A generalization of König's theorem

L. Lovász

January 5, 2023

Terminology

We will fix sets A and B and only consider bipartite graphs joining them.

Terminology

We will fix sets A and B and only consider bipartite graphs joining them.

König's theorem

$$
\text { min vertex cover } \quad=\quad \text { max matching }
$$

A
B
A
B

Ore's equivalent theorem

δ - max matching cardinality

$$
A \quad B
$$

$$
\delta=|A|-\max _{X \subseteq A}\left\{|X|-\left|X^{G}\right|\right\}
$$

Ore's equivalent theorem

δ - max matching cardinality

$$
\begin{gathered}
\delta=|A|-\max _{X \subseteq A}\left\{|X|-\left|X^{G}\right|\right\} \\
\Uparrow \\
\underset{X \subseteq A}{\forall}|X|-\delta \leq\left|X^{G}\right|
\end{gathered}
$$

Ore's equivalent theorem

δ - max matching cardinality

$$
\begin{gathered}
\delta=|A|-\max _{X \subseteq A}\left\{|X|-\left|X^{G}\right|\right\} \\
\Uparrow \\
\underset{X \subseteq A}{\forall}|X|-\delta \leq\left|X^{G}\right|
\end{gathered}
$$

$$
\begin{gathered}
\text { Hall: } \delta \leftarrow 0 \\
\underset{X \subseteq A}{\forall}|X| \leq\left|X^{G}\right|
\end{gathered}
$$

Generalization

$$
\underset{X \subseteq A}{\forall}|X|-\delta \leq\left|X^{G}\right|
$$

Generalization

$$
\begin{gathered}
\underset{X \subseteq A}{\forall}|X|-\delta \leq\left|X^{G}\right| \\
\underset{x \subseteq A}{\forall} f(X) \leq\left|X^{G}\right|, \quad \text { where } f: 2^{A} \rightarrow \mathbb{N}
\end{gathered}
$$

Generalization

$$
\begin{gathered}
\underset{X \subseteq A}{\forall}|X|-\delta \leq\left|X^{G}\right| \\
\underset{x \subseteq A}{\forall} f(X) \leq\left|X^{G}\right|, \quad \text { where } f: 2^{A} \rightarrow \mathbb{N}
\end{gathered}
$$

Let K^{f} denote the set of those graphs G, for which $\underset{X \subseteq A}{\forall} f(X) \leq\left|X^{G}\right|$.

Generalization

$$
\begin{gathered}
\underset{x \subseteq A}{\forall}|X|-\delta \leq\left|X^{G}\right| \\
\underset{x \subseteq A}{\forall} f(X) \leq\left|X^{G}\right|, \quad \text { where } f: 2^{A} \rightarrow \mathbb{N}
\end{gathered}
$$

Let K^{f} denote the set of those graphs G, for which $\underset{X \subseteq A}{\forall} f(X) \leq\left|X^{G}\right|$.
For $f(X)=|X|, K^{f}$ is the set of graphs admitting an A-perfect matching.

Critical graphs

Definition

Given a class of graphs K^{f}, a graph $G=(\mathbf{V}, E)$ is critical in K^{f}, iff for every graph $G^{\prime}=\left(\mathbf{V}, E^{\prime}\right)$ where $E^{\prime} \subsetneq E, G^{\prime} \notin K^{f}$.

Critical graphs

Definition

Given a class of graphs K^{f}, a graph $G=(\mathbf{V}, E)$ is critical in K^{f}, iff for every graph $G^{\prime}=\left(\mathbf{V}, E^{\prime}\right)$ where $E^{\prime} \subsetneq E, G^{\prime} \notin K^{f}$.

If $f(X)=|X|$, a critical graph in K^{f} would consist only of an A-perfect matching.

Critical graphs

Definition

Given a class of graphs K^{f}, a graph $G=(\mathbf{V}, E)$ is critical in K^{f}, iff for every graph $G^{\prime}=\left(\mathbf{V}, E^{\prime}\right)$ where $E^{\prime} \subsetneq E, G^{\prime} \notin K^{f}$.

