Isomorphic bisections of cubic graphs ${ }^{1}$

Łukasz Selwa
Jagiellonian University, Theoretical Computer Science

December 22, 2022

[^0]
Introduction

Conjecture (Ando)

The vertices of any cubic graph can be 2-colored such that the two color classes induce isomorphic subgraphs.

Introduction

Conjecture (Ando)

The vertices of any cubic graph can be 2-colored such that the two color classes induce isomorphic subgraphs.

Introduction

Theorem (A. Ban, N. Linal)

Ando's conjecture is true for cubic graphs with at most 34 vertices.

Introduction

Theorem (A. Ban, N. Linal)

Ando's conjecture is true for cubic graphs with at most 34 vertices.

Main Theorem

Every sufficiently large connected cubic graph admits a 2 -coloring ϕ whose classes induce isomorphic subgraphs.

Introduction

Theorem (A. Ban, N. Linal)

Ando's conjecture is true for cubic graphs with at most 34 vertices.

Main Theorem

Every sufficiently large connected cubic graph admits a 2 -coloring ϕ whose classes induce isomorphic subgraphs.

Conclusion

There can be at most finitely many counterexamples to Ando's conjecture.

Notation

- In our 2-colorings we use colors red and blue

Notation

- In our 2-colorings we use colors red and blue
- Let H be a fixed graph, let φ be a red-blue-colouring on vertices of another graph G.
We define $r_{H}(G, \varphi)$ as the number of red components of G under φ that are isomorphic to H.

Notation

- In our 2-colorings we use colors red and blue
- Let H be a fixed graph, let φ be a red-blue-colouring on vertices of another graph G.
We define $r_{H}(G, \varphi)$ as the number of red components of G under φ that are isomorphic to H.

- We define $b_{H}(G, \varphi)$ similarly for blue components of G.

Notation

- We define $B_{d}(v)$ as the d-radius ball around vertex v.
- We define $N_{d}(v)$ as the set of vertices at distance exactly d from v.

Notation

- We define P_{t} as path of length $t-1$.
$P_{2} \quad \bigcirc$
$P_{3} \mathrm{O}-\mathrm{O}$
$P_{5} \mathrm{O}-\mathrm{O}$

Proof of the main theorem road map

The goal is to color the vertices of a large cubic graph so that the color classes induce isomorphic subgraphs. We do this in two stages:
I. We take semi-random vertex coloring and show that this is very close to having desired properties.
II. We make deterministic local recoloring to balance the two subgraphs and ensure they are truly isomorphic.

Stage I: Tools

Theorem (Thomassen)

The edges of any cubic graph can be two-colored such that each monochromatic component is a path of length at most five.Thomassen ${ }^{a}$

[^1]

Stage I: Tools

Theorem (McDiarmid's Inequality)

Let $X=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ be a family of independent random variables, with X_{k} taking values in a set A_{k} for each $k \in[n]$. Suppose further that there is some function f satisfying:
(1) $f: A_{1} \times A_{2} \times \ldots \times A_{n} \rightarrow \mathbb{R}$
(2) there exists $c \leq 0$ such that $\left|f(x)-f\left(x^{\prime}\right)\right| \leq c$ whenever x, x^{\prime} differ in a single coordinate.
Then, for any $m \leq 0$:

$$
P(|f(X)-E[f(X)]| \geq m) \leq 2 \exp \left(\frac{-2 m^{2}}{c^{2} n}\right)
$$

Stage I: Proposition

Proposition 2.1

For any $d \in \mathbb{N}$ and sufficiently large cubic graph G, there is a red-blue-colouring φ for which the following holds:
(a) Each monochromatic component is a path of length at most 5.

Stage I: Proposition

Proposition 2.1

For any $d \in \mathbb{N}$ and sufficiently large cubic graph G, there is a red-blue-colouring φ for which the following holds:
(a) Each monochromatic component is a path of length at most 5.
(b) For $2 \leq t \leq 6,\left|r_{P_{t}}(G, \varphi)-b_{P_{t}}(G, \varphi)\right| \leq 3 \sqrt{n \log n}$.

