K_{4}-free graphs have sparse halves

Ignacy Buczek

State of the art
Does every triangle-free graph contain a subset of $\frac{n}{2}$ vertices with at most $\frac{n^{2}}{50}$ edges?

State of the art
Does every triangle-free graph contain a subset of $\frac{n}{2}$ vertices with at most $\frac{n^{2}}{50}$ edges?
:Razborov, 2021
Every triangle-free graph has a subset of size $\frac{n}{2}$ containing at most $\frac{27}{1024} n^{2}$ edges

State of the art
Does every triangle-free graph contain a subset of $\frac{n}{2}$ vertices with at most $\frac{n^{2}}{50}$ edges?
:Razborov, 2021
Every triangle-free graph has a subset of size $\frac{n}{2}$ containing at most $\frac{27}{1024} n^{2}$ edges

Can every triangle-free graph be made bipartite by removing at most $\frac{n^{2}}{25}$ edges?

State of the art
Does every triangle-free graph contain a subset of
$\frac{n}{2}$ vertices with at most $\frac{n^{2}}{50}$ edges?
Razborov, 2021
Every triangle-free graph has a subset of size $\frac{n}{2}$ containing at most $\frac{27}{1024} n^{2}$ edges

Can every triangle-free graph be made bipartite by removing at most $\frac{n^{2}}{25}$ edges?
Balogh, Clemen, Lidický, 2021
Every triangle-free graph can be made bipartite by removing at most $\frac{n^{2}}{23.5}$ edges

Does every triangle-free graph contain a subset of
$\frac{n}{2}$ vertices with at most $\frac{n^{2}}{50}$ edges?
Razborov, 2021
Every triangle-free graph has a subset of size $\frac{n}{2}$ containing at most $\frac{27}{1024} n^{2}$ edges

Can every triangle-free graph be made bipartite by Can every K_{4}-free graph be made bipartite by removing at most $\frac{n^{2}}{25}$ edges? removing at most $\frac{n^{2}}{9}$ edges?
Balogh, Clemen, Lidický, 2021 Every triangle-free graph can be made bipartite by removing at most $\frac{n^{2}}{23.5}$ edges

Does every triangle-free graph contain a subset of
$\frac{n}{2}$ vertices with at most $\frac{n^{2}}{50}$ edges?
Razborov, 2021
Every triangle-free graph has a subset of size $\frac{n}{2}$ containing at most $\frac{27}{1024} n^{2}$ edges

Can every triangle-free graph be made bipartite by :Can every K_{4}-free graph be made bipartite by removing at most $\frac{n^{2}}{25}$ edges?
Balogh, Clemen, Lidický, 2021
Every triangle-free graph can be made bipartite by removing at most $\frac{n^{2}}{23.5}$ edges
removing at most $\frac{n^{2}}{9}$ edges?
Sudakov, 2007
Every triangle-free graph can be made bipartite by removing at most $\frac{n^{2}}{9}$ edges

State of the art

Does every triangle-free graph contain a subset of Does every K_{4}-free graph contain a subset of $\frac{n}{2}$ $\frac{n}{2}$ vertices with at most $\frac{n^{2}}{50}$ edges?
vertices with at most $\frac{n^{2}}{18}$ edges?
Razborov, 2021
Every triangle-free graph has a subset of size $\frac{n}{2}$ containing at most $\frac{27}{1024} n^{2}$ edges

Can every triangle-free graph be made bipartite by :Can every K_{4}-free graph be made bipartite by removing at most $\frac{n^{2}}{25}$ edges?
Balogh, Clemen, Lidický, 2021
Every triangle-free graph can be made bipartite by removing at most $\frac{n^{2}}{23.5}$ edges
removing at most $\frac{n^{2}}{9}$ edges?
Sudakov, 2007
Every triangle-free graph can be made bipartite by removing at most $\frac{n^{2}}{9}$ edges

State of the art

Does every triangle-free graph contain a subset of :Does every K_{4}-free graph contain a subset of $\frac{n}{2}$ $\frac{n}{2}$ vertices with at most $\frac{n^{2}}{50}$ edges?
Razborov, 2021
Every triangle-free graph has a subset of size $\frac{n}{2}$ containing at most $\frac{27}{1024} n^{2}$ edges
vertices with at most $\frac{n^{2}}{18}$ edges?
Reiher, 2022
Every K_{4}-free graph has a subset of size $\frac{n}{2}$
containing at most $\frac{n^{2}}{18}$ edges

Can every triangle-free graph be made bipartite by removing at most $\frac{n^{2}}{25}$ edges?
Balogh, Clemen, Lidický, 2021
Every triangle-free graph can be made bipartite by removing at most $\frac{n^{2}}{23.5}$ edges

Can every K_{4}-free graph be made bipartite by removing at most $\frac{n^{2}}{9}$ edges?
Sudakov, 2007
Every triangle-free graph can be made bipartite by removing at most $\frac{n^{2}}{9}$ edges
K_{4}-free graphs

K_{4}-free graphs

K_{4}-free graphs

K_{4}-free graphs

$N(v)$ is always triangle-free
K_{4}-free graphs

$N(v)$ is always triangle-free

K_{4}-free graphs

$N(v)$ is always triangle-free

K_{4}-free graphs

$N(v)$ is always triangle-free

$N(u, v)$ is an independent set when $(u, v) \in E(G)$

K_{4}-free graphs

$N(v)$ is always triangle-free

$N(u, v)$ is an independent set when $(u, v) \in E(G)$

Turán's theorem
If H is K_{4}-free, then $e(H) \leq \frac{|H|^{2}}{3}$

K_{4}-free graphs

$N(v)$ is always triangle-free

Turán's theorem
If H is K_{4}-free, then $e(H) \leq \frac{|H|^{2}}{3}$

Mantel's theorem
If $e(H) \geq \frac{|H|^{2}}{4}$, then H contains a triangle

Strategy

If a graph G on n vertices has the property that every set $X \subseteq V(G)$ of size $X=\left\lfloor\frac{n}{2}\right\rfloor$ spans at least $\frac{n^{2}}{18}$ edges, then either G contains a K_{4} or n is divisible by 6 and G is a tripartite Turán graph.

Strategy

If a graph G on n vertices has the property that every set $X \subseteq V(G)$ of size $X=\left\lfloor\frac{n}{2}\right\rfloor$ spans at least $\frac{n^{2}}{18}$ edges, then either G contains a K_{4} or n is divisible by 6 and G is a tripartite Turán graph.

Graph G is extremal if every set $X \subseteq V(G)$ of size $\left\lfloor\frac{n}{2}\right\rfloor$ spans at least $\frac{n^{2}}{18}$ edges.

Strategy

If a graph G on n vertices has the property that every set $X \subseteq V(G)$ of size $X=\left\lfloor\frac{n}{2}\right\rfloor$ spans at least $\frac{n^{2}}{18}$ edges, then either G contains a K_{4} or n is divisible by 6 and G is a tripartite Turán graph.

Graph G is extremal if every set $X \subseteq V(G)$ of size $\left\lfloor\frac{n}{2}\right\rfloor$ spans at least $\frac{n^{2}}{18}$ edges.
Let G be an extremal graph on n vertices, and n is even. Then n must be dividable by 3 and G must be a complete tripartite graph.

If a graph G on n vertices has the property that every set $X \subseteq V(G)$ of size $X=\left\lfloor\frac{n}{2}\right\rfloor$ spans at least $\frac{n^{2}}{18}$ edges, then either G contains a K_{4} or n is divisible by 6 and G is a tripartite Turán graph.

Graph G is extremal if every set $X \subseteq V(G)$ of size $\left\lfloor\frac{n}{2}\right\rfloor$ spans at least $\frac{n^{2}}{18}$ edges.
Let G be an extremal graph on n vertices, and n is even. Then n must be dividable by 3 and G must be a complete tripartite graph.

Strategy

If a graph G on n vertices has the property that every set $X \subseteq V(G)$ of size $X=\left\lfloor\frac{n}{2}\right\rfloor$ spans at least $\frac{n^{2}}{18}$ edges, then either G contains a K_{4} or n is divisible by 6 and G is a tripartite Turán graph.

Graph G is extremal if every set $X \subseteq V(G)$ of size $\left\lfloor\frac{n}{2}\right\rfloor$ spans at least $\frac{n^{2}}{18}$ edges.
Let G be an extremal graph on n vertices, and n is even. Then n must be dividable by 3 and G must be a complete tripartite graph.