If $f(X)=|X|$, a critical graph in K^{f} would consist only of an A-perfect matching.

Critical graphs

Definition

Given a class of graphs K^{f}, a graph $G=(\mathbf{V}, E)$ is critical in K^{f}, iff for every graph $G^{\prime}=\left(\mathbf{V}, E^{\prime}\right)$ where $E^{\prime} \subsetneq E, G^{\prime} \notin K^{f}$.

If $f(X)=|X|$, a critical graph in K^{f} would consist only of an A-perfect matching.

$$
A \quad B
$$

$$
X \subseteq A \odot \cdots \cdots \cdots \cdot \emptyset=X^{G}
$$

Which graphs are critical?

Theorem 1
Assuming

$$
\begin{array}{ll}
f(X)+f(Y) \leq f(X \cup Y)+f(X \cap Y), & \text { if } X \cap Y=\varnothing \\
f(X)+f(Y) \geq f(X \cup Y), & \text { if } X \cap Y \neq \varnothing
\end{array}
$$

$G \in K^{f}$ is critical if and only if every vertex $x \in A$ has degree $f(\{x\})$.

Which graphs are critical?

Theorem 1

Assuming

$$
\begin{array}{ll}
f(X)+f(Y) \leq f(X \cup Y)+f(X \cap Y), & \text { if } X \cap Y=\varnothing \\
f(X)+f(Y) \geq f(X \cup Y), & \text { if } X \cap Y \neq \varnothing
\end{array}
$$

$G \in K^{f}$ is critical if and only if every vertex $x \in A$ has degree $f(\{x\})$.

$$
A \quad B
$$

To be in $K^{f}: \quad \forall X \subseteq A f(X) \leq\left|X^{G}\right|$
To be critical in $K^{f}: \quad \forall_{x \in A} f(\{x\})=\left|\{x\}^{G}\right|$

Which graphs are critical?

Theorem 1

Assuming

$$
\begin{array}{ll}
f(X)+f(Y) \leq f(X \cup Y)+f(X \cap Y), & \text { if } X \cap Y=\varnothing \\
f(X)+f(Y) \geq f(X \cup Y), & \text { if } X \cap Y \neq \varnothing
\end{array}
$$

$G \in K^{f}$ is critical if and only if every vertex $x \in A$ has degree $f(\{x\})$.
The \Leftarrow is trivial.

$$
A \quad B
$$

Which graphs are critical?

Theorem 1

Assuming

$$
\begin{array}{ll}
f(X)+f(Y) \leq f(X \cup Y)+f(X \cap Y), & \text { if } X \cap Y=\varnothing \\
f(X)+f(Y) \geq f(X \cup Y), & \text { if } X \cap Y \neq \varnothing
\end{array}
$$

$G \in K^{f}$ is critical if and only if every vertex $x \in A$ has degree $f(\{x\})$.
The \Leftarrow is trivial.

$$
A \quad B
$$

Which graphs are critical?

Theorem 1

Assuming

$$
\begin{array}{ll}
f(X)+f(Y) \leq f(X \cup Y)+f(X \cap Y), & \text { if } X \cap Y=\varnothing \\
f(X)+f(Y) \geq f(X \cup Y), & \text { if } X \cap Y \neq \varnothing
\end{array}
$$

$G \in K^{f}$ is critical if and only if every vertex $x \in A$ has degree $f(\{x\})$.
The \Leftarrow is trivial.

$$
A \quad B
$$

Lemma

Let G be an arbitrary graph of K^{f}.
Let α_{G} denote the set of those $X \in A$, for which:

$$
f(X)=\left|X^{G}\right|
$$

Lemma

Let G be an arbitrary graph of K^{f}.
Let α_{G} denote the set of those $X \in A$, for which:

$$
f(X)=\left|X^{G}\right|
$$

$A \quad B$

Lemma

Let G be an arbitrary graph of K^{f}.
Let α_{G} denote the set of those $X \in A$, for which:

$$
f(X)=\left|X^{G}\right|
$$

$A \quad B$

Lemma

If $X, Y \in \alpha_{G}$, then $X \cap Y \in \alpha_{G}$

Theorem 1 proof

Proof, that if G is critical, then for every vertex $x, \varphi:=\operatorname{deg}(x)==f(\{x\})$:

