]

Then e(X) ≥ 1
18 (3|X| − n)(6|X| − n)

1. t < 1
2n

G - extremal , A,B ⊆ V (G) - disjoint, indpendent
sets
Then e(A,B) ≤ |E| − 2

9n
2

There exists x ∈ V (G), so that d(x) ≥ n
2

e(A,B) ≤ γn2 − 2
9n

2

36e(A,B) ≥ 2(n2 − 9nt+ 18t2) ≥ (48γ − 11)n2

In extremal graph G, if d(x) ≥ n
2 , then:

• e(N(x)) ≥ n2

18 · d(x)
n−d(x)

• There exist A,B ⊆ N(x), so that A,B - independent and |A|+ |B| ≥ 4
3d(x)−

2
9n ≥ 4

9n



e(G) ≥ 7
24
n2

|E(G)| = γn2, γ > 1
4

A,B - independent, t = |A|+ |B|
t ≥ 4

3d(x)−
2
9n ≥ ( 83γ − 2

9 )n > 4
9

G - extremal , X ⊆ V (G), and |X| ∈ [ 13n;
1
2n]

Then e(X) ≥ 1
18 (3|X| − n)(6|X| − n)

1. t < 1
2n

G - extremal , A,B ⊆ V (G) - disjoint, indpendent
sets
Then e(A,B) ≤ |E| − 2

9n
2

48γ − 11 ≤ 36γ − 8

There exists x ∈ V (G), so that d(x) ≥ n
2

e(A,B) ≤ γn2 − 2
9n

2

36e(A,B) ≥ 2(n2 − 9nt+ 18t2) ≥ (48γ − 11)n2

In extremal graph G, if d(x) ≥ n
2 , then:

• e(N(x)) ≥ n2

18 · d(x)
n−d(x)

• There exist A,B ⊆ N(x), so that A,B - independent and |A|+ |B| ≥ 4
3d(x)−

2
9n ≥ 4

9n



e(G) ≥ 7
24
n2

|E(G)| = γn2, γ > 1
4

A,B - independent, t = |A|+ |B|
t ≥ 4

3d(x)−
2
9n ≥ ( 83γ − 2

9 )n > 4
9

G - extremal , X ⊆ V (G), and |X| ∈ [ 13n;
1
2n]

Then e(X) ≥ 1
18 (3|X| − n)(6|X| − n)

1. t < 1
2n

G - extremal , A,B ⊆ V (G) - disjoint, indpendent
sets
Then e(A,B) ≤ |E| − 2

9n
2

48γ − 11 ≤ 36γ − 8

2. t ≥ n
2

There exists x ∈ V (G), so that d(x) ≥ n
2

e(A,B) ≤ γn2 − 2
9n

2

36e(A,B) ≥ 2(n2 − 9nt+ 18t2) ≥ (48γ − 11)n2

In extremal graph G, if d(x) ≥ n
2 , then:

• e(N(x)) ≥ n2

18 · d(x)
n−d(x)

• There exist A,B ⊆ N(x), so that A,B - independent and |A|+ |B| ≥ 4
3d(x)−

2
9n ≥ 4

9n



e(G) ≥ 7
24
n2

|E(G)| = γn2, γ > 1
4

A,B - independent, t = |A|+ |B|
t ≥ 4

3d(x)−
2
9n ≥ ( 83γ − 2

9 )n > 4
9

G - extremal , X ⊆ V (G), and |X| ∈ [ 13n;
1
2n]

Then e(X) ≥ 1
18 (3|X| − n)(6|X| − n)

1. t < 1
2n

G - extremal , A,B ⊆ V (G) - disjoint, indpendent
sets
Then e(A,B) ≤ |E| − 2

9n
2

48γ − 11 ≤ 36γ − 8

2. t ≥ n
2

(γ − 2
9 )n

2 ≥ e(A,B) ≥ n2

18 · t
n−t

There exists x ∈ V (G), so that d(x) ≥ n
2

e(A,B) ≤ γn2 − 2
9n

2

36e(A,B) ≥ 2(n2 − 9nt+ 18t2) ≥ (48γ − 11)n2

In extremal graph G, if d(x) ≥ n
2 , then:

• e(N(x)) ≥ n2

18 · d(x)
n−d(x)

• There exist A,B ⊆ N(x), so that A,B - independent and |A|+ |B| ≥ 4
3d(x)−

2
9n ≥ 4

9n



e(G) ≥ 7
24
n2

|E(G)| = γn2, γ > 1
4

A,B - independent, t = |A|+ |B|
t ≥ 4

3d(x)−
2
9n ≥ ( 83γ − 2

9 )n > 4
9

G - extremal , X ⊆ V (G), and |X| ∈ [ 13n;
1
2n]

Then e(X) ≥ 1
18 (3|X| − n)(6|X| − n)