Stage I: Proposition

Proposition 2.1

For any $d \in \mathbb{N}$ and sufficiently large cubic graph G, there is a red-blue-colouring φ for which the following holds:
(a) Each monochromatic component is a path of length at most 5.
(b) For $2 \leq t \leq 6,\left|r_{P_{t}}(G, \varphi)-b_{P_{t}}(G, \varphi)\right| \leq 3 \sqrt{n \log n}$.
(c) There are sequences of vertices $\left(u_{i}\right)_{i \in[s]}$ and $\left(w_{i}\right)_{i \in[s]}$, for some $s \geq 2^{-2 d-5} n$, such that all balls $B_{d}\left(u_{i}\right)$ and $B_{d}\left(w_{i}\right)$ are pairwise disjoint, and for each $i \in[s]$, induce isomorphic subgraphs with opposite colourings.

Proof Idea.

We will define a random coloring φ^{\prime} and show that it satisfies a, b and c . We then will make small adjustments to φ^{\prime} and make it satisfy (d).

Stage I: Proposition

Proposition 2.1

For any $d \in \mathbb{N}$ and sufficiently large cubic graph G, there is a red-blue-colouring φ for which the following holds:
(a) Each monochromatic component is a path of length at most 5.
(b) For $2 \leq t \leq 6,\left|r_{P_{t}}(G, \varphi)-b_{P_{t}}(G, \varphi)\right| \leq 3 \sqrt{n \log n}$.
(c) There are sequences of vertices $\left(u_{i}\right)_{i \in[s]}$ and $\left(w_{i}\right)_{i \in[s]}$, for some $s \geq 2^{-2 d-5} n$, such that all balls $B_{d}\left(u_{i}\right)$ and $B_{d}\left(w_{i}\right)$ are pairwise disjoint, and for each $i \in[s]$, induce isomorphic subgraphs with opposite colourings.
(d) φ is a bisection, that is there is an equal number of red and blue vertices.

Proof Idea.

We will define a random coloring φ^{\prime} and show that it satisfies a, b and c . We then will make small adjustments to φ^{\prime} and make it satisfy (d).

Proof of Proposition 2.1

- We apply Thomassen's theorem to partition edges G into two spanning linear forests F_{1}, F_{2} (every path has a length of less than 6).
- We take φ^{\prime} to be a uniform random proper 2-coloring of F_{1}.

Each path in F_{1} has two possible colorings and each path can be colored independently. Thus probability space is a product space.

Coloring φ^{\prime} satisfies (a):

Each monochromatic component is a path of length at most 5

Because φ^{\prime} is a proper coloring of F_{1} each monochromatic component of G has to be a subgraph of F_{2}. It follows immediately that such a component is a path of length at most 5 .

Coloring φ^{\prime} satisfies (b):

For $2 \leq t \leq 6,\left|r_{P_{t}}(G, \varphi)-b_{P_{t}}(G, \varphi)\right| \leq 3 \sqrt{n \log n}$

We use McDiarmid's inequality.

$$
P(|f(X)-E[f(X)]| \leq m) \leq 2 \exp \left(\frac{-2 m^{2}}{c^{2} n}\right)
$$

To do so we must understand how changing the coloring of a path in F_{1} affects $r_{P_{t}}\left(G, \varphi^{\prime}\right)$.

Coloring φ^{\prime} satisfies (b):

For $2 \leq t \leq 6,\left|r_{P_{t}}(G, \varphi)-b_{P_{t}}(G, \varphi)\right| \leq 3 \sqrt{n \log n}$

We use McDiarmid's inequality.

$$
P(|f(X)-E[f(X)]| \leq m) \leq 2 \exp \left(\frac{-2 m^{2}}{c^{2} n}\right)
$$

To do so we must understand how changing the coloring of a path in F_{1} affects $r_{P_{t}}\left(G, \varphi^{\prime}\right)$.

Because F_{2} contains only paths then changing the coloring of an individual vertex can affect at most two monochromatic components of P_{t}.

Coloring φ^{\prime} satisfies (b):

For $2 \leq t \leq 6,\left|r_{P_{t}}(G, \varphi)-b_{P_{t}}(G, \varphi)\right| \leq 3 \sqrt{n \log n}$

We use McDiarmid's inequality.

$$
P(|f(X)-E[f(X)]| \leq m) \leq 2 \exp \left(\frac{-2 m^{2}}{c^{2} n}\right)
$$

To do so we must understand how changing the coloring of a path in F_{1} affects $r_{P_{t}}\left(G, \varphi^{\prime}\right)$.

Because F_{2} contains only paths then changing the coloring of an individual vertex can affect at most two monochromatic components of P_{t}.

Because every path in F_{1} has at most 6 vertices then reversing its coloring can affect at most $\underline{12}$ monochromatic copies of P_{t}.