Strategy

If a graph G on n vertices has the property that every set $X \subseteq V(G)$ of size $X=\left\lfloor\frac{n}{2}\right\rfloor$ spans at least $\frac{n^{2}}{18}$ edges, then either G contains a K_{4} or n is divisible by 6 and G is a tripartite Turán graph.

Graph G is extremal if every set $X \subseteq V(G)$ of size $\left\lfloor\frac{n}{2}\right\rfloor$ spans at least $\frac{n^{2}}{18}$ edges.
Let G be an extremal graph on n vertices, and n is even. Then n must be dividable by 3 and G must be a complete tripartite graph.

Strategy

If a graph G on n vertices has the property that every set $X \subseteq V(G)$ of size $X=\left\lfloor\frac{n}{2}\right\rfloor$ spans at least $\frac{n^{2}}{18}$ edges, then either G contains a K_{4} or n is divisible by 6 and G is a tripartite Turán graph.

Graph G is extremal if every set $X \subseteq V(G)$ of size $\left\lfloor\frac{n}{2}\right\rfloor$ spans at least $\frac{n^{2}}{18}$ edges.
Let G be an extremal graph on n vertices, and n is even. Then n must be dividable by 3 and G must be a complete tripartite graph.

Strategy

If a graph G on n vertices has the property that every set $X \subseteq V(G)$ of size $X=\left\lfloor\frac{n}{2}\right\rfloor$ spans at least $\frac{n^{2}}{18}$ edges, then either G contains a K_{4} or n is divisible by 6 and G is a tripartite Turán graph.

Graph G is extremal if every set $X \subseteq V(G)$ of size $\left\lfloor\frac{n}{2}\right\rfloor$ spans at least $\frac{n^{2}}{18}$ edges.
Let G be an extremal graph on n vertices, and n is even. Then n must be dividable by 3 and G must be a complete tripartite graph.

$$
\frac{n}{3} \cdot\left\lfloor\frac{n}{6}\right\rfloor<\frac{n^{2}}{18}
$$

Strategy

If a graph G on n vertices has the property that every set $X \subseteq V(G)$ of size $X=\left\lfloor\frac{n}{2}\right\rfloor$ spans at least $\frac{n^{2}}{18}$ edges, then either G contains a K_{4} or n is divisible by 6 and G is a tripartite Turán graph.

Graph G is extremal if every set $X \subseteq V(G)$ of size $\left\lfloor\frac{n}{2}\right\rfloor$ spans at least $\frac{n^{2}}{18}$ edges.
Let G be an extremal graph on n vertices, and n is even. Then n must be dividable by 3 and G must be a complete tripartite graph.

$$
\alpha(G) \leq \frac{n}{3}
$$

```
G-extremal
X\subseteqV(G), |X | \in[\frac{1}{3}n;\frac{1}{2}n]
Then }e(X)\geq\frac{1}{18}(3|X|-n)(6|X|-n
```


$$
\alpha(G) \leq \frac{n}{3}
$$

$$
\begin{aligned}
& G \text { - extremal } \\
& X \subseteq V(G),|X| \in\left[\frac{1}{3} n ; \frac{1}{2} n\right] \\
& \text { Then } e(X) \geq \frac{1}{18}(3|X|-n)(6|X|-n)
\end{aligned}
$$

$$
\alpha(G) \leq \frac{n}{3}
$$

$$
\begin{aligned}
& G \text { - extremal } \\
& X \subseteq V(G),|X| \in\left[\frac{1}{3} n ; \frac{1}{2} n\right] \\
& \text { Then } e(X) \geq \frac{1}{18}(3|X|-n)(6|X|-n)
\end{aligned}
$$

1. There is a set $B \subseteq V(G) \backslash X$ of size $|B|=\frac{1}{2} n$, such that for every $b \in B|N(b) \cap X|>\frac{2}{3}|X|$

$$
\alpha(G) \leq \frac{n}{3}
$$

$$
\begin{aligned}
& G \text {-extremal } \\
& X \subseteq V(G),|X| \in\left[\frac{1}{3} n ; \frac{1}{2} n\right] \\
& \text { Then } e(X) \geq \frac{1}{18}(3|X|-n)(6|X|-n)
\end{aligned}
$$

1. There is a set $B \subseteq V(G) \backslash X$ of size $|B|=\frac{1}{2} n$, such that for every $b \in B|N(b) \cap X|>\frac{2}{3}|X|$

$$
\alpha(G) \leq \frac{n}{3}
$$

$$
\begin{aligned}
& G \text { - extremal } \\
& X \subseteq V(G),|X| \in\left[\frac{1}{3} n ; \frac{1}{2} n\right] \\
& \text { Then } e(X) \geq \frac{1}{18}(3|X|-n)(6|X|-n)
\end{aligned}
$$

1. There is a set $B \subseteq V(G) \backslash X$ of size $|B|=\frac{1}{2} n$, such that for every $b \in B|N(b) \cap X|>\frac{2}{3}|X|$

$$
\alpha(G) \leq \frac{n}{3}
$$

$$
\begin{aligned}
& G \text {-extremal } \\
& X \subseteq V(G),|X| \in\left[\frac{1}{3} n ; \frac{1}{2} n\right] \\
& \text { Then } e(X) \geq \frac{1}{18}(3|X|-n)(6|X|-n)
\end{aligned}
$$

1. There is a set $B \subseteq V(G) \backslash X$ of size $|B|=\frac{1}{2} n$, such that for every $b \in B|N(b) \cap X|>\frac{2}{3}|X|$

$$
\alpha(G) \leq \frac{n}{3}
$$

$$
\begin{aligned}
& G \text { - extremal } \\
& X \subseteq V(G),|X| \in\left[\frac{1}{3} n ; \frac{1}{2} n\right] \\
& \text { Then } e(X) \geq \frac{1}{18}(3|X|-n)(6|X|-n)
\end{aligned}
$$

1. There is a set $B \subseteq V(G) \backslash X$ of size $|B|=\frac{1}{2} n$, such that for every $b \in B|N(b) \cap X|>\frac{2}{3}|X|$

$$
\alpha(G) \leq \frac{n}{3}
$$

$$
\begin{aligned}
& G \text { - extremal } \\
& X \subseteq V(G),|X| \in\left[\frac{1}{3} n ; \frac{1}{2} n\right] \\
& \text { Then } e(X) \geq \frac{1}{18}(3|X|-n)(6|X|-n)
\end{aligned}
$$

1. There is a set $B \subseteq V(G) \backslash X$ of size $|B|=\frac{1}{2} n$, such that for every $b \in B|N(b) \cap X|>\frac{2}{3}|X|$

$$
\alpha(G) \leq \frac{n}{3}
$$

$$
\begin{aligned}
& G \text { - extremal } \\
& X \subseteq V(G),|X| \in\left[\frac{1}{3} n ; \frac{1}{2} n\right] \\
& \text { Then } e(X) \geq \frac{1}{18}(3|X|-n)(6|X|-n)
\end{aligned}
$$

1. There is a set $B \subseteq V(G) \backslash X$ of size $|B|=\frac{1}{2} n$, such that for every $b \in B|N(b) \cap X|>\frac{2}{3}|X|$

$$
\alpha(G) \leq \frac{n}{3}
$$

$$
\begin{aligned}
& G \text {-extremal } \\
& X \subseteq V(G),|X| \in\left[\frac{1}{3} n ; \frac{1}{2} n\right] \\
& \text { Then } e(X) \geq \frac{1}{18}(3|X|-n)(6|X|-n)
\end{aligned}
$$

1. There is a set $B \subseteq V(G) \backslash X$ of size $|B|=\frac{1}{2} n$, such that for every $b \in B|N(b) \cap X|>\frac{2}{3}|X|$

$$
\alpha(G) \leq \frac{n}{3}
$$

```
G- extremal
X\subseteqV(G), |X | [\frac{1}{3}n;\frac{1}{2}n]
Then }e(X)\geq\frac{1}{18}(3|X|-n)(6|X|-n
```

1. There is a set $B \subseteq V(G) \backslash X$ of size $|B|=\frac{1}{2} n$, such that for every $b \in B|N(b) \cap X|>\frac{2}{3}|X|$

2. There is a set A of size $\frac{1}{2} n-|X|$ so that $|N(a) \cap X| \leq \frac{2}{3}|X|$ for every $a \in A$

$$
\alpha(G) \leq \frac{n}{3}
$$

```
G- extremal
X\subseteqV(G), |X | [\frac{1}{3}n;\frac{1}{2}n]
Then }e(X)\geq\frac{1}{18}(3|X|-n)(6|X|-n
```