Theorem 1 proof

Proof, that if G is critical, then for every vertex $x, \varphi:=\operatorname{deg}(x)==f(\{x\})$:

Theorem 1 proof

Proof, that if G is critical, then for every vertex $x, \varphi:=\operatorname{deg}(x)==f(\{x\})$:

G_{2}
G_{3}

$A \quad B$

Theorem 1 proof

Proof, that if G is critical, then for every vertex $x, \varphi:=\operatorname{deg}(x)==f(\{x\})$:
G_{1}
G_{2}
G_{3}

$X_{i}-$ violator $, \quad x \in X_{i}, \quad y_{i} \notin X_{i}^{G_{i}}, \quad X_{i} \in \alpha_{G}$

Theorem 1 proof

Proof, that if G is critical, then for every vertex $x, \varphi:=\operatorname{deg}(x)==f(\{x\})$:
G_{1}
G_{2}
G_{3}

$X_{i}-$ violator $, \quad x \in X_{i}, \quad y_{i} \notin X_{i}^{G_{i}}, \quad X_{i} \in \alpha_{G}$
$Y:=\bigcap_{i \in[1 . . \varphi]} X_{i}, \quad Y \in \alpha_{G}$

Theorem 1 proof

Proof, that if G is critical, then for every vertex $x, \varphi:=\operatorname{deg}(x)==f(\{x\})$:

$X_{i}-$ violator $, \quad x \in X_{i}, \quad y_{i} \notin X_{i}^{G_{i}}, \quad X_{i} \in \alpha_{G}$
$Y:=\bigcap_{i \in[1 . . \varphi]} X_{i}, \quad Y \in \alpha_{G}$

Theorem 1 proof

Proof, that if G is critical, then for every vertex $x, \varphi:=\operatorname{deg}(x)==f(\{x\})$:

$X_{i}-$ violator $, \quad x \in X_{i}, \quad y_{i} \notin X_{i}^{G_{i}}, \quad X_{i} \in \alpha_{G}$
$Y:=\bigcap_{i \in[1 . . \varphi]} X_{i}, \quad Y \in \alpha_{G}$
$Y_{0}:=Y \backslash\{x\}$
$\left|Y^{G}\right|=\varphi+\left|Y_{0}^{G}\right| \geq f(\{x\})+f\left(Y_{0}\right) \geq f(Y)=\left|Y^{G}\right|$

Theorem 1 proof

Proof, that if G is critical, then for every vertex $x, \varphi:=\operatorname{deg}(x)==f(\{x\})$:

$X_{i}-$ violator $, \quad x \in X_{i}, \quad y_{i} \notin X_{i}^{G_{i}}, \quad X_{i} \in \alpha_{G}$
$Y:=\bigcap_{i \in[1 . . \varphi]} X_{i}, \quad Y \in \alpha_{G}$
$Y_{0}:=Y \backslash\{x\}$
$\left|Y^{G}\right|=\varphi+\left|Y_{0}^{G}\right| \geq f(\{x\})+f\left(Y_{0}\right) \geq f(Y)=\left|Y^{G}\right|$

Theorem 1 proof

Proof, that if G is critical, then for every vertex $x, \varphi:=\operatorname{deg}(x)==f(\{x\})$:

$X_{i}-$ violator $, \quad x \in X_{i}, \quad y_{i} \notin X_{i}^{G_{i}}, \quad X_{i} \in \alpha_{G}$
$Y:=\bigcap_{i \in[1 . . \varphi]} X_{i}, \quad Y \in \alpha_{G}$
$Y_{0}:=Y \backslash\{x\}$
$\left|Y^{G}\right|=\varphi+\left|Y_{0}^{G}\right| \geq f(\{x\})+f\left(Y_{0}\right) \geq f(Y)=\left|Y^{G}\right|$
Therefore $\varphi=f(\{x\})$, Q.E.D.

Hypergraphs

Definition

A hypergraph is a set of sets \mathfrak{H}.

