A generalization of König's theorem

L. Lovász

January 5, 2023

We will fix sets A and B and only consider bipartite graphs joining them.

We will fix sets A and B and only consider bipartite graphs joining them.

$$\delta = |A| - \max_{X \subseteq A} \{|X| - |X^{\mathcal{G}}|\}$$

$$\underset{X\subseteq A}{\forall} |X| - \delta \le |X^{\mathcal{G}}|$$

$$egin{array}{c} orall X | X | - \delta \leq |X^G| \ & X \subseteq A \end{array} \ f(X) \leq |X^G|, \quad ext{where } f: 2^A o \mathbb{N} \end{array}$$

$$\begin{array}{l} & \forall \\ X \subseteq A \end{array} |X| - \delta \leq |X^G| \\ & \forall \\ X \subseteq A \end{array} f(X) \leq |X^G|, \quad \text{where } f: 2^A \to \mathbb{N} \end{array}$$

Let K^f denote the set of those graphs G , for which $\begin{array}{l} \forall \\ X \subseteq A \end{array} f(X) \leq |X^G|. \end{array}$

$$\begin{array}{l} \forall \\ X \subseteq A \end{array} |X| - \delta \le |X^G| \\ \forall \\ X \subseteq A \end{array} f(X) \le |X^G|, \quad \text{where } f : 2^A \to \mathbb{N} \\ K^f \text{ denote the set of those graphs } G, \text{ for which } \forall \\ X \subseteq A \atop X \subseteq A } f(X) \le |X^G|. \end{array}$$

Let *I*

For f(X) = |X|, K^{t} is the set of graphs admitting an A-perfect matching.

Critical graphs

Definition

Given a class of graphs K^f , a graph $G = (\mathbf{V}, E)$ is critical in K^f , iff for every graph $G' = (\mathbf{V}, E')$ where $E' \subsetneq E$, $G' \notin K^f$.

Given a class of graphs K^f , a graph $G = (\mathbf{V}, E)$ is critical in K^f , iff for every graph $G' = (\mathbf{V}, E')$ where $E' \subsetneq E$, $G' \notin K^f$.

If f(X) = |X|, a critical graph in K^{f} would consist only of an A-perfect matching.

Given a class of graphs K^f , a graph $G = (\mathbf{V}, E)$ is critical in K^f , iff for every graph $G' = (\mathbf{V}, E')$ where $E' \subsetneq E$, $G' \notin K^f$.

If f(X) = |X|, a critical graph in K^{f} would consist only of an A-perfect matching.

Given a class of graphs K^f , a graph $G = (\mathbf{V}, E)$ is critical in K^f , iff for every graph $G' = (\mathbf{V}, E')$ where $E' \subsetneq E$, $G' \notin K^f$.

If f(X) = |X|, a critical graph in K^{f} would consist only of an A-perfect matching.

Theorem 1

Assuming

$$\begin{aligned} f(X) + f(Y) &\leq f(X \cup Y) + f(X \cap Y), & \text{if } X \cap Y = \emptyset \\ f(X) + f(Y) &\geq f(X \cup Y), & \text{if } X \cap Y \neq \emptyset \end{aligned}$$

 $G \in K^f$ is critical if and only if every vertex $x \in A$ has degree $f(\{x\})$.

Theorem 1

Assuming

$$\begin{aligned} f(X) + f(Y) &\leq f(X \cup Y) + f(X \cap Y), & \text{if } X \cap Y = \emptyset \\ f(X) + f(Y) &\geq f(X \cup Y), & \text{if } X \cap Y \neq \emptyset \end{aligned}$$

 $G \in K^f$ is critical if and only if every vertex $x \in A$ has degree $f(\{x\})$.

 $A \qquad B$

To be in K^f : $\forall_{X \subseteq A} f(X) \leq |X^G|$ To be critical in K^f : $\forall_{x \in A} f(\{x\}) = |\{x\}^G|$

Theorem 1

Assuming

$$\begin{aligned} f(X) + f(Y) &\leq f(X \cup Y) + f(X \cap Y), & \text{if } X \cap Y = \emptyset \\ f(X) + f(Y) &\geq f(X \cup Y), & \text{if } X \cap Y \neq \emptyset \end{aligned}$$

 $G \in K^f$ is critical if and only if every vertex $x \in A$ has degree $f(\{x\})$.

The \Leftarrow is trivial.