Coloring φ^{\prime} satisfies (b):

For $2 \leq t \leq 6,\left|r_{P_{t}}(G, \varphi)-b_{P_{t}}(G, \varphi)\right| \leq 3 \sqrt{n \log n}$

After applying McDiarmid's inequality (for right m) we get:

$$
P\left(\left|r_{P_{t}}\left(G, \varphi^{\prime}\right)-E\left[r_{P_{t}}\left(G, \varphi^{\prime}\right)\right]\right| \geq \sqrt{n \log n}\right) \leq 2 n^{-1 / 72}=o(1)
$$

Coloring φ^{\prime} satisfies (b):

For $2 \leq t \leq 6,\left|r_{P_{t}}(G, \varphi)-b_{P_{t}}(G, \varphi)\right| \leq 3 \sqrt{n \log n}$

After applying McDiarmid's inequality (for right m) we get:

$$
P\left(\left|r_{P_{t}}\left(G, \varphi^{\prime}\right)-E\left[r_{P_{t}}\left(G, \varphi^{\prime}\right)\right]\right| \geq \sqrt{n \log n}\right) \leq 2 n^{-1 / 72}=o(1)
$$

Because of symmetry:

$$
E\left[r_{P_{t}}\left(G, \varphi^{\prime}\right)\right]=E\left[b_{P_{t}}\left(G, \varphi^{\prime}\right)\right]
$$

Coloring φ^{\prime} satisfies (b):

For $2 \leq t \leq 6,\left|r_{P_{t}}(G, \varphi)-b_{P_{t}}(G, \varphi)\right| \leq 3 \sqrt{n \log n}$

After applying McDiarmid's inequality (for right m) we get:

$$
P\left(\left|r_{P_{t}}\left(G, \varphi^{\prime}\right)-E\left[r_{P_{t}}\left(G, \varphi^{\prime}\right)\right]\right| \geq \sqrt{n \log n}\right) \leq 2 n^{-1 / 72}=o(1)
$$

Because of symmetry:

$$
E\left[r_{P_{t}}\left(G, \varphi^{\prime}\right)\right]=E\left[b_{P_{t}}\left(G, \varphi^{\prime}\right)\right]
$$

Hence we get that:

$$
P\left(\left|r_{P_{t}}\left(G, \varphi^{\prime}\right)-b_{P_{t}}\left(G, \varphi^{\prime}\right)\right| \geq 2 \sqrt{n \log n}\right)=o(1)
$$

Coloring φ^{\prime} satisfies (c):

There are sequences of vertices $\left(u_{i}\right)_{i \in[s]}$ and $\left(w_{i}\right)_{i \in[s]}$, for some $s \geq 2^{-2 d-5} n$, such that all balls $B_{d}\left(u_{i}\right)$ and $B_{d}\left(w_{i}\right)$ are pairwise disjoint, and for each $i \in[s]$, induce isomorphic subgraphs with opposite colourings.

Coloring φ^{\prime} satisfies (c):

There are sequences of vertices $\left(u_{i}\right)_{i \in[s]}$ and $\left(w_{i}\right)_{i \in[s]}$, for some $s \geq 2^{-2 d-5} n$, such that all balls $B_{d}\left(u_{i}\right)$ and $B_{d}\left(w_{i}\right)$ are pairwise disjoint, and for each $i \in[s]$, induce isomorphic subgraphs with opposite colourings.

Proof sketch:

- For a large graph we can pick a set of independent balls with size $s^{\prime} \geq 2^{-2 d-1} n$.
- There are a finite number of possible classes of colored balls.
- We can show that with $1-o(1)$ probability for every such class C :

$$
|Y-\bar{Y}| \leq 2 \sqrt{n \log n}
$$

Where Y is the number of balls belonging to class C, and \bar{Y} is the number of balls belonging to the class with opposite coloring.

- We can therefore match $1 / 4$ balls into isomorphic pairs with opposite colorings.

Coloring φ^{\prime} almost satisfies (d):

With probability $1-o(1)$ the difference between number of red and blue vertices is at most $\frac{1}{20} \sqrt{n \log n}$.

Proof sketch:

- Only even-length paths in F_{1} contribute to the difference, and they contribute by exactly 1 .
- The expected difference is 0 .
- We can apply McDiarmid's inequality to get the bound.

For large n with high probability φ^{\prime} satisfies a, b, c and almost d.

We can create φ from φ^{\prime} that will satisfy a, b, c and d.
Proof sketch:

- Let Δ be the difference between red and blue vertices.
- We can reverse the coloring of Δ even-length paths in F_{1}.