1. There is a set $B \subseteq V(G) \backslash X$ of size $|B|=\frac{1}{2} n$, such that for every $b \in B|N(b) \cap X|>\frac{2}{3}|X|$

2. There is a set A of size $\frac{1}{2} n-|X|$ so that $|N(a) \cap X| \leq \frac{2}{3}|X|$ for every $a \in A$

$$
\frac{n^{2}}{18} \leq e(A \cup X) \leq e(A)+\frac{2}{3}|A||X|+e(X)
$$

$$
\alpha(G) \leq \frac{n}{3}
$$

```
G- extremal
X\subseteqV(G), |X | [\frac{1}{3}n;\frac{1}{2}n]
Then }e(X)\geq\frac{1}{18}(3|X|-n)(6|X|-n
```

1. There is a set $B \subseteq V(G) \backslash X$ of size $|B|=\frac{1}{2} n$, such that for every $b \in B|N(b) \cap X|>\frac{2}{3}|X|$

2. There is a set A of size $\frac{1}{2} n-|X|$ so that $|N(a) \cap X| \leq \frac{2}{3}|X|$ for every $a \in A$

$$
\frac{n^{2}}{18} \leq e(A \cup X) \leq e(A)+\frac{2}{3}|A||X|+e(X) \quad e(A) \leq \frac{1}{3}|A|^{2} \leq \frac{1}{3}|A||X|
$$

$$
\alpha(G) \leq \frac{n}{3}
$$

```
G- extremal
X\subseteqV(G), |X | [\frac{1}{3}n;\frac{1}{2}n]
Then }e(X)\geq\frac{1}{18}(3|X|-n)(6|X|-n
```

1. There is a set $B \subseteq V(G) \backslash X$ of size $|B|=\frac{1}{2} n$, such that for every $b \in B|N(b) \cap X|>\frac{2}{3}|X|$

2. There is a set A of size $\frac{1}{2} n-|X|$ so that $|N(a) \cap X| \leq \frac{2}{3}|X|$ for every $a \in A$

$$
\begin{aligned}
& \frac{n^{2}}{18} \leq e(A \cup X) \leq e(A)+\frac{2}{3}|A||X|+e(X) \quad e(A) \leq \frac{1}{3}|A|^{2} \leq \frac{1}{3}|A||X| \\
& e(X) \geq \frac{n^{2}}{18}-|A||X|=\frac{n^{2}}{18}-\left(\frac{1}{2} n-|X|\right)|X|=\frac{1}{18}(3|X|-n)(6|X|-n)
\end{aligned}
$$

$$
\alpha(G) \leq \frac{n}{3}
$$

$$
\alpha(G) \leq \frac{n}{3}
$$

$e(G)$ should be large, right?
G - \triangle-free, m, q - integers such that $q \geq \frac{2}{9} m^{2}$ and $n \geq m$
Every $X \subset V(G)$ of size m spans at least q edges. Then $e(G) \geq \frac{n q}{2 m-n}$

$e(G)$ should be large, right?

G - \triangle-free, m, q - integers such that $q \geq \frac{2}{9} m^{2}$ and (n, m, q, G) - minimal counterexample w. r. t. n $n \geq m$
Every $X \subset V(G)$ of size m spans at least q edges.
Then $e(G) \geq \frac{n q}{2 m-n}$
G - \triangle-free, m, q - integers such that $q \geq \frac{2}{9} m^{2}$ and (n, m, q, G) - minimal counterexample w. r. t. n $n \geq m$
Every $X \subset V(G)$ of size m spans at least q edges.
Then $e(G) \geq \frac{n q}{2 m-n}$

1. there exists x, so that $d(x) \leq n-m$

G - \triangle-free, m, q - integers such that $q \geq \frac{2}{9} m^{2}$ and (n, m, q, G) - minimal counterexample w. r. t. n $n \geq m$
Every $X \subset V(G)$ of size m spans at least q edges.
Then $e(G) \geq \frac{n q}{2 m-n}$
2. there exists x, so that $d(x) \leq n-m$

Every X has at least $q-d$ edges
G - \triangle-free, m, q - integers such that $q \geq \frac{2}{9} m^{2}$ and (n, m, q, G) - minimal counterexample w. r. t. n $n \geq m$
Every $X \subset V(G)$ of size m spans at least q edges.
Then $e(G) \geq \frac{n q}{2 m-n}$

1. there exists x, so that $d(x) \leq n-m$

Every X has at least $q-d$ edges
$q-d>\frac{2(m-1)^{2}}{9}$
G - \triangle-free, m, q - integers such that $q \geq \frac{2}{9} m^{2}$ and (n, m, q, G) - minimal counterexample w. r. t. n $n \geq m$
Every $X \subset V(G)$ of size m spans at least q edges.
Then $e(G) \geq \frac{n q}{2 m-n}$

1. there exists x, so that $d(x) \leq n-m$

Every X has at least $q-d$ edges
$q-d>\frac{2(m-1)^{2}}{9}$
$\left(n-1, m-1, q-d, G^{\prime}\right)$
G - \triangle-free, m, q - integers such that $q \geq \frac{2}{9} m^{2}$ and (n, m, q, G) - minimal counterexample w. r. t. n $n \geq m$
Every $X \subset V(G)$ of size m spans at least q edges.
Then $e(G) \geq \frac{n q}{2 m-n}$

1. there exists x, so that $d(x) \leq n-m$

Every X has at least $q-d$ edges
$q-d>\frac{2(m-1)^{2}}{9}$
$\left(n-1, m-1, q-d, G^{\prime}\right)$
$e(G)=e\left(G^{\prime}\right)+d \geq \frac{(n-1)(q-d)}{2 m-n-1}+d>\frac{n q}{2 m-n}$

$e(G)$ should be large, right?

G - \triangle-free, m, q - integers such that $q \geq \frac{2}{9} m^{2}$ and (n, m, q, G) - minimal counterexample w. r. t. n $n \geq m$
Every $X \subset V(G)$ of size m spans at least q edges. 2 2. $d(x)>n-m$ for every x
Then $e(G) \geq \frac{n q}{2 m-n}$

1. there exists x, so that $d(x) \leq n-m$

Every X has at least $q-d$ edges
$q-d>\frac{2(m-1)^{2}}{9}$
$\left(n-1, m-1, q-d, G^{\prime}\right)$
$e(G)=e\left(G^{\prime}\right)+d \geq \frac{(n-1)(q-d)}{2 m-n-1}+d>\frac{n q}{2 m-n}$

$e(G)$ should be large, right?

G - \triangle-free, m, q - integers such that $q \geq \frac{2}{9} m^{2}$ and (n, m, q, G) - minimal counterexample w. r. t. n $n \geq m$
Every $X \subset V(G)$ of size m spans at least q edges. 2. $d(x)>n-m$ for every x Then $e(G) \geq \frac{n q}{2 m-n}$

1. there exists x, so that $d(x) \leq n-m$

Every X has at least $q-d$ edges
$q-d>\frac{2(m-1)^{2}}{9}$
$\left(n-1, m-1, q-d, G^{\prime}\right)$
$e(G)=e\left(G^{\prime}\right)+d \geq \frac{(n-1)(q-d)}{2 m-n-1}+d>\frac{n q}{2 m-n}$

$e(G)$ should be large, right?

G - \triangle-free, m, q - integers such that $q \geq \frac{2}{9} m^{2}$ and (n, m, q, G) - minimal counterexample w. r. t. n $n \geq m$
Every $X \subset V(G)$ of size m spans at least q edges.
2. $d(x)>n-m$ for every x

Then $e(G) \geq \frac{n q}{2 m-n}$

1. there exists x, so that $d(x) \leq n-m$

$$
q \leq e(R)=e(V \backslash N(x))+e(R \cap N(x), V \backslash N(x))
$$

Every X has at least $q-d$ edges
$q-d>\frac{2(m-1)^{2}}{9}$
$\left(n-1, m-1, q-d, G^{\prime}\right)$
$e(G)=e\left(G^{\prime}\right)+d \geq \frac{(n-1)(q-d)}{2 m-n-1}+d>\frac{n q}{2 m-n}$

$e(G)$ should be large, right?

