K 4-free graphs have sparse halves

lgnacy Buczek



State of the art

;Does every triangle-free graph contain a subset of :

' : : n2 >
5 vertices with at most = edges:



State of the art

;Does every triangle-free graph contain a subset of

2 vertices with at most Z- edges?

iRazborov, 2021

;Every triangle-free graph has a subset of size 5

: - 27
icontaining at most 1024n edges



State of the art

;Does every triangle-free graph contain a subset of

2 vertices with at most ”— edges?

iRazborov, 2021

;Every triangle-free graph has a subset of size 5

: - 27
icontaining at most 1024n edges

Can every triangle- free graph be made bipartite by
removmg at most o= edges7



State of the art

:Does every triangle-free graph contain a subset of '

% vertices with at most 5 edges’

ERazborov, 2021
:Every triangle-free graph has a subset of size 5

: - 27
icontaining at most 1024n edges

Can every triangle- free graph be made bipartite by
:removing at most = edges? .

Balogh, Clemen, lelcky, 2021 ,
:Every triangle-free graph can be made bipartite by :

:removing at most A~ edges



State of the art

:Does every triangle-free graph contain a subset of

% vertices with at most 5 edges’

ERazborov, 2021

:Every triangle-free graph has a subset of size 5

: - 27
icontaining at most 1024n edges

;Can every triangle- free graph be made bipartite by Can every K -free graph be made bipartite by
Eremovmg at most 5= edges7 removmg at most "— edges?

:Balogh, Clemen, lelcky, 2021

:Every triangle-free graph can be made bipartite by
Eremovmg at most 55—+ edges



State of the art

:Does every triangle-free graph contain a subset of

2 vertices with at most Z- edges?

ERazborov, 2021

:Every triangle-free graph has a subset of size %

2
: . . 27
icontaining at most 1024n edges

:Can every triangle- free graph be made bipartite by Can every K -free graph be made bipartite by

Eremovmg at most 5= edges7 removmg at most "— edges?

:Balogh, Clemen, lercky, 2021 iSudakov, 2007

:Every triangle-free graph can be made bipartite by Every triangle-free graph can be made bipartite by
Eremovmg at most ;o= edges removmg at most “g- edges



State of the art

;Does every triangle-free graph contain a subset of Does every K -free graph contain a subset of 5

% vertices with at most 5 edges’ vertlces with at most 75 edges?

ERazborov, 2021
:Every triangle-free graph has a subset of size %

2
: . . 27
icontaining at most 1024n edges

:Can every triangle- free graph be made bipartite by Can every K -free graph be made bipartite by

Eremovmg at most 5= edges7 removmg at most "— edges?

:Balogh, Clemen, lercky, 2021 iSudakov, 2007 ,
:Every triangle-free graph can be made bipartite by Every triangle-free graph can be made bipartite by :
Eremovmg at most ;o= edges removmg at most “g- edges '



State of the art

:Does every triangle-free graph contain a subset of Does every K -free graph contain a subset of 5

& vertices with at most £ edges? iivertuces with at most 2> edges?

ERazborov, 2021 EERe'her' 2022
:Every triangle-free graph has a subset of size 3 iiEvery K 4-free graph has a subset of size 5

2
:containing at most 1(2)5471 edges ::containing at most edges

;Can every triangle- free graph be made bipartite by Can every Ky-free graph be made bipartite by

Eremovmg at most o edges7 removmg at most "— edges?

:Balogh, Clemen, errcky, 2021 iSudakov, 2007

:Every triangle-free graph can be made bipartite by Every triangle-free graph can be made bipartite by
Eremovmg at most ;o= edges removmg at most “g- edges



K 4-free graphs



K 4-free graphs



K 4-free graphs




K 4-free graphs

N (v) is always triangle-free



N (v) is always triangle-free

K 4-free graphs

N (u,v)




K 4-free graphs

N (v) is always triangle-free



K 4-free graphs

N (v) is always triangle-free N (u,v) is an independent set when (u,v) € E(G)



K 4-free graphs

N (v) is always triangle-free N (u,v) is an independent set when (u,v) € E(G)

Turan's theorem

It H is K4-free, then e(H) < |Ié|2




K 4-free graphs

U
v
N (v) is always triangle-free N (u,v) is an independent set when (u,v) € F(G)
Turan's theorem Mantel's theorem
If H is K4-free, then e(H) < |Ié|2 If e(H) > #, then H contains a triangle
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2m—n

G - extremal
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e(G) > 4n?
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Ol
S



e(G) > 4n?

G - extremal, A, B C V(@) - disjoint, indpendent
sets
Then e(A, B) < |E| — 2n?

G - extremal, X C V(G), and |X| € |
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G - extremal, A, B C V(@) - disjoint, indpendent
sets
Then e(A, B) < |E| — 2n?

G - extremal, X C V(G), and |X| € |
Then e(X) > = (3|X| —n)(6|X]| —n)

37 37

> 15

In extremal graph G, if d(x) > %, then:
o ¢(N(z)) > % - 45
e There exist A, B C N(z), so that A, B - independent and |A| + |B| > %d(z) — 2n >
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In extremal graph G, if d(x) > %, then:
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sets
Then e(A, B) < |E| — 2n?