For large n with high probability φ^{\prime} satisfies a, b, c and almost d.

We can create φ from φ^{\prime} that will satisfy a, b, c and d.
Proof sketch:

- Let Δ be the difference between red and blue vertices.
- We can reverse the coloring of Δ even-length paths in F_{1}.
(a) Will still be satisfied.

For large n with high probability φ^{\prime} satisfies a, b, c and almost d.

We can create φ from φ^{\prime} that will satisfy a, b, c and d.
Proof sketch:

- Let Δ be the difference between red and blue vertices.
- We can reverse the coloring of Δ even-length paths in F_{1}.
(a) Will still be satisfied.
(b) For each $t \in\{2, \ldots, 6\}$ we will change $\left|r_{P_{t}}(G, \varphi)-b_{P_{t}}(G, \varphi)\right|$ by at most $\sqrt{n \log n}$. So (b) will still be satisfied.

For large n with high probability φ^{\prime} satisfies a, b, c and almost d.
We can create φ from φ^{\prime} that will satisfy a, b, c and d.
Proof sketch:

- Let Δ be the difference between red and blue vertices.
- We can reverse the coloring of Δ even-length paths in F_{1}.
(a) Will still be satisfied.
(b) For each $t \in\{2, \ldots, 6\}$ we will change $\left|r_{P_{t}}(G, \varphi)-b_{P_{t}}(G, \varphi)\right|$ by at most $\sqrt{n \log n}$. So (b) will still be satisfied.
(c) Similarly φ will affect some balls of φ^{\prime} but at least $2^{-2 d-5} n$ pairs will prevail. Thus (c) holds as well.

For large n with high probability φ^{\prime} satisfies a, b, c and almost d.
We can create φ from φ^{\prime} that will satisfy a, b, c and d.
Proof sketch:

- Let Δ be the difference between red and blue vertices.
- We can reverse the coloring of Δ even-length paths in F_{1}.
(a) Will still be satisfied.
(b) For each $t \in\{2, \ldots, 6\}$ we will change $\left|r_{P_{t}}(G, \varphi)-b_{P_{t}}(G, \varphi)\right|$ by at most $\sqrt{n \log n}$. So (b) will still be satisfied.
(c) Similarly φ will affect some balls of φ^{\prime} but at least $2^{-2 d-5} n$ pairs will prevail. Thus (c) holds as well.
This completes the proof of proposition 2.1 ■

Stage II: Correcting the bisection

Coloring φ from proposition 2.1 is close to being bisection. We will make local changes to φ to correct the discrepancies.

Stage II: Correcting the bisection

Coloring φ from proposition 2.1 is close to being bisection. We will make local changes to φ to correct the discrepancies.

Definition: P_{t}-reducer

Given $t \geq 3$, an induced subgraph $R \subseteq G$ is a P_{t}-reducer if there are two vertex colorings ψ_{1}, ψ_{2} of $B_{2}(R)=R \cup N(R) \cup N^{2}(R)$ such that.
(i) ψ_{1}, ψ_{2} have the same number of red vertices (and therefore blue as well).
(ii) In both $\psi_{1}, \psi_{2} N(R)$ are colored blue and $N^{2}(R)$ are colored red.
(iii) $r_{H}\left(B_{2}(R), \psi_{1}\right)=r_{H}\left(B_{2}(R), \psi_{2}\right)$ and $b_{H}\left(B_{2}(R), \psi_{1}\right)=b_{H}\left(B_{2}(R), \psi_{2}\right)$, unless $H=P_{\ell}$ for some $2 \leq \ell \leq t$
(iv) $r_{P_{t}}\left(B_{2}(R), \psi_{2}\right)=r_{P_{t}}\left(B_{2}(R), \psi_{1}\right)-1$ and $b_{P_{t}}\left(B_{2}(R), \psi_{2}\right)=b_{P_{t}}\left(B_{2}(R), \psi_{1}\right)$

Intuition. For a P_{t}-reducer and colorings ψ_{1}, ψ_{2} :

- The only monochromatic components that can appear/disappear are paths of length $\leq t$.
- The number of monochromatic paths o length t changes by exactly 1 .

Intuition. For a P_{t}-reducer and colorings ψ_{1}, ψ_{2} :

- The only monochromatic components that can appear/disappear are paths of length $\leq t$.
- The number of monochromatic paths o length t changes by exactly 1 .