G - \triangle-free, m, q - integers such that $q \geq \frac{2}{9} m^{2}$ and (n, m, q, G) - minimal counterexample w. r. t. n $n \geq m$
Every $X \subset V(G)$ of size m spans at least q edges.
2. $d(x)>n-m$ for every x

Then $e(G) \geq \frac{n q}{2 m-n}$

1. there exists x, so that $d(x) \leq n-m$

Every X has at least $q-d$ edges

$$
\begin{aligned}
& q \leq e(R)=e(V \backslash N(x))+e(R \cap N(x), V \backslash N(x)) \\
& q \leq e(V \backslash N(x))+\frac{d(x)-(n-m)}{d(x)} e(N(x), V \backslash N(x))
\end{aligned}
$$

$$
q-d>\frac{2(m-1)^{2}}{9}
$$

$$
\left(n-1, m-1, q-d, G^{\prime}\right)
$$

$$
e(G)=e\left(G^{\prime}\right)+d \geq \frac{(n-1)(q-d)}{2 m-n-1}+d>\frac{n q}{2 m-n}
$$

$e(G)$ should be large, right?

G - \triangle-free, m, q - integers such that $q \geq \frac{2}{9} m^{2}$ and (n, m, q, G) - minimal counterexample w. r. t. n $n \geq m$
Every $X \subset V(G)$ of size m spans at least q edges.
2. $d(x)>n-m$ for every x

Then $e(G) \geq \frac{n q}{2 m-n}$

1. there exists x, so that $d(x) \leq n-m$

Every X has at least $q-d$ edges
$q-d>\frac{2(m-1)^{2}}{9}$
$\left(n-1, m-1, q-d, G^{\prime}\right)$
$e(G)=e\left(G^{\prime}\right)+d \geq \frac{(n-1)(q-d)}{2 m-n-1}+d>\frac{n q}{2 m-n}$

$$
\begin{aligned}
& q \leq e(R)=e(V \backslash N(x))+e(R \cap N(x), V \backslash N(x)) \\
& q \leq e(V \backslash N(x))+\frac{d(x)-(n-m)}{d(x)} e(N(x), V \backslash N(x)) \\
& \frac{n-m}{d(x)} e(N(x), V \backslash N(x)) \leq e(G)-q
\end{aligned}
$$

$e(G)$ should be large, right?

G - \triangle-free, m, q - integers such that $q \geq \frac{2}{9} m^{2}$ and (n, m, q, G) - minimal counterexample w. r. t. n $n \geq m$
Every $X \subset V(G)$ of size m spans at least q edges. Then $e(G) \geq \frac{n q}{2 m-n}$

1. there exists x, so that $d(x) \leq n-m$

Every X has at least $q-d$ edges
$q-d>\frac{2(m-1)^{2}}{9}$
$\left(n-1, m-1, q-d, G^{\prime}\right)$
$e(G)=e\left(G^{\prime}\right)+d \geq \frac{(n-1)(q-d)}{2 m-n-1}+d>\frac{n q}{2 m-n}$

$$
\begin{aligned}
& q \leq e(R)=e(V \backslash N(x))+e(R \cap N(x), V \backslash N(x)) \\
& q \leq e(V \backslash N(x))+\frac{d(x)-(n-m)}{d(x)} e(N(x), V \backslash N(x)) \\
& \frac{n-m}{d(x)} e(N(x), V \backslash N(x)) \leq e(G)-q
\end{aligned}
$$

Sum over x

$$
2(n-m) e(G) \leq n(e(G)-q)
$$

Lower bounds on $e(G)$
G - extremal, $A, B \subseteq V(G)$ - disjoint, indpendent sets
Then $\frac{2}{9} n^{2}+e(A, B) \leq|E|$

Lower bounds on $e(G)$
G - extremal, $A, B \subseteq V(G)$ - disjoint, indpendent
sets
Then $\frac{2}{9} n^{2}+e(A, B) \leq|E|$

$$
\begin{aligned}
& |A|+|Z|=\frac{n}{2} \\
& \frac{n^{2}}{18} \leq e(A, Z)+e(Z)
\end{aligned}
$$

Lower bounds on $e(G)$
G - extremal, $A, B \subseteq V(G)$ - disjoint, indpendent sets
Then $\frac{2}{9} n^{2}+e(A, B) \leq|E|$

$$
\begin{aligned}
& |A|+|Z|=\frac{n}{2} \\
& \frac{n^{2}}{18} \leq e(A, Z)+e(Z)
\end{aligned}
$$

$$
\frac{n^{2}}{18} \leq \frac{\frac{1}{2} n-|A|}{|C|} e(A, C)+\left(\frac{\frac{1}{2} n-|A|}{|C|}\right)^{2} e(C)
$$

Lower bounds on $e(G)$
G - extremal, $A, B \subseteq V(G)$ - disjoint, indpendent sets
Then $\frac{2}{9} n^{2}+e(A, B) \leq|E|$

$$
\begin{aligned}
& |A|+|Z|=\frac{n}{2} \\
& \frac{n^{2}}{18} \leq e(A, Z)+e(Z) \\
& \frac{n^{2}}{18} \leq \frac{\frac{1}{2} n-|A|}{|C|} e(A, C)+\left(\frac{\frac{1}{2} n-|A|}{|C|}\right)^{2} e(C) \\
& \frac{n^{2}|C|}{9(n-2|A|)} \leq e(A, C)+\frac{\frac{1}{2} n-|A|}{|C|} e(C)
\end{aligned}
$$

Lower bounds on $e(G)$
G - extremal, $A, B \subseteq V(G)$ - disjoint, indpendent sets
Then $\frac{2}{9} n^{2}+e(A, B) \leq|E|$

$$
\begin{aligned}
& |A|+|Z|=\frac{n}{2} \\
& \frac{n^{2}}{18} \leq e(A, Z)+e(Z) \\
& \frac{n^{2}}{18} \leq \frac{\frac{1}{2} n-|A|}{|C|} e(A, C)+\left(\frac{\frac{1}{2} n-|A|}{|C|}\right)^{2} e(C) \\
& \frac{n^{2}|C|}{9(n-2|A|)} \leq e(A, C)+\frac{\frac{1}{2} n-|A|}{|C|} e(C) \\
& \frac{n^{2}|C|}{9}\left(\frac{1}{n-2|A|}+\frac{1}{n-2|B|}\right) \leq|E|-e(A, B)
\end{aligned}
$$

Lower bounds on $e(G)$
G-extremal, $A, B \subseteq V(G)$ - disjoint, indpendent sets
Then $\frac{2}{9} n^{2}+e(A, B) \leq|E|$

$$
\begin{aligned}
& |A|+|Z|=\frac{n}{2} \\
& \frac{n^{2}}{18} \leq e(A, Z)+e(Z)
\end{aligned}
$$

$$
\frac{n^{2}}{18} \leq \frac{\frac{1}{2} n-|A|}{|C|} e(A, C)+\left(\frac{\frac{1}{2} n-|A|}{|C|}\right)^{2} e(C)
$$

$$
\frac{n^{2}|C|}{9(n-2|A|)} \leq e(A, C)+\frac{\frac{1}{2} n-|A|}{|C|} e(C)
$$

$$
\frac{n^{2}|C|}{9}\left(\frac{1}{n-2|A|}+\frac{1}{n-2|B|}\right) \leq|E|-e(A, B)
$$

$$
\frac{n^{2}|C|}{9} \frac{2}{|C|} \leq|E|-e(A, B)
$$

G - \triangle-free, m - natural
Every $X \subseteq G$ of size m spans at least $\frac{2}{9} m^{2}$ edges
There exist $A, B \subseteq G, A, B$ independent so that $t=|A|+|B|, n \leq \frac{m}{3}+\frac{3 t}{4}$

$$
e(G) \geq \frac{7}{24} n^{2}-\text { preparations }
$$

G - \triangle-free, m - natural
Every $X \subseteq G$ of size m spans at least $\frac{2}{9} m^{2}$ edges
There exist $A, B \subseteq G, A, B$ independent so that $t=|A|+|B|, n \leq \frac{m}{3}+\frac{3 t}{4}$

$$
e(G) \geq \frac{7}{24} n^{2}-\text { preparations }
$$

G - \triangle-free, m - natural
Every $X \subseteq G$ of size m spans at least $\frac{2}{9} m^{2}$ edges
There exist $A, B \subseteq G, A, B$ independent so that $t=|A|+|B|, n \leq \frac{m}{3}+\frac{3 t}{4}$

$$
e(G) \geq \frac{7}{24} n^{2}-\text { preparations }
$$

G - \triangle-free, m, q - integers such that $q \geq \frac{2}{9} m^{2}$ and G - \triangle-free, m - natural $n \geq m \quad$ Every $X \subseteq G$ of size m spans at least $\frac{2}{9} m^{2}$ edges Every $X \subset V(G)$ of size m spans at least q edges. There exist $A, B \subseteq G$, so that A, B disjoint, Then $e(G) \geq \frac{n q}{2 m-n}$ independent and $t=|A|+|B|, n \leq \frac{m}{3}+\frac{3 t}{4}$

$$
e(G) \geq \frac{7}{24} n^{2}-\text { preparations }
$$

G - \triangle-free, m, q - integers such that $q \geq \frac{2}{9} m^{2}$ and G - \triangle-free, m - natural $n \geq m$

