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Introduction

Conjecture (Ando)

The vertices of any cubic graph can be 2-colored such that the two color
classes induce isomorphic subgraphs.

 L. Selwa (TCS) Isomorphic bisections of cubic graphs 2 / 26



Introduction

Conjecture (Ando)

The vertices of any cubic graph can be 2-colored such that the two color
classes induce isomorphic subgraphs.

 L. Selwa (TCS) Isomorphic bisections of cubic graphs 2 / 26



Introduction

Theorem (A. Ban, N. Linal)

Ando’s conjecture is true for cubic graphs with at most 34 vertices.

Main Theorem

Every sufficiently large connected cubic graph admits a 2-coloring ϕ whose
classes induce isomorphic subgraphs.

Conclusion

There can be at most finitely many counterexamples to Ando’s conjecture.
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Notation

• In our 2-colorings we use colors red and blue

• Let H be a fixed graph, let φ be a red-blue-colouring on vertices of
another graph G.
We define rH(G,φ) as the number of red components of G under φ
that are isomorphic to H.

H

G

rH(G, φ) = 2

• We define bH(G,φ) similarly for blue components of G.
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Notation

• We define Bd(v) as the d-radius ball around vertex v.

• We define Nd(v) as the set of vertices at distance exactly d from v.

v B1(v)
B2(v)

N1(v)

N2(v)
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Notation

• We define Pt as path of length t− 1.

P2

P3

P5
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Proof of the main theorem road map

The goal is to color the vertices of a large cubic graph so that the color
classes induce isomorphic subgraphs. We do this in two stages:

I. We take semi-random vertex coloring and show that this is very close
to having desired properties.

II. We make deterministic local recoloring to balance the two subgraphs
and ensure they are truly isomorphic.
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Stage I: Tools

Theorem (Thomassen)

The edges of any cubic graph can be two-colored such that each
monochromatic component is a path of length at most five.Thomassena

aCarsten Thomassen. “Two-Coloring the Edges of a Cubic Graph Such That Each
Monochromatic Component Is a Path of Length at Most 5”. In: Journal of
Combinatorial Theory, Series B 75.1 (1999), pp. 100–109.
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Stage I: Tools

Theorem (McDiarmid’s Inequality)

Let X = (X1, X2, ..., Xn) be a family of independent random variables, with
Xk taking values in a set Ak for each k ∈ [n]. Suppose further that there is
some function f satisfying:

1 f : A1 ×A2 × ...×An → R
2 there exists c ≤ 0 such that |f(x) − f(x′)| ≤ c whenever x, x′ differ in a

single coordinate.

Then, for any m ≤ 0:

P (|f(X) − E[f(X)]| ≥ m) ≤ 2 exp(−2m2

c2n
)
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Stage I: Proposition

Proposition 2.1

For any d ∈ N and sufficiently large cubic graph G, there is a
red-blue-colouring φ for which the following holds:

(a) Each monochromatic component is a path of length at most 5.

(b) For 2 ≤ t ≤ 6, |rPt(G,φ) − bPt(G,φ)| ≤ 3
√
n logn.

(c) There are sequences of vertices (ui)i∈[s] and (wi)i∈[s], for some
s ≥ 2−2d−5n, such that all balls Bd(ui) and Bd(wi) are pairwise
disjoint, and for each i ∈ [s], induce isomorphic subgraphs with
opposite colourings.

(d) φ is a bisection, that is there is an equal number of red and blue
vertices.

Proof Idea.
We will define a random coloring φ′ and show that it satisfies a, b and c.
We then will make small adjustments to φ′ and make it satisfy (d).
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Proof of Proposition 2.1

• We apply Thomassen’s theorem to partition edges G into two spanning
linear forests F1, F2

(every path has a length of less than 6).

• We take φ′ to be a uniform random proper 2-coloring of F1.

Each path in F1 has two possible colorings and each path can be
colored independently. Thus probability space is a product space.
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Coloring φ′ satisfies (a):

Each monochromatic component is a path of length at most 5

Because φ′ is a proper coloring of F1 each monochromatic component of G
has to be a subgraph of F2. It follows immediately that such a component
is a path of length at most 5.
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Coloring φ′ satisfies (b):

For 2 ≤ t ≤ 6, |rPt(G,φ) − bPt(G,φ)| ≤ 3
√
n logn

We use McDiarmid’s inequality.

P (|f(X) − E[f(X)]| ≤ m) ≤ 2 exp(−2m2

c2n
)

To do so we must understand how changing the coloring of a path in F1

affects rPt(G,φ
′).