Theorem 2.4

Let G be a cubic graph on more than $3 \cdot 2^{50}$ vertices, and let $v \in V(G)$. Then for every $3 \leq t \leq 6$, there is a P_{t}-reducer in $B_{50}(v)$.

Intuition. For a P_{t}-reducer and colorings ψ_{1}, ψ_{2} :

- The only monochromatic components that can appear/disappear are paths of length $\leq t$.
- The number of monochromatic paths o length t changes by exactly 1 .

Theorem 2.4

Let G be a cubic graph on more than $3 \cdot 2^{50}$ vertices, and let $v \in V(G)$. Then for every $3 \leq t \leq 6$, there is a P_{t}-reducer in $B_{50}(v)$.

Proof omitted.

Proof of the main theorem

Main Theorem

Every sufficiently large connected cubic graph admits a 2 -coloring φ whose classes induce isomorphic subgraphs.

Proof of the main theorem

Main Theorem

Every sufficiently large connected cubic graph admits a 2 -coloring φ whose classes induce isomorphic subgraphs.

Set $d=57$ and use it in proposition 2.1. We get a 2 -coloring φ_{0}, such that:

- $r_{H}\left(G, \varphi_{0}\right)=b_{H}\left(G, \varphi_{0}\right)$ except $H=P_{t}, 2 \leq t \leq 6$.
- $\left|r_{P_{t}}\left(G, \varphi_{0}\right)-b_{P_{t}}\left(G, \varphi_{0}\right)\right| \leq 3 \sqrt{n \log n}$ for $2 \leq t \leq 6$

We shall correct imbalances.
(1) Start with $t=6$.
(2) Assume without loss of generality: $r_{P_{6}}\left(G, \varphi_{0}\right)>b_{P_{6}}\left(G, \varphi_{0}\right)$

We shall correct imbalances.
(1) Start with $t=6$.
(2) Assume without loss of generality: $r_{P_{6}}\left(G, \varphi_{0}\right)>b_{P_{6}}\left(G, \varphi_{0}\right)$
(3) Take the first pair of isomorphic and opposed-colored balls $B_{57}\left(u_{1}\right), B_{57}\left(w_{1}\right)$.

We shall correct imbalances.
(1) Start with $t=6$.
(2) Assume without loss of generality: $r_{P_{6}}\left(G, \varphi_{0}\right)>b_{P_{6}}\left(G, \varphi_{0}\right)$
(3) Take the first pair of isomorphic and opposed-colored balls $B_{57}\left(u_{1}\right), B_{57}\left(w_{1}\right)$.
(4) By proposition 2.4 we can find a P_{6}-reducer R in $G\left[B_{50}\left(u_{1}\right)\right]$.
(5) Therefore w get \bar{R} corresponding oppositely-colored copy of R, such that $\bar{R} \subseteq G\left[B_{50}\left(w_{1}\right)\right]$.

We shall correct imbalances.
(1) Start with $t=6$.
(2) Assume without loss of generality: $r_{P_{6}}\left(G, \varphi_{0}\right)>b_{P_{6}}\left(G, \varphi_{0}\right)$
(3) Take the first pair of isomorphic and opposed-colored balls $B_{57}\left(u_{1}\right), B_{57}\left(w_{1}\right)$.
(4) By proposition 2.4 we can find a P_{6}-reducer R in $G\left[B_{50}\left(u_{1}\right)\right]$.
(5) Therefore w get \bar{R} corresponding oppositely-colored copy of R, such that $\bar{R} \subseteq G\left[B_{50}\left(w_{1}\right)\right]$.
(6) Let ψ_{1}, ψ_{2} be the colorings for R that show it's a P_{6}-reducer.
(7) And let $\bar{\psi}_{1}, \bar{\psi}_{2}$ be the opposite colorings.

8 Color $B_{2}(R)$ with ψ_{2} and $B_{2}(\bar{R})$ with $\bar{\psi}_{1}$, lets call it φ_{1}.

Observe that ψ_{1} is still bisection:

- Colorings ψ_{1}, ψ_{2} have the same number of red vertices.

Observe that ψ_{1} is still bisection:

- Colorings ψ_{1}, ψ_{2} have the same number of red vertices.

Claim

For all $H, r_{H}\left(G, \psi_{1}\right)=b_{H}\left(G, \psi_{1}\right)$, except $P_{t}, 2 \leq t \leq 6$. And the difference between the number of red and blue P_{6} is reduced by 1 .

Claim proof sketch.