Every $X \subseteq G$ of size m spans at least $\frac{2}{9} m^{2}$ edges
Every $X \subset V(G)$ of size m spans at least q edges. There exist $A, B \subseteq G$, so that A, B disjoint, Then $e(G) \geq \frac{n q}{2 m-n}$

$$
e(G) \geq \frac{7}{24} n^{2} \text { - preparations }
$$

G - \triangle-free, m, q - integers such that $q \geq \frac{2}{9} m^{2}$ and G - \triangle-free, m - natural $n \geq m$

Every $X \subseteq G$ of size m spans at least $\frac{2}{9} m^{2}$ edges
Every $X \subset V(G)$ of size m spans at least q edges. There exist $A, B \subseteq G$, so that A, B disjoint,
Then $e(G) \geq \frac{n q}{2 m-n}$ independent and $t=|A|+|B|, n \leq \frac{m}{3}+\frac{3 t}{4}$

$$
\begin{gathered}
G \text { - extremal } \\
d(x) \geq \frac{n}{2}
\end{gathered}
$$

$$
G:=N(x), m:=\frac{n}{2}
$$

There exist $A, B \subseteq N(x)$, so that A, B - independent and $|A|+|B| \geq \frac{4}{3} d(x)-\frac{2}{9} n \geq \frac{4}{9} n$

$$
e(G) \geq \frac{7}{24} n^{2} \text { - preparations }
$$

G - \triangle-free, m, q - integers such that $q \geq \frac{2}{9} m^{2}$ and G - \triangle-free, m - natural $n \geq m$

Every $X \subseteq G$ of size m spans at least $\frac{2}{9} m^{2}$ edges
Every $X \subset V(G)$ of size m spans at least q edges. There exist $A, B \subseteq G$, so that A, B disjoint,
Then $e(G) \geq \frac{n q}{2 m-n}$ independent and $t=|A|+|B|, n \leq \frac{m}{3}+\frac{3 t}{4}$

$$
\begin{gathered}
G \text { - extremal } \\
d(x) \geq \frac{n}{2}
\end{gathered}
$$

$$
G:=N(x), m:=\frac{n}{2}
$$

There exist $A, B \subseteq N(x)$, so that A, B - independent and $|A|+|B| \geq \frac{4}{3} d(x)-\frac{2}{9} n \geq \frac{4}{9} n$

$$
q:=\frac{n^{2}}{18}
$$

$$
e(G) \geq \frac{7}{24} n^{2} \text { - preparations }
$$

G - \triangle-free, m, q - integers such that $q \geq \frac{2}{9} m^{2}$ and G - \triangle-free, m - natural $n \geq m$

Every $X \subseteq G$ of size m spans at least $\frac{2}{9} m^{2}$ edges
Every $X \subset V(G)$ of size m spans at least q edges. There exist $A, B \subseteq G$, so that A, B disjoint,
Then $e(G) \geq \frac{n q}{2 m-n}$ independent and $t=|A|+|B|, n \leq \frac{m}{3}+\frac{3 t}{4}$

$$
G:=N(x), m:=\frac{n}{2}
$$

There exist $A, B \subseteq N(x)$, so that A, B - independent and $|A|+|B| \geq \frac{4}{3} d(x)-\frac{2}{9} n \geq \frac{4}{9} n$

$$
q:=\frac{n^{2}}{18}
$$

$$
e(N(x)) \geq \frac{n^{2}}{18} \cdot \frac{d(x)}{n-d(x)}
$$

$$
e(G) \geq \frac{7}{24} n^{2}
$$

G-extremal, $X \subseteq V(G)$, and $|X| \in\left[\frac{1}{3} n ; \frac{1}{2} n\right]$
Then $e(X) \geq \frac{1}{18}(3|X|-n)(6|X|-n)$
G - extremal, $A, B \subseteq V(G)$ - disjoint, indpendent sets
Then $e(A, B) \leq|E|-\frac{2}{9} n^{2}$

In extremal graph G, if $d(x) \geq \frac{n}{2}$, then:

- $e(N(x)) \geq \frac{n^{2}}{18} \cdot \frac{d(x)}{n-d(x)}$
- There exist $A, B \subseteq N(x)$, so that A, B - independent and $|A|+|B| \geq \frac{4}{3} d(x)-\frac{2}{9} n \geq \frac{4}{9} n$

$$
e(G) \geq \frac{7}{24} n^{2}
$$

G - extremal, $X \subseteq V(G)$, and $|X| \in\left[\frac{1}{3} n ; \frac{1}{2} n\right]$
Then $e(X) \geq \frac{1}{18}(3|X|-n)(6|X|-n)$
G - extremal, $A, B \subseteq V(G)$ - disjoint, indpendent sets
Then $e(A, B) \leq|E|-\frac{2}{9} n^{2}$

In extremal graph G, if $d(x) \geq \frac{n}{2}$, then:

- $e(N(x)) \geq \frac{n^{2}}{18} \cdot \frac{d(x)}{n-d(x)}$
- There exist $A, B \subseteq N(x)$, so that A, B - independent and $|A|+|B| \geq \frac{4}{3} d(x)-\frac{2}{9} n \geq \frac{4}{9} n$
$|E(G)|=\gamma n^{2}, \gamma>\frac{1}{4}$
There exists $x \in V(G)$, so that $d(x) \geq \frac{n}{2}$

$$
e(G) \geq \frac{7}{24} n^{2}
$$

G - extremal, $X \subseteq V(G)$, and $|X| \in\left[\frac{1}{3} n ; \frac{1}{2} n\right]$
Then $e(X) \geq \frac{1}{18}(3|X|-n)(6|X|-n)$
G - extremal, $A, B \subseteq V(G)$ - disjoint, indpendent sets
Then $e(A, B) \leq|E|-\frac{2}{9} n^{2}$

In extremal graph G, if $d(x) \geq \frac{n}{2}$, then:

- $e(N(x)) \geq \frac{n^{2}}{18} \cdot \frac{d(x)}{n-d(x)}$
- There exist $A, B \subseteq N(x)$, so that A, B - independent and $|A|+|B| \geq \frac{4}{3} d(x)-\frac{2}{9} n \geq \frac{4}{9} n$
$|E(G)|=\gamma n^{2}, \gamma>\frac{1}{4}$
There exists $x \in V(G)$, so that $d(x) \geq \frac{n}{2}$
A, B - independent, $t=|A|+|B|$
$t \geq \frac{4}{3} d(x)-\frac{2}{9} n \geq\left(\frac{8}{3} \gamma-\frac{2}{9}\right) n>\frac{4}{9}$

$$
e(G) \geq \frac{7}{24} n^{2}
$$

G-extremal, $X \subseteq V(G)$, and $|X| \in\left[\frac{1}{3} n ; \frac{1}{2} n\right]$
Then $e(X) \geq \frac{1}{18}(3|X|-n)(6|X|-n)$
G - extremal, $A, B \subseteq V(G)$ - disjoint, indpendent sets
Then $e(A, B) \leq|E|-\frac{2}{9} n^{2}$

In extremal graph G, if $d(x) \geq \frac{n}{2}$, then:

- $e(N(x)) \geq \frac{n^{2}}{18} \cdot \frac{d(x)}{n-d(x)}$
- There exist $A, B \subseteq N(x)$, so that A, B - independent and $|A|+|B| \geq \frac{4}{3} d(x)-\frac{2}{9} n \geq \frac{4}{9} n$
$|E(G)|=\gamma n^{2}, \gamma>\frac{1}{4}$
There exists $x \in V(G)$, so that $d(x) \geq \frac{n}{2}$
A, B - independent, $t=|A|+|B|$
$t \geq \frac{4}{3} d(x)-\frac{2}{9} n \geq\left(\frac{8}{3} \gamma-\frac{2}{9}\right) n>\frac{4}{9}$

1. $t<\frac{1}{2} n$

$$
e(G) \geq \frac{7}{24} n^{2}
$$

G - extremal, $X \subseteq V(G)$, and $|X| \in\left[\frac{1}{3} n ; \frac{1}{2} n\right]$
Then $e(X) \geq \frac{1}{18}(3|X|-n)(6|X|-n)$
G - extremal, $A, B \subseteq V(G)$ - disjoint, indpendent sets
Then $e(A, B) \leq|E|-\frac{2}{9} n^{2}$