Because F2 contains only paths then changing the coloring of an individual
vertex can affect at most two monochromatic components of Pt.

Because every path in F1 has at most 6 vertices then reversing its coloring
can affect at most 12 monochromatic copies of Pt.
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Coloring φ′ satisfies (b):

For 2 ≤ t ≤ 6, |rPt(G,φ) − bPt(G,φ)| ≤ 3
√
n logn

After applying McDiarmid’s inequality (for right m) we get:

P (|rPt(G,φ
′) − E[rPt(G,φ

′)]| ≥
√
n logn) ≤ 2n−1/72 = o(1)

Because of symmetry:

E[rPt(G,φ
′)] = E[bPt(G,φ

′)]

Hence we get that:

P (|rPt(G,φ
′) − bPt(G,φ

′)| ≥ 2
√
n logn) = o(1)
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Coloring φ′ satisfies (c):

There are sequences of vertices (ui)i∈[s] and (wi)i∈[s], for some
s ≥ 2−2d−5n, such that all balls Bd(ui) and Bd(wi) are pairwise disjoint,
and for each i ∈ [s], induce isomorphic subgraphs with opposite colourings.

Bd(u1)

Bd(w1)

Bd(u2)

Bd(w2)

Bd(u3)

Bd(w3)

...

...
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Coloring φ′ satisfies (c):

There are sequences of vertices (ui)i∈[s] and (wi)i∈[s], for some
s ≥ 2−2d−5n, such that all balls Bd(ui) and Bd(wi) are pairwise disjoint,
and for each i ∈ [s], induce isomorphic subgraphs with opposite colourings.

Proof sketch:

• For a large graph we can pick a set of independent balls with size
s′ ≥ 2−2d−1n.

• There are a finite number of possible classes of colored balls.

• We can show that with 1 − o(1) probability for every such class C:

|Y − Y | ≤ 2
√
n logn

Where Y is the number of balls belonging to class C, and Y is the
number of balls belonging to the class with opposite coloring.

• We can therefore match 1/4 balls into isomorphic pairs with opposite
colorings.
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Coloring φ′ almost satisfies (d):

With probability 1 − o(1) the difference between number of red and blue
vertices is at most 1

20

√
n logn.

Proof sketch:

• Only even-length paths in F1 contribute to the difference, and they
contribute by exactly 1.

• The expected difference is 0.

• We can apply McDiarmid’s inequality to get the bound.
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For large n with high probability φ′ satisfies a, b, c and almost d.

We can create φ from φ′ that will satisfy a, b, c and d.

Proof sketch:

• Let ∆ be the difference between red and blue vertices.

• We can reverse the coloring of ∆ even-length paths in F1.

(a) Will still be satisfied.

(b) For each t ∈ {2, ..., 6} we will change |rPt(G,φ) − bPt(G,φ)| by at most√
n logn. So (b) will still be satisfied.

(c) Similarly φ will affect some balls of φ′ but at least 2−2d−5n pairs will
prevail. Thus (c) holds as well.

This completes the proof of proposition 2.1 ■
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Stage II: Correcting the bisection

Coloring φ from proposition 2.1 is close to being bisection. We will make
local changes to φ to correct the discrepancies.

Definition: Pt-reducer

Given t ≥ 3, an induced subgraph R ⊆ G is a Pt-reducer if there are two
vertex colorings ψ1, ψ2 of B2(R) = R ∪N(R) ∪N2(R) such that.

(i) ψ1, ψ2 have the same number of red vertices (and therefore blue as
well).

(ii) In both ψ1, ψ2 N(R) are colored blue and N2(R) are colored red.

(iii) rH(B2(R), ψ1) = rH(B2(R), ψ2) and bH(B2(R), ψ1) = bH(B2(R), ψ2),
unless H = Pℓ for some 2 ≤ ℓ ≤ t

(iv) rPt(B2(R), ψ2) = rPt(B2(R), ψ1) − 1 and
bPt(B2(R), ψ2) = bPt(B2(R), ψ1)
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Intuition. For a Pt-reducer and colorings ψ1, ψ2:

• The only monochromatic components that can appear/disappear are
paths of length ≤ t.

• The number of monochromatic paths o length t changes by exactly 1.

N
2

N
1

Pt

Theorem 2.4

Let G be a cubic graph on more than 3 · 250 vertices, and let v ∈ V (G).
Then for every 3 ≤ t ≤ 6, there is a Pt-reducer in B50(v).