1. t < 1
2n

G - extremal , A,B ⊆ V (G) - disjoint, indpendent
sets
Then e(A,B) ≤ |E| − 2

9n
2

48γ − 11 ≤ 36γ − 8

2. t ≥ n
2

(γ − 2
9 )n

2 ≥ e(A,B) ≥ n2

18 · t
n−t

There exists x ∈ V (G), so that d(x) ≥ n
2

e(A,B) ≤ γn2 − 2
9n

2 0 ≤ 2(1− 3γ)(24γ − 7)

36e(A,B) ≥ 2(n2 − 9nt+ 18t2) ≥ (48γ − 11)n2

In extremal graph G, if d(x) ≥ n
2 , then:

• e(N(x)) ≥ n2

18 · d(x)
n−d(x)

• There exist A,B ⊆ N(x), so that A,B - independent and |A|+ |B| ≥ 4
3d(x)−

2
9n ≥ 4

9n



e(G) ≥ 7
24
n2

α(G) ≤ n
3

e(G) ≥ 7
24n

2



Three independent sets

G - extremal with γn2 edges
Then there exist three disjoint independent subsets V1, V2, V3, so that |V1|+ |V2|+ |V3| ≥ n

3(1−2γ)



Three independent sets

G - extremal with γn2 edges
Then there exist three disjoint independent subsets V1, V2, V3, so that |V1|+ |V2|+ |V3| ≥ n

3(1−2γ)

T - set of all triangles in G
txy - number of triangles in G containing the edge (x, y)
tx - number of triangles in G containing x (or of the edges induced by N(x))



Three independent sets

G - extremal with γn2 edges
Then there exist three disjoint independent subsets V1, V2, V3, so that |V1|+ |V2|+ |V3| ≥ n

3(1−2γ)

T - set of all triangles in G
txy - number of triangles in G containing the edge (x, y)
tx - number of triangles in G containing x (or of the edges induced by N(x))

txy + tyz + tzx ≥ n
3(1−2γ)

x
y

z



Three independent sets

G - extremal with γn2 edges
Then there exist three disjoint independent subsets V1, V2, V3, so that |V1|+ |V2|+ |V3| ≥ n

3(1−2γ)

T - set of all triangles in G
txy - number of triangles in G containing the edge (x, y)
tx - number of triangles in G containing x (or of the edges induced by N(x))

txy + tyz + tzx ≥ n
3(1−2γ)

x
y

z

N(x, y)

N(x, z) N(y, z)



Three independent sets

G - extremal with γn2 edges
Then there exist three disjoint independent subsets V1, V2, V3, so that |V1|+ |V2|+ |V3| ≥ n

3(1−2γ)

T - set of all triangles in G
txy - number of triangles in G containing the edge (x, y)
tx - number of triangles in G containing x (or of the edges induced by N(x))

txy + tyz + tzx ≥ n
3(1−2γ)

x
y

z

N(x, y)

N(x, z) N(y, z)

∑
T
txy+tyz+tzx

|T | ≥ n
3(1−2γ)



Three independent sets

G - extremal with γn2 edges
Then there exist three disjoint independent subsets V1, V2, V3, so that |V1|+ |V2|+ |V3| ≥ n

3(1−2γ)

T - set of all triangles in G
txy - number of triangles in G containing the edge (x, y)
tx - number of triangles in G containing x (or of the edges induced by N(x))

txy + tyz + tzx ≥ n
3(1−2γ)

x
y

z

N(x, y)

N(x, z) N(y, z)

∑
T
txy+tyz+tzx

|T | ≥ n
3(1−2γ)∑

y∈N(x) t
2
xy ≥ 4t(x)2

d(x)
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V2

V3

V1

E(G) = γn2
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E(G) = γn2
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0.|V1|+ |V2|+ |V3| ≥ n
3(1−2γ)



Leftovers

V2

V3

V1

Z

E(G) = γn2

|Z| = zn2

1.γ ≥ 7
24

0.|V1|+ |V2|+ |V3| ≥ n
3(1−2γ)



Leftovers

V2

V3

V1

Z

E(G) = γn2

|Z| = zn2

1.γ ≥ 7
24

2.z ≤ 1− 1
3(1−2γ) ≤

1
5

0.|V1|+ |V2|+ |V3| ≥ n
3(1−2γ)



Leftovers

V2

V3

V1

Z

E(G) = γn2

|Z| = zn2

1.γ ≥ 7
24

2.z ≤ 1− 1
3(1−2γ) ≤

1
5

3.γ ≥ 1+z+z2

3(1+2z)

0.|V1|+ |V2|+ |V3| ≥ n
3(1−2γ)



Leftovers

V2

V3

V1

Z

E(G) = γn2

|Z| = zn2

1.γ ≥ 7
24

2.z ≤ 1− 1
3(1−2γ) ≤

1
5

3.γ ≥ 1+z+z2

3(1+2z)

0.|V1|+ |V2|+ |V3| ≥ n
3(1−2γ)



Leftovers

V2

V3

V1

Z

E(G) = γn2

|Z| = zn2

1.γ ≥ 7
24

2.z ≤ 1− 1
3(1−2γ) ≤
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Thank you!