Theorem 1

Assuming

$$\begin{aligned} f(X) + f(Y) &\leq f(X \cup Y) + f(X \cap Y), & \text{if } X \cap Y = \emptyset \\ f(X) + f(Y) &\geq f(X \cup Y), & \text{if } X \cap Y \neq \emptyset \end{aligned}$$

 $G \in K^f$ is critical if and only if every vertex $x \in A$ has degree $f(\{x\})$.

The \Leftarrow is trivial.

Theorem 1

Assuming

$$\begin{aligned} f(X) + f(Y) &\leq f(X \cup Y) + f(X \cap Y), & \text{if } X \cap Y = \emptyset \\ f(X) + f(Y) &\geq f(X \cup Y), & \text{if } X \cap Y \neq \emptyset \end{aligned}$$

 $G \in K^f$ is critical if and only if every vertex $x \in A$ has degree $f(\{x\})$.

The \Leftarrow is trivial.

Lemma

Let G be an arbitrary graph of K^f .

Let α_{G} denote the set of those $X \in A$, for which:

 $f(X) = |X^G|$

Lemma

Let G be an arbitrary graph of K^{f} .

Let α_{G} denote the set of those $X \in A$, for which:

Lemma

Let G be an arbitrary graph of K^{f} .

Let α_{G} denote the set of those $X \in A$, for which:

Lemma

If $X, Y \in \alpha_{\mathcal{G}}$, then $X \cap Y \in \alpha_{\mathcal{G}}$

 X_i - violator, $x \in X_i$, $y_i \notin X_i^{G_i}$, $X_i \in \alpha_G$

Proof, that if G is critical, then for every vertex $x, \varphi := \deg(x) == f(\{x\})$:

 X_i - violator, $x \in X_i$, $y_i \notin X_i^{G_i}$, $X_i \in \alpha_G$

 $Y := \bigcap_{i \in [1..\varphi]} X_i, \quad Y \in \alpha_G$

Proof, that if G is critical, then for every vertex $x, \varphi := \deg(x) == f(\{x\})$:

 X_i - violator, $x \in X_i$, $y_i \notin X_i^{G_i}$, $X_i \in \alpha_G$

 $Y := \bigcap_{i \in [1..\varphi]} X_i, \quad Y \in \alpha_G$

Proof, that if G is critical, then for every vertex $x, \varphi := \deg(x) == f(\{x\})$:

 X_i - violator, $x \in X_i$, $y_i \notin X_i^{G_i}$, $X_i \in \alpha_G$

$$\begin{split} Y &:= \bigcap_{i \in [1..\varphi]} X_i, \quad Y \in \alpha_G \\ Y_0 &:= Y \setminus \{x\} \\ |Y^G| &= \varphi + |Y_0^G| \ge f(\{x\}) + f(Y_0) \ge f(Y) = |Y^G| \end{split}$$

Proof, that if G is critical, then for every vertex $x, \varphi := \deg(x) == f(\{x\})$:

 X_i - violator, $x \in X_i$, $y_i \notin X_i^{G_i}$, $X_i \in \alpha_G$

$$\begin{split} Y &:= \bigcap_{i \in [1..\varphi]} X_i, \quad Y \in \alpha_G \\ Y_0 &:= Y \setminus \{x\} \\ |Y^G| &= \varphi + |Y_0^G| \ge f(\{x\}) + f(Y_0) \ge f(Y) = |Y^G| \end{split}$$

Proof, that if G is critical, then for every vertex $x, \varphi := \deg(x) == f(\{x\})$:

 X_i - violator, $x \in X_i$, $y_i \notin X_i^{G_i}$, $X_i \in \alpha_G$

$$\begin{split} Y &:= \bigcap_{i \in [1..\varphi]} X_i, \quad Y \in \alpha_G \\ Y_0 &:= Y \setminus \{x\} \\ |Y^G| &= \varphi + |Y_0^G| \ge f(\{x\}) + f(Y_0) \ge f(Y) = |Y^G| \\ \text{Therefore } \varphi &= f(\{x\}), \text{ Q.E.D.} \end{split}$$

Hypergraphs

Definition

A hypergraph is a set of sets \mathfrak{H} .

Hypergraphs

Definition

A hypergraph is a set of sets \mathfrak{H} .

We call elements of \mathfrak{H} simplices.

We call elements of simplices (elements of $\bigcup_{E \in \mathfrak{H}} E$) vertices.

Hypergraphs

Definition

A hypergraph is a set of sets \mathfrak{H} .

We call elements of \mathfrak{H} simplices.