- Monochromatic components could only change in $B_{57}\left(u_{1}\right)$ and $B_{57}\left(w_{1}\right)$. (We made changes in $B_{50}\left(u_{1}\right)$ and $B_{50}\left(w_{1}\right)$)

Claim proof sketch.

- Monochromatic components not fully contained in $B_{2}(R)\left(B_{2}(\bar{R})\right)$ are ok.

Such components can only contain vertices from $B_{2}(R)$ but from symmetry, we get blue isomorphic components in the other ball.

Claim proof sketch.

- This leaves monochromatic components fully contained in $B_{2}(R), B_{2}(\bar{R})$.
We use properties of P_{6}-reducer.
- For every H except P_{t} where $2 \leq t \leq 6$:

$$
r_{H}\left(B_{2}(R), \psi_{2}\right)=r_{H}\left(B_{2}(R), \psi_{1}\right)=b_{H}\left(B_{2}(\bar{R}), \bar{\psi}_{1}\right)
$$

Similarly:

$$
b_{H}\left(B_{2}(R), \psi_{2}\right)=r_{H}\left(B_{2}(\bar{R}), \bar{\psi}_{1}\right)
$$

- For P_{6} we get:

$$
r_{P_{6}}\left(B_{2}(R), \psi_{2}\right)=r_{P_{6}}\left(B_{2}(R), \psi_{1}\right)-1=b_{P_{6}}\left(B_{2}(\bar{R}), \psi_{1}\right)-1
$$

While:

$$
b_{P_{6}}\left(B_{2}(R), \psi_{2}\right)=r_{P_{6}}\left(B_{2}(\bar{R}), \psi_{1}\right)
$$

We repeat this process $r_{P_{6}}\left(G, \varphi_{0}\right)-b_{P_{6}}\left(G, \varphi_{0}\right)$ times, every time taking new pair of balls.

We repeat this process $r_{P_{6}}\left(G, \varphi_{0}\right)-b_{P_{6}}\left(G, \varphi_{0}\right)$ times, every time taking new pair of balls.
Every such step could only create a constant number of P_{5}-components. Thus $\left|r_{P_{5}}\left(G, \varphi_{k}\right)-b_{P_{5}}\left(G, \varphi_{k}\right)\right|=O(\sqrt{n \log n})$. We can continue the process for P_{5}, P_{4}, P_{3}.

We repeat this process $r_{P_{6}}\left(G, \varphi_{0}\right)-b_{P_{6}}\left(G, \varphi_{0}\right)$ times, every time taking new pair of balls.
Every such step could only create a constant number of P_{5}-components. Thus $\left|r_{P_{5}}\left(G, \varphi_{k}\right)-b_{P_{5}}\left(G, \varphi_{k}\right)\right|=O(\sqrt{n \log n})$. We can continue the process for P_{5}, P_{4}, P_{3}.
Observe that we will need at most $O(\sqrt{n \log n})$ steps and we have $\Omega(n)$ pairs of balls. Thus for large graphs, we can finish this process.

After this procedure we get that $r_{H}(G, \varphi)=b_{H}(G, \varphi)$ for every $H \neq P_{2}$.

After this procedure we get that $r_{H}(G, \varphi)=b_{H}(G, \varphi)$ for every $H \neq P_{2}$.
Because G is cubic and φ is a bisection, the number of monochromatic red edges is equal to blue.

This yields that $r_{P_{2}}(G, \varphi)=b_{P_{2}}(G, \varphi)$, which completes the proof.

Bibliography

國 Das, S., A. Pokrovskiy, and B. Sudakov. "Isomorphic bisections of cubic graphs". In: Journal of Combinatorial Theory, Series B 151 (2021), pp. 465-481.

國 Thomassen, Carsten. "Two-Coloring the Edges of a Cubic Graph Such That Each Monochromatic Component Is a Path of Length at Most 5". In: Journal of Combinatorial Theory, Series B 75.1 (1999), pp. 100-109.

[^0]: ${ }^{1}$ S. Das, A. Pokrovskiy, and B. Sudakov. "Isomorphic bisections of cubic graphs". In: Journal of Combinatorial Theory, Series B 151 (2021), pp. 465-481.

[^1]: ${ }^{a}$ Carsten Thomassen. "Two-Coloring the Edges of a Cubic Graph Such That Each Monochromatic Component Is a Path of Length at Most 5". In: Journal of Combinatorial Theory, Series B 75.1 (1999), pp. 100-109.