In extremal graph G, if $d(x) \geq \frac{n}{2}$, then:

- $e(N(x)) \geq \frac{n^{2}}{18} \cdot \frac{d(x)}{n-d(x)}$
- There exist $A, B \subseteq N(x)$, so that A, B - independent and $|A|+|B| \geq \frac{4}{3} d(x)-\frac{2}{9} n \geq \frac{4}{9} n$ $|E(G)|=\gamma n^{2}, \gamma>\frac{1}{4}$
There exists $x \in V(G)$, so that $d(x) \geq \frac{n}{2}$
A, B - independent, $t=|A|+|B|$
$t \geq \frac{4}{3} d(x)-\frac{2}{9} n \geq\left(\frac{8}{3} \gamma-\frac{2}{9}\right) n>\frac{4}{9}$

1. $t<\frac{1}{2} n$
$36 e(A, B) \geq 2\left(n^{2}-9 n t+18 t^{2}\right) \geq(48 \gamma-11) n^{2}$

$$
e(G) \geq \frac{7}{24} n^{2}
$$

G - extremal, $X \subseteq V(G)$, and $|X| \in\left[\frac{1}{3} n ; \frac{1}{2} n\right]$
Then $e(X) \geq \frac{1}{18}(3|X|-n)(6|X|-n)$
G - extremal, $A, B \subseteq V(G)$ - disjoint, indpendent sets
Then $e(A, B) \leq|E|-\frac{2}{9} n^{2}$

In extremal graph G, if $d(x) \geq \frac{n}{2}$, then:

- $e(N(x)) \geq \frac{n^{2}}{18} \cdot \frac{d(x)}{n-d(x)}$
- There exist $A, B \subseteq N(x)$, so that A, B - independent and $|A|+|B| \geq \frac{4}{3} d(x)-\frac{2}{9} n \geq \frac{4}{9} n$ $|E(G)|=\gamma n^{2}, \gamma>\frac{1}{4}$
There exists $x \in V(G)$, so that $d(x) \geq \frac{n}{2}$
A, B - independent, $t=|A|+|B|$
$t \geq \frac{4}{3} d(x)-\frac{2}{9} n \geq\left(\frac{8}{3} \gamma-\frac{2}{9}\right) n>\frac{4}{9}$

1. $t<\frac{1}{2} n$
$36 e(A, B) \geq 2\left(n^{2}-9 n t+18 t^{2}\right) \geq(48 \gamma-11) n^{2}$
$e(A, B) \leq \gamma n^{2}-\frac{2}{9} n^{2}$

$$
e(G) \geq \frac{7}{24} n^{2}
$$

G - extremal, $X \subseteq V(G)$, and $|X| \in\left[\frac{1}{3} n ; \frac{1}{2} n\right]$ Then $e(X) \geq \frac{1}{18}(3|X|-n)(6|X|-n)$
G - extremal, $A, B \subseteq V(G)$ - disjoint, indpendent sets
Then $e(A, B) \leq|E|-\frac{2}{9} n^{2}$

In extremal graph G, if $d(x) \geq \frac{n}{2}$, then:

- $e(N(x)) \geq \frac{n^{2}}{18} \cdot \frac{d(x)}{n-d(x)}$
- There exist $A, B \subseteq N(x)$, so that A, B - independent and $|A|+|B| \geq \frac{4}{3} d(x)-\frac{2}{9} n \geq \frac{4}{9} n$ $|E(G)|=\gamma n^{2}, \gamma>\frac{1}{4}$
There exists $x \in V(G)$, so that $d(x) \geq \frac{n}{2}$
A, B - independent, $t=|A|+|B|$
$t \geq \frac{4}{3} d(x)-\frac{2}{9} n \geq\left(\frac{8}{3} \gamma-\frac{2}{9}\right) n>\frac{4}{9}$

1. $t<\frac{1}{2} n$
$36 e(A, B) \geq 2\left(n^{2}-9 n t+18 t^{2}\right) \geq(48 \gamma-11) n^{2}$
$e(A, B) \leq \gamma n^{2}-\frac{2}{9} n^{2}$
$48 \gamma-11 \leq 36 \gamma-8$

$$
e(G) \geq \frac{7}{24} n^{2}
$$

G - extremal, $X \subseteq V(G)$, and $|X| \in\left[\frac{1}{3} n ; \frac{1}{2} n\right]$
Then $e(X) \geq \frac{1}{18}(3|X|-n)(6|X|-n)$
G - extremal, $A, B \subseteq V(G)$ - disjoint, indpendent sets
Then $e(A, B) \leq|E|-\frac{2}{9} n^{2}$

In extremal graph G, if $d(x) \geq \frac{n}{2}$, then:

- $e(N(x)) \geq \frac{n^{2}}{18} \cdot \frac{d(x)}{n-d(x)}$
- There exist $A, B \subseteq N(x)$, so that A, B - independent and $|A|+|B| \geq \frac{4}{3} d(x)-\frac{2}{9} n \geq \frac{4}{9} n$ $|E(G)|=\gamma n^{2}, \gamma>\frac{1}{4}$
There exists $x \in V(G)$, so that $d(x) \geq \frac{n}{2}$
A, B - independent, $t=|A|+|B|$
$t \geq \frac{4}{3} d(x)-\frac{2}{9} n \geq\left(\frac{8}{3} \gamma-\frac{2}{9}\right) n>\frac{4}{9}$

1. $t<\frac{1}{2} n$
2. $t \geq \frac{n}{2}$
$36 e(A, B) \geq 2\left(n^{2}-9 n t+18 t^{2}\right) \geq(48 \gamma-11) n^{2}$
$e(A, B) \leq \gamma n^{2}-\frac{2}{9} n^{2}$
$48 \gamma-11 \leq 36 \gamma-8$

$$
e(G) \geq \frac{7}{24} n^{2}
$$

G - extremal, $X \subseteq V(G)$, and $|X| \in\left[\frac{1}{3} n ; \frac{1}{2} n\right]$ Then $e(X) \geq \frac{1}{18}(3|X|-n)(6|X|-n)$
G - extremal, $A, B \subseteq V(G)$ - disjoint, indpendent sets
Then $e(A, B) \leq|E|-\frac{2}{9} n^{2}$

In extremal graph G, if $d(x) \geq \frac{n}{2}$, then:

- $e(N(x)) \geq \frac{n^{2}}{18} \cdot \frac{d(x)}{n-d(x)}$
- There exist $A, B \subseteq N(x)$, so that A, B - independent and $|A|+|B| \geq \frac{4}{3} d(x)-\frac{2}{9} n \geq \frac{4}{9} n$ $|E(G)|=\gamma n^{2}, \gamma>\frac{1}{4}$
There exists $x \in V(G)$, so that $d(x) \geq \frac{n}{2}$
A, B - independent, $t=|A|+|B|$
$t \geq \frac{4}{3} d(x)-\frac{2}{9} n \geq\left(\frac{8}{3} \gamma-\frac{2}{9}\right) n>\frac{4}{9}$

1. $t<\frac{1}{2} n$
2. $t \geq \frac{n}{2}$
$36 e(A, B) \geq 2\left(n^{2}-9 n t+18 t^{2}\right) \geq(48 \gamma-11) n^{2}$
$\left(\gamma-\frac{2}{9}\right) n^{2} \geq e(A, B) \geq \frac{n^{2}}{18} \cdot \frac{t}{n-t}$
$e(A, B) \leq \gamma n^{2}-\frac{2}{9} n^{2}$
$48 \gamma-11 \leq 36 \gamma-8$

$$
e(G) \geq \frac{7}{24} n^{2}
$$

G - extremal, $X \subseteq V(G)$, and $|X| \in\left[\frac{1}{3} n ; \frac{1}{2} n\right]$ Then $e(X) \geq \frac{1}{18}(3|X|-n)(6|X|-n)$
G - extremal, $A, B \subseteq V(G)$ - disjoint, indpendent sets
Then $e(A, B) \leq|E|-\frac{2}{9} n^{2}$

In extremal graph G, if $d(x) \geq \frac{n}{2}$, then:

- $e(N(x)) \geq \frac{n^{2}}{18} \cdot \frac{d(x)}{n-d(x)}$
- There exist $A, B \subseteq N(x)$, so that A, B - independent and $|A|+|B| \geq \frac{4}{3} d(x)-\frac{2}{9} n \geq \frac{4}{9} n$ $|E(G)|=\gamma n^{2}, \gamma>\frac{1}{4}$
There exists $x \in V(G)$, so that $d(x) \geq \frac{n}{2}$
A, B - independent, $t=|A|+|B|$
$t \geq \frac{4}{3} d(x)-\frac{2}{9} n \geq\left(\frac{8}{3} \gamma-\frac{2}{9}\right) n>\frac{4}{9}$