We call elements of simplices (elements of $\bigcup_{E \in \mathfrak{H}} E$) vertices. We denote the set of vertices of \mathfrak{H} as $P(\mathfrak{H})$.

A correct α -coloring of hypergraph \mathfrak{H} is an assignment of colors $[1..\alpha]$ to vertices such that no simplex is monochromatic.

The chromatic number of hypergraph \mathfrak{H} is the smallest α for which an α -coloring.

Lemma

If \mathfrak{H} is 2-uniform (every simplex has cardinality 2), the following are equivalent:

Lemma

If \mathfrak{H} is 2-uniform (every simplex has cardinality 2), the following are equivalent:

(i) \mathfrak{H} is a forest

Lemma

If \mathfrak{H} is 2-uniform (every simplex has cardinality 2), the following are equivalent:

- (i) \mathfrak{H} is a forest
- (ii) for every $\mathfrak{H}' \subseteq \mathfrak{H}, \mathfrak{H}' \neq \varnothing$, there exists $E \in \mathfrak{H}$ such that $|E \cap P(\mathfrak{H} \setminus \{E\})| \leq 1$

Lemma

If \mathfrak{H} is 2-uniform (every simplex has cardinality 2), the following are equivalent:

- (i) \mathfrak{H} is a forest
- (ii) for every $\mathfrak{H}' \subseteq \mathfrak{H}, \mathfrak{H}' \neq \emptyset$, there exists $E \in \mathfrak{H}$ such that $|E \cap P(\mathfrak{H} \setminus \{E\})| \leq 1$

(iii) for every $\mathfrak{H}' \subseteq \mathfrak{H}, \mathfrak{H}' \neq \varnothing, \ |\mathfrak{H}'| + |P(\mathfrak{H}')| \ge \sum_{E \in \mathfrak{H}'} |E| + 1$

Lemma

If \mathfrak{H} is 2-uniform (every simplex has cardinality 2), the following are equivalent:

- (i) \mathfrak{H} is a forest
- (ii) for every $\mathfrak{H}' \subseteq \mathfrak{H}, \mathfrak{H}' \neq \emptyset$, there exists $E \in \mathfrak{H}$ such that $|E \cap P(\mathfrak{H} \setminus \{E\})| \leq 1$

(iii) for every $\mathfrak{H}' \subseteq \mathfrak{H}, \mathfrak{H}' \neq \varnothing, \ |\mathfrak{H}'| + |P(\mathfrak{H}')| \ge \sum_{E \in \mathfrak{H}'} |E| + 1$

Lemma

If \mathfrak{H} is 2-uniform (every simplex has cardinality 2), the following are equivalent:

- (i) \mathfrak{H} is a forest
- (ii) for every $\mathfrak{H}' \subseteq \mathfrak{H}, \mathfrak{H}' \neq \varnothing$, there exists $E \in \mathfrak{H}$ such that $|E \cap P(\mathfrak{H} \setminus \{E\})| \leq 1$

(iii) for every $\mathfrak{H}' \subseteq \mathfrak{H}, \mathfrak{H}' \neq \varnothing, \ |\mathfrak{H}'| + |P(\mathfrak{H}')| \ge \sum_{E \in \mathfrak{H}'} |E| + 1$

Lemma

If \mathfrak{H} is 2-uniform (every simplex has cardinality 2), the following are equivalent:

- (i) \mathfrak{H} is a forest
- (ii) for every $\mathfrak{H}' \subseteq \mathfrak{H}, \mathfrak{H}' \neq \emptyset$, there exists $E \in \mathfrak{H}$ such that $|E \cap P(\mathfrak{H} \setminus \{E\})| \leq 1$
- (iii) for every $\mathfrak{H}' \subseteq \mathfrak{H}, \mathfrak{H}' \neq \varnothing, \ |\mathfrak{H}'| + |P(\mathfrak{H}')| \ge \sum_{E \in \mathfrak{H}'} |E| + 1$

(ii) and (iii) are equivalent even when considering any hypergraphs.

If a hypergraph \mathfrak{H} , for every $\mathfrak{H}' \subseteq \mathfrak{H}, \mathfrak{H}' \neq \varnothing$ has the property:

$$|P(\mathfrak{H}')| \ge (eta - 1)|\mathfrak{H}'| + 1$$

Then \mathfrak{H} has strict chromatic number $\geq \beta$.