Proof omitted.
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Proof of the main theorem

Main Theorem

Every sufficiently large connected cubic graph admits a 2-coloring φ whose
classes induce isomorphic subgraphs.

Set d = 57 and use it in proposition 2.1. We get a 2-coloring φ0, such that:

• rH(G,φ0) = bH(G,φ0) except H = Pt, 2 ≤ t ≤ 6.

• |rPt(G,φ0) − bPt(G,φ0)| ≤ 3
√
n logn for 2 ≤ t ≤ 6

 L. Selwa (TCS) Isomorphic bisections of cubic graphs 20 / 26



Proof of the main theorem

Main Theorem

Every sufficiently large connected cubic graph admits a 2-coloring φ whose
classes induce isomorphic subgraphs.

Set d = 57 and use it in proposition 2.1. We get a 2-coloring φ0, such that:

• rH(G,φ0) = bH(G,φ0) except H = Pt, 2 ≤ t ≤ 6.

• |rPt(G,φ0) − bPt(G,φ0)| ≤ 3
√
n logn for 2 ≤ t ≤ 6

 L. Selwa (TCS) Isomorphic bisections of cubic graphs 20 / 26



We shall correct imbalances.

1 Start with t = 6.

2 Assume without loss of generality: rP6(G,φ0) > bP6(G,φ0)
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We shall correct imbalances.

1 Start with t = 6.

2 Assume without loss of generality: rP6(G,φ0) > bP6(G,φ0)

3 Take the first pair of isomorphic and opposed-colored balls
B57(u1), B57(w1).

G

B57(u1) B57(w1)

G

B50(u1) B50(w1)
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G G
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1 Start with t = 6.

2 Assume without loss of generality: rP6(G,φ0) > bP6(G,φ0)

3 Take the first pair of isomorphic and opposed-colored balls
B57(u1), B57(w1).

4 By proposition 2.4 we can find a P6-reducer R in G[B50(u1)].

5 Therefore w get R̄ corresponding oppositely-colored copy of R, such
that R̄ ⊆ G[B50(w1)].

6 Let ψ1, ψ2 be the colorings for R that show it’s a P6-reducer.

7 And let ψ̄1, ψ̄2 be the opposite colorings.

8 Color B2(R) with ψ2 and B2(R̄) with ψ̄1, lets call it φ1.

GG

R R ψ2 ψ1
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G

ψ2 ψ1

Observe that ψ1 is still bisection:

• Colorings ψ1, ψ2 have the same number of red vertices.

Claim

For all H, rH(G,ψ1) = bH(G,ψ1), except Pt, 2 ≤ t ≤ 6. And the difference
between the number of red and blue P6 is reduced by 1.
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G

ψ2 ψ1

Claim proof sketch.

• Monochromatic components could only change in B57(u1) and
B57(w1). (We made changes in B50(u1) and B50(w1))
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G

ψ2 ψ1

Claim proof sketch.

• Monochromatic components not fully contained in B2(R) (B2(R̄)) are
ok.

Such components can only contain vertices from B2(R) but from
symmetry, we get blue isomorphic components in the other ball.
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G

ψ2 ψ1

Claim proof sketch.

• This leaves monochromatic components fully contained in
B2(R), B2(R̄).

We use properties of P6-reducer.
• For every H except Pt where 2 ≤ t ≤ 6:

rH(B2(R), ψ2) = rH(B2(R), ψ1) = bH(B2(R̄), ψ̄1)

Similarly:
bH(B2(R), ψ2) = rH(B2(R̄), ψ̄1)

• For P6 we get:

rP6 (B2(R), ψ2) = rP6 (B2(R), ψ1)− 1 = bP6 (B2(R̄), ψ1)− 1

While:
bP6

(B2(R), ψ2) = rP6
(B2(R̄), ψ1)
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We repeat this process rP6(G,φ0) − bP6(G,φ0) times, every time taking
new pair of balls.

Every such step could only create a constant number of P5-components.
Thus |rP5(G,φk) − bP5(G,φk)| = O(

√
n logn). We can continue the process

for P5, P4, P3.

Observe that we will need at most O(
√
n logn) steps and we have Ω(n)

pairs of balls. Thus for large graphs, we can finish this process.
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After this procedure we get that rH(G,φ) = bH(G,φ) for every H ̸= P2.

Because G is cubic and φ is a bisection, the number of monochromatic red
edges is equal to blue.

This yields that rP2(G,φ) = bP2(G,φ), which completes the proof. ■
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