1. $t<\frac{1}{2} n$
2. $t \geq \frac{n}{2}$
$36 e(A, B) \geq 2\left(n^{2}-9 n t+18 t^{2}\right) \geq(48 \gamma-11) n^{2}$
$\left(\gamma-\frac{2}{9}\right) n^{2} \geq e(A, B) \geq \frac{n^{2}}{18} \cdot \frac{t}{n-t}$
$e(A, B) \leq \gamma n^{2}-\frac{2}{9} n^{2}$
$0 \leq 2(1-3 \gamma)(24 \gamma-7)$
$48 \gamma-11 \leq 36 \gamma-8$

$$
e(G) \geq \frac{7}{24} n^{2}
$$

$$
\begin{gathered}
\alpha(G) \leq \frac{n}{3} \\
e(G) \geq \frac{7}{24} n^{2}
\end{gathered}
$$

Three independent sets

G - extremal with γn^{2} edges
Then there exist three disjoint independent subsets V_{1}, V_{2}, V_{3}, so that $\left|V_{1}\right|+\left|V_{2}\right|+\left|V_{3}\right| \geq \frac{n}{3(1-2 \gamma)}$

Three independent sets

G - extremal with γn^{2} edges
Then there exist three disjoint independent subsets V_{1}, V_{2}, V_{3}, so that $\left|V_{1}\right|+\left|V_{2}\right|+\left|V_{3}\right| \geq \frac{n}{3(1-2 \gamma)}$
T - set of all triangles in G
$t_{x y}$ - number of triangles in G containing the edge (x, y)
t_{x} - number of triangles in G containing x (or of the edges induced by $N(x)$)

Three independent sets

G - extremal with γn^{2} edges
Then there exist three disjoint independent subsets V_{1}, V_{2}, V_{3}, so that $\left|V_{1}\right|+\left|V_{2}\right|+\left|V_{3}\right| \geq \frac{n}{3(1-2 \gamma)}$
T - set of all triangles in G
$t_{x y}$ - number of triangles in G containing the edge (x, y)
t_{x} - number of triangles in G containing x (or of the edges induced by $N(x)$)

$$
t_{x y}+t_{y z}+t_{z x} \geq \frac{n}{3(1-2 \gamma)}
$$

Three independent sets

G - extremal with γn^{2} edges
Then there exist three disjoint independent subsets V_{1}, V_{2}, V_{3}, so that $\left|V_{1}\right|+\left|V_{2}\right|+\left|V_{3}\right| \geq \frac{n}{3(1-2 \gamma)}$
T - set of all triangles in G
$t_{x y}$ - number of triangles in G containing the edge (x, y)
t_{x} - number of triangles in G containing x (or of the edges induced by $N(x)$)

$$
t_{x y}+t_{y z}+t_{z x} \geq \frac{n}{3(1-2 \gamma)}
$$

Three independent sets

G - extremal with γn^{2} edges
Then there exist three disjoint independent subsets V_{1}, V_{2}, V_{3}, so that $\left|V_{1}\right|+\left|V_{2}\right|+\left|V_{3}\right| \geq \frac{n}{3(1-2 \gamma)}$
T - set of all triangles in G
$t_{x y}$ - number of triangles in G containing the edge (x, y)
t_{x} - number of triangles in G containing x (or of the edges induced by $N(x)$)

$$
\begin{aligned}
& t_{x y}+t_{y z}+t_{z x} \geq \frac{n}{3(1-2 \gamma)} \\
& \frac{\sum_{T} t_{x y}+t_{y z}+t_{z x}}{|T|} \geq \frac{n}{3(1-2 \gamma)}
\end{aligned}
$$

Three independent sets

G - extremal with γn^{2} edges
Then there exist three disjoint independent subsets V_{1}, V_{2}, V_{3}, so that $\left|V_{1}\right|+\left|V_{2}\right|+\left|V_{3}\right| \geq \frac{n}{3(1-2 \gamma)}$
T - set of all triangles in G
$t_{x y}$ - number of triangles in G containing the edge (x, y)
t_{x} - number of triangles in G containing x (or of the edges induced by $N(x)$)

$$
\begin{aligned}
& t_{x y}+t_{y z}+t_{z x} \geq \frac{n}{3(1-2 \gamma)} \\
& \frac{\sum_{T} t_{x y}+t_{y z}+t_{z x}}{|T|} \geq \frac{n}{3(1-2 \gamma)} \\
& \sum_{y \in N(x)} t_{x y}^{2} \geq \frac{4 t(x)^{2}}{d(x)}
\end{aligned}
$$

Leftovers

$$
E(G)=\gamma n^{2}
$$

Leftovers

Leftovers

$$
\begin{aligned}
& E(G)=\gamma n^{2} \\
& |Z|=z n^{2} \\
& 0 .\left|V_{1}\right|+\left|V_{2}\right|+\left|V_{3}\right| \geq \frac{n}{3(1-2 \gamma)} \\
& 1 \cdot \gamma \geq \frac{7}{24} \\
& 2 . z \leq 1-\frac{1}{3(1-2 \gamma)} \leq \frac{1}{5} \\
& 3 \cdot \gamma \geq \frac{1+z+z^{2}}{3(1+2 z)}
\end{aligned}
$$

Leftovers

$$
\begin{aligned}
& E(G)=\gamma n^{2} \\
& |Z|=z n^{2} \\
& 0 .\left|V_{1}\right|+\left|V_{2}\right|+\left|V_{3}\right| \geq \frac{n}{3(1-2 \gamma)} \\
& 1 \cdot \gamma \geq \frac{7}{24} \\
& 2 . z \leq 1-\frac{1}{3(1-2 \gamma)} \leq \frac{1}{5} \\
& 3 \cdot \gamma \geq \frac{1+z+z^{2}}{3(1+2 z)}
\end{aligned}
$$

Leftovers

$$
\begin{aligned}
& E(G)=\gamma n^{2} \\
& |Z|=z n^{2} \\
& 0 .\left|V_{1}\right|+\left|V_{2}\right|+\left|V_{3}\right| \geq \frac{n}{3(1-2 \gamma)} \\
& 1 . \gamma \geq \frac{7}{24} \\
& 2 . z \leq 1-\frac{1}{3(1-2 \gamma)} \leq \frac{1}{5} \\
& 3 . \gamma \geq \frac{1+z+z^{2}}{3(1+2 z)}
\end{aligned}
$$

In extremal graph G, if $d(x) \geq \frac{n}{2}$, then:

- $e(N(x)) \geq \frac{n^{2}}{18} \cdot \frac{d(x)}{n-d(x)}$
- There exist $A, B \subseteq N(x)$, so that A, B - independent and $|A|+|B| \geq \frac{4}{3} d(x)-\frac{2}{9} n \geq \frac{4}{9} n$

$$
\text { 4. } \gamma \leq \frac{1}{3}-\frac{z}{4}+\frac{z^{2}}{36}
$$

Leftovers

$$
\begin{aligned}
& E(G)=\gamma n^{2} \\
& |Z|=z n^{2} \\
& 0 .\left|V_{1}\right|+\left|V_{2}\right|+\left|V_{3}\right| \geq \frac{n}{3(1-2 \gamma)} \\
& 1 . \gamma \geq \frac{7}{24} \\
& 2 . z \leq 1-\frac{1}{3(1-2 \gamma)} \leq \frac{1}{5} \\
& 3 . \gamma \geq \frac{1+z+z^{2}}{3(1+2 z)}
\end{aligned}
$$

In extremal graph G, if $d(x) \geq \frac{n}{2}$, then:

- $e(N(x)) \geq \frac{n^{2}}{18} \cdot \frac{d(x)}{n-d(x)}$
- There exist $A, B \subseteq N(x)$, so that A, B - independent and $|A|+|B| \geq \frac{4}{3} d(x)-\frac{2}{9} n \geq \frac{4}{9} n$

$$
\begin{aligned}
& 4 . \gamma \leq \frac{1}{3}-\frac{z}{4}+\frac{z^{2}}{36} \\
& 5 . z \leq \frac{3}{29}
\end{aligned}
$$

Almost there...

Almost there...

Almost there...

Almost there...

If $x \in Z$, then there exists i so that $\left|N(x) \cap V_{i}\right| \leq \frac{2}{17} n$

Almost there...