If a hypergraph \mathfrak{H} , for every $\mathfrak{H}' \subseteq \mathfrak{H}, \mathfrak{H}' \neq \varnothing$ has the property:

 $|P(\mathfrak{H}')| \geq (eta-1)|\mathfrak{H}'|+1$

Then \mathfrak{H} has strict chromatic number $\geq \beta$.

Case I. \mathfrak{H} is β -uniform.

If a hypergraph \mathfrak{H} , for every $\mathfrak{H}' \subseteq \mathfrak{H}, \mathfrak{H}' \neq \varnothing$ has the property:

$$|P(\mathfrak{H}')| \geq (eta-1)|\mathfrak{H}'|+1$$

Then \mathfrak{H} has strict chromatic number $\geq \beta$.

Case I. \mathfrak{H} is β -uniform.

$$ert P(\mathfrak{H}')ert \geq (eta-1)ert \mathfrak{H}'ert + 1$$
 $ert P(\mathfrak{H}')ert + ert \mathfrak{H}'ert \geq etaert \mathfrak{H}'ert + 1 = \sum_{E\in \mathfrak{H}'}ert Eert + 1$

If a hypergraph \mathfrak{H} , for every $\mathfrak{H}' \subseteq \mathfrak{H}, \mathfrak{H}' \neq \varnothing$ has the property:

$$|P(\mathfrak{H}')| \geq (eta-1)|\mathfrak{H}'|+1$$

Then \mathfrak{H} has strict chromatic number $\geq \beta$.

Case I. \mathfrak{H} is β -uniform.

$$|P(\mathfrak{H}')| \geq (eta-1)|\mathfrak{H}'|+1$$

$$|P(\mathfrak{H}')| + |\mathfrak{H}'| \ge eta|\mathfrak{H}'| + 1 = \sum_{E \in \mathfrak{H}'} |E| + 1$$

This is (iii) from the slide before. (iii) implies (ii) - the statement that allows induction.

$$f(X) = egin{cases} (eta-1)|X|+1 & ext{if } X
eq arnothing \ 0 & ext{else} \end{cases}$$

$$f(X) = egin{cases} (eta-1)|X|+1 & ext{if } X
eq arnothing \ 0 & ext{else} \end{cases}$$

$$f(X) = egin{cases} (eta-1)|X|+1 & ext{if } X
eq arnothing \ 0 & ext{else} \end{cases}$$

$$f(X) = egin{cases} (eta-1)|X|+1 & ext{if } X
eq arnothing \ 0 & ext{else} \end{cases}$$

$$f(X) = egin{cases} (eta-1)|X|+1 & ext{if } X
eq arnothing \ 0 & ext{else} \end{cases}$$

$$f(X) = egin{cases} (eta-1)|X|+1 & ext{if } X
eq arnothing \ 0 & ext{else} \end{cases}$$

$$f(X) = egin{cases} (eta-1)|X|+1 & ext{if } X
eq arnothing \ 0 & ext{else} \end{cases}$$

Conjecture by Erdos

If a hypergraph \mathfrak{H} fulfills:

for every $\mathfrak{H}'\subseteq \mathfrak{H}, \mathfrak{H}'\neq arnothing$, $\mathcal{P}(\mathfrak{H}')\geq |\mathfrak{H}'|+1$

Then it has chromatic number ≤ 2 .

Colorings

Lemma

A hypergraph \mathfrak{H} has chromatic number ≤ 2 if and only if it has strict chromatic number $\geq 2.$

Colorings

Lemma

A hypergraph \mathfrak{H} has chromatic number ≤ 2 if and only if it has strict chromatic number ≥ 2 .

 \Leftarrow A strict α-coloring ($\alpha \ge 2$) can be reduced to 2-coloring by mapping [3..α] to 1.

Colorings

Lemma

A hypergraph \mathfrak{H} has chromatic number ≤ 2 if and only if it has strict chromatic number ≥ 2 .

 \Leftarrow A strict α-coloring ($\alpha \ge 2$) can be reduced to 2-coloring by mapping [3..α] to 1.

 \Rightarrow A 2-coloring is strict by default.

$$P(\mathfrak{H}') \geq |\mathfrak{H}'| + 1$$

$$P(\mathfrak{H}') \geq (2-1)|\mathfrak{H}'| + 1$$

 $P(\mathfrak{H}') \geq |\mathfrak{H}'| + 1$

$P(\mathfrak{H}') \geq (2-1)|\mathfrak{H}'| + 1$

Due to theorem 2, this graph has strict chromatic number \geq 2, and due to the just proven lemma, it also has chromatic number \leq 2. Q.E.D.

Thanks for attention!