G - extremal, X C V(G), and |X| € |
Then e(X) > = (3|X| —n)(6|X]| —n)
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o ¢(N(z)) > % - 45
e There exist A, B C N(z), so that A, B - independent and |A| + |B| > %d(z) — 2n >
E(G)| = n®,v > 3
There exists © € V(G), so that d(x) > 5
A, B - independent, t = |A| + | B|

t>sd(z)—2n> (5y—2)n> 2

Ol
S

1.t<%n

36e(A, B) > 2(n* — 9nt + 18t%) > (48y — 11)n?
e(A, B) <yn? — 2n?



e(G) > 4n?

G - extremal, A, B C V(@) - disjoint, indpendent
sets
Then e(A, B) < |E| — 2n?

G - extremal, X C V(G), and |X| € |
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G - extremal, A, B C V(@) - disjoint, indpendent
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G - extremal, A, B C V(@) - disjoint, indpendent
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Then e(A, B) < |E| — 2n?

G - extremal, X C V(G), and |X| € |
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In extremal graph G, if d(x) > %, then:
o ¢(N(z)) > % - 45
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G - extremal, A, B C V(@) - disjoint, indpendent
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Then e(A, B) < |E| — 2n?

G - extremal, X C V(G), and |X| € |
Then e(X) > = (3|X| —n)(6|X]| —n)
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In extremal graph G, if d(x) > %, then:
o ¢(N(z)) > % - 45
e There exist A, B C N(z), so that A, B - independent and |A| + |B| > %d(z) — 2n >
E(G)| = n®,v > 3
There exists © € V(G), so that d(x) > 5
A, B - independent, t = |A| + | B|

t>sd(z)—2n> (5y—2)n> 2

Ol
S

1.t<%n 2. t> %

36e(A, B) > 2(n? — Int + 18t2) > (48y — 11)n?  (y—
e(A, B) <yn? — 2n? 0<2
418y — 11 < 36y — 8







hree independent sets
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hree independent sets

G - extremal with yn? edges
Then there exist three disjoint independent subsets Vi, V5, V3, so that |[Vi| + [Va| + |V3| >

3(1— 27)

T - set of all triangles in GG

tzy - number of triangles in G containing the edge (z,y)

t, - number of triangles in G containing x (or of the edges induced by N(x))
2

N(ZIZ,Z) N(y,Z)

ta:y =+ tyz =+ tza: Z 3(122W)

2ogtevttysttee 4
T — 3(1-2)

4t(a:)2
ZyEN(aB) twy =~ d(x)
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E(G) = yn?

| Z| = 2n?

0.|Vi| + [Va| + |V3] > =2
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E(G) = yn?

| Z| = 2n?

0.|Vi| + [Va| + |V3] > =2

3(1—27)
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| Z| = 2n?

0.|[Vi| + [Va| + |V3] >
1y > o Gy
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3(1— 27)

1
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| eftovers

E(G) = yn?
| Z| = 2n?

@ 0.[Vi] + [Va| + |V3| = 3(1— 27)

1-72ﬂ
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1
< 3

3(1— 2v)

1—|—z—|—z
3.7 2 31522

In extremal graph G, if d(x) > %, then:
n2 d(x
» c(N@) > %5 - 75005

e There exist A, B C N(z), so that A, B - independent and |A| + |B| > 3d(z) — 2n
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| Z| = 2n?

@ 0.[Vi] + [Va| + |V3| = 3(1— 27)
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In extremal graph G, if d(x) > %, then:
n2 d(x
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e There exist A, B C N(z), so that A, B - independent and |A| + |B| > 3d(z) — 2n
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If x € Z, then there exists 7 so that
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Almost there...

If x € Z, then there exists 7 so that
IN(z)NV;| < %n

G - extremal
Al, AQ, Ag - partition of G

e(A1) +e(Ay) + e(As) < wn? for some w < =

60
Then ¢(G) > (5 — Z3w)n?

3
T C A IT| =% A
n < o(Ai) + e(A, T) + o(T)



Finish

If x € Z, then there exists 7 so that
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G - extremal

Al, AQ, Ag - partition of G

e(A1) + e(Az) + e(A3) < wn? for some w < &
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If x € Z, then there exists 7 so that
IN(z)NV;| < %n

G - extremal

Al, AQ, Ag - partition of G

e(A1) + e(Az) + e(A3) < wn? for some w < &
Then ¢(G) > (5 — Z3w)n?
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n? =e(A;) + e(As)
? < nlZ) +e(2)
6y > 12 — 58w

Finish
If x € Z, then there exists 7 so that

IN(z)NV;| < %n

G - extremal
Al, AQ, Ag - partition of G
e(A1) + e(As) + e(Asz) < wn? for some w <

2 _
yn” = e(G) Then e(G) > (% — %—gw)frﬂ
1—|—z—|—z2
3.7 2 31522
1 z 22
ivs3-1+3%
3

1
60



Finish
If x € Z, then there exists 7 so that

IN(z)NV;| < %n

G - extremal
Al, AQ, Ag - partition of G
e(A1) + e(As) + e(Asz) < wn? for some w <

2 _
= e(G) Then e(G) > (% — %—gw)frﬂ
1—|—z—|—z2
3.7 2 3(1122)
1 Z 22
dys3-1+35
3

e
2 1.2V,2 7.2 1.2
(17z+ 52 m- < 162N < g

12 — (9 — 55)z < 12 — 58w < 12 — 9z + 22

1
60



Finish
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