If $x \in Z$, then there exists i so that $\left|N(x) \cap V_{i}\right| \leq \frac{2}{17} n$

Almost there...

If $x \in Z$, then there exists i so that $\left|N(x) \cap V_{i}\right| \leq \frac{2}{17} n$

G-extremal

A_{1}, A_{2}, A_{3} - partition of G
$e\left(A_{1}\right)+e\left(A_{2}\right)+e\left(A_{3}\right) \leq \omega n^{2}$ for some $\omega \leq \frac{1}{60}$
Then $e(G) \geq\left(\frac{1}{3}-\frac{29}{18} \omega\right) n^{2}$
$T \subseteq A_{j},|T|=\frac{n}{2}-\left|A_{i}\right|$

Almost there...

If $x \in Z$, then there exists i so that $\left|N(x) \cap V_{i}\right| \leq \frac{2}{17} n$

$$
\begin{aligned}
& G \text { - extremal } \\
& A_{1}, A_{2}, A_{3}-\text { partition of } G \\
& e\left(A_{1}\right)+e\left(A_{2}\right)+e\left(A_{3}\right) \leq \omega n^{2} \text { for some } \omega \leq \frac{1}{60} \\
& \text { Then } e(G) \geq\left(\frac{1}{3}-\frac{29}{18} \omega\right) n^{2} \\
& T \subseteq A_{j},|T|=\frac{n}{2}-\left|A_{i}\right| \\
& \frac{n^{2}}{18} \leq e\left(A_{i}\right)+e\left(A_{i}, T\right)+e(T)
\end{aligned}
$$

Finish

If $x \in Z$, then there exists i so that
$\left|N(x) \cap V_{i}\right| \leq \frac{2}{17} n$
G-extremal
A_{1}, A_{2}, A_{3} - partition of G
$e\left(A_{1}\right)+e\left(A_{2}\right)+e\left(A_{3}\right) \leq \omega n^{2}$ for some $\omega \leq \frac{1}{60}$
Then $e(G) \geq\left(\frac{1}{3}-\frac{29}{18} \omega\right) n^{2}$

$$
\begin{aligned}
& 3 . \gamma \geq \frac{1+z+z^{2}}{3(1+2 z)} \\
& 4 . \gamma \leq \frac{1}{3}-\frac{z}{4}+\frac{z^{2}}{36} \\
& 5 . z \leq \frac{3}{29}
\end{aligned}
$$

Finish

$$
\gamma n^{2}=e(G)
$$

$$
\left|N(x) \cap V_{i}\right| \leq \frac{2}{17} n
$$

G-extremal
A_{1}, A_{2}, A_{3} - partition of G
$e\left(A_{1}\right)+e\left(A_{2}\right)+e\left(A_{3}\right) \leq \omega n^{2}$ for some $\omega \leq \frac{1}{60}$ Then $e(G) \geq\left(\frac{1}{3}-\frac{29}{18} \omega\right) n^{2}$
3. $\gamma \geq \frac{1+z+z^{2}}{3(1+2 z)}$
4. $\gamma \leq \frac{1}{3}-\frac{z}{4}+\frac{z^{2}}{36}$
$5 . z \leq \frac{3}{29}$

$$
\omega n^{2}=e\left(A_{1}\right)+e\left(A_{2}\right)+e\left(A_{3}\right)
$$

Finish

$$
\begin{aligned}
& A_{1} \\
& \begin{array}{l}
\text { If } x \in Z, \text { then there exists } i \text { so that } \\
N(x) \cap V_{i} \left\lvert\, \leq \frac{2}{17} n\right. \\
G-\text { extremal } \\
A_{1}, A_{2}, A_{3}-\text { partition of } G \\
e\left(A_{1}\right)+e\left(A_{2}\right)+e\left(A_{3}\right) \leq \omega n^{2} \text { for some } \omega \leq \frac{1}{60} \\
\text { Then } e(G) \geq\left(\frac{1}{3}-\frac{29}{18} \omega\right) n^{2}
\end{array} \\
& 3 . \gamma \geq \frac{1+z+z^{2}}{3(1+2 z)} \\
& 4 . \gamma \leq \frac{1}{3}-\frac{z}{4}+\frac{z^{2}}{36} \\
& A_{3}=e(G) \\
& \omega n^{2}=e\left(A_{1}\right)+e\left(A_{2}\right)+e\left(A_{3}\right) \\
& \omega n^{2} \leq \frac{2}{17} n|Z|+e(Z) \leq\left(\frac{2}{17} z+\frac{1}{3} z^{2}\right) n^{2}<\frac{7}{46} z n^{2}<\frac{1}{60} n^{2}
\end{aligned}
$$

Finish

$$
\begin{aligned}
& A_{1} \\
& \qquad \begin{array}{l}
\text { If } x \in Z, \text { then there exists } i \text { so that } \\
N(x) \cap V_{i} \left\lvert\, \leq \frac{2}{17} n\right. \\
A_{1}, \text { extremal } \\
A_{2}, A_{3}-\text { partition of } G \\
e\left(A_{1}\right)+e\left(A_{2}\right)+e\left(A_{3}\right) \leq \omega n^{2} \text { for some } \omega \leq \frac{1}{60} \\
\text { Then } e(G) \geq\left(\frac{1}{3}-\frac{29}{18} \omega\right) n^{2}
\end{array} \\
& \begin{array}{l}
3 . \gamma \geq \frac{1+z+z^{2}}{3(1+2 z)} \\
4 . \gamma \leq \frac{1}{3}-\frac{z}{4}+\frac{z^{2}}{36} \\
A_{3}
\end{array} \\
& \begin{array}{ll}
5 . z \leq \frac{3}{29}
\end{array} \\
& \omega n^{2}=e\left(A_{1}\right)+e\left(A_{2}\right)+e\left(A_{3}\right) \\
& 36 \gamma \geq 12-58 \omega
\end{aligned}
$$

Finish

If $x \in Z$, then there exists i so that $\left|N(x) \cap V_{i}\right| \leq \frac{2}{17} n$
G-extremal
A_{1}, A_{2}, A_{3} - partition of G
$e\left(A_{1}\right)+e\left(A_{2}\right)+e\left(A_{3}\right) \leq \omega n^{2}$ for some $\omega \leq \frac{1}{60}$
Then $e(G) \geq\left(\frac{1}{3}-\frac{29}{18} \omega\right) n^{2}$
$3 . \gamma \geq \frac{1+z+z^{2}}{3(1+2 z)}$
4. $\gamma \leq \frac{1}{3}-\frac{z}{4}+\frac{z^{2}}{36}$
$5 . z \leq \frac{3}{29}$

$$
\begin{aligned}
& \omega n^{2}=e\left(A_{1}\right)+e\left(A_{2}\right)+e\left(A_{3}\right) \\
& \omega n^{2} \leq \frac{2}{17} n|Z|+e(Z) \leq\left(\frac{2}{17} z+\frac{1}{3} z^{2}\right) n^{2}<\frac{7}{46} z n^{2}<\frac{1}{60} n^{2} \\
& 36 \gamma \geq 12-58 \omega \\
& 12-\left(9-\frac{4}{23}\right) z \leq 12-58 \omega \leq 12-9 z+z^{2}
\end{aligned}
$$

Finish

$$
\begin{aligned}
& A_{1} \\
& \begin{array}{l}
\text { If } x \in Z, \text { then there exists } i \text { so that } \\
N(x) \cap V_{i} \left\lvert\, \leq \frac{2}{17} n\right. \\
A_{1}, A_{2}, A_{3}-\text { partition of } G \\
\left(A_{1}\right)+e\left(A_{2}\right)+e\left(A_{3}\right) \leq \omega n^{2} \text { for some } \omega \leq \frac{1}{60} \\
\text { Then } e(G) \geq\left(\frac{1}{3}-\frac{29}{18} \omega\right) n^{2}
\end{array} \\
& \begin{array}{l}
3 . \gamma \geq \frac{1+z+z^{2}}{3(1+2 z)} \\
4 . \gamma \leq \frac{1}{3}-\frac{z}{4}+\frac{z^{2}}{36} \\
A_{3}
\end{array} \\
& \begin{array}{l}
5 . z \leq \frac{3}{29}
\end{array} \\
& \omega n^{2}=e\left(A_{1}\right)+e\left(A_{2}\right)+e\left(A_{3}\right) \\
& 36 \gamma \geq 12-58 \omega \\
& 12-\left(9-\frac{4}{23}\right) z \leq 12-58 \omega \leq 12-9 z+z^{2} \\
& z\left(\frac{4}{23}-z\right) \leq 0
\end{aligned}
$$

Thank you!