Hypergraphs

Definition

A hypergraph is a set of sets \mathfrak{H}.

We call elements of \mathfrak{H} simplices. We call elements of simplices (elements of $\bigcup_{E \in \mathfrak{H}} E$) vertices.

Hypergraphs

Definition

A hypergraph is a set of sets \mathfrak{H}.

We call elements of \mathfrak{H} simplices. We call elements of simplices (elements of $\bigcup_{E \in \mathfrak{H}} E$) vertices. We denote the set of vertices of \mathfrak{H} as $P(\mathfrak{H})$.

Correct coloring

Definition

A correct α-coloring of hypergraph \mathfrak{H} is an assignment of colors [1.. α] to vertices such that no simplex is monochromatic.
The chromatic number of hypergraph \mathfrak{H} is the smallest α for which an α-coloring.

Strictly correct coloring

Definition

A strictly correct α-coloring of hypergraph \mathfrak{H} is an assignment of colors $[1 . . \alpha]$ to vertices such that every simplex covers $[1 . . \alpha]$.
The strict chromatic number of hypergraph \mathfrak{H} is the biggest α for which an α-coloring.

Strictly correct coloring

Definition

A strictly correct α-coloring of hypergraph \mathfrak{H} is an assignment of colors $[1 . . \alpha]$ to vertices such that every simplex covers [1.. α].
The strict chromatic number of hypergraph \mathfrak{H} is the biggest α for which an α-coloring.

Strictly correct coloring

Definition

A strictly correct α-coloring of hypergraph \mathfrak{H} is an assignment of colors $[1 . . \alpha]$ to vertices such that every simplex covers [1.. α].
The strict chromatic number of hypergraph \mathfrak{H} is the biggest α for which an α-coloring.

Strictly correct coloring

Definition

A strictly correct α-coloring of hypergraph \mathfrak{H} is an assignment of colors $[1 . . \alpha]$ to vertices such that every simplex covers [1.. α].
The strict chromatic number of hypergraph \mathfrak{H} is the biggest α for which an α-coloring.

Hypergraph properties

Lemma

If \mathfrak{H} is 2-uniform (every simplex has cardinality 2), the following are equivalent:

Hypergraph properties

Lemma

If \mathfrak{H} is 2-uniform (every simplex has cardinality 2), the following are equivalent:
(i) \mathfrak{H} is a forest

Hypergraph properties

Lemma

If \mathfrak{H} is 2-uniform (every simplex has cardinality 2), the following are equivalent:
(i) \mathfrak{H} is a forest
(ii) for every $\mathfrak{H}^{\prime} \subseteq \mathfrak{H}, \mathfrak{H}^{\prime} \neq \varnothing$, there exists $E \in \mathfrak{H}$ such that

$$
|E \cap P(\mathfrak{H} \backslash\{E\})| \leq 1
$$

Hypergraph properties

Lemma

If \mathfrak{H} is 2-uniform (every simplex has cardinality 2), the following are equivalent:
(i) \mathfrak{H} is a forest
(ii) for every $\mathfrak{H}^{\prime} \subseteq \mathfrak{H}, \mathfrak{H}^{\prime} \neq \varnothing$, there exists $E \in \mathfrak{H}$ such that $|E \cap P(\mathfrak{H} \backslash\{E\})| \leq 1$
(iii) for every $\mathfrak{H}^{\prime} \subseteq \mathfrak{H}, \mathfrak{H}^{\prime} \neq \varnothing,\left|\mathfrak{H}^{\prime}\right|+\left|P\left(\mathfrak{H}^{\prime}\right)\right| \geq \sum_{E \in \mathfrak{H}^{\prime}}|E|+1$

Hypergraph properties

Lemma

If \mathfrak{H} is 2-uniform (every simplex has cardinality 2), the following are equivalent:
(i) \mathfrak{H} is a forest
(ii) for every $\mathfrak{H}^{\prime} \subseteq \mathfrak{H}, \mathfrak{H}^{\prime} \neq \varnothing$, there exists $E \in \mathfrak{H}$ such that $|E \cap P(\mathfrak{H} \backslash\{E\})| \leq 1$
(iii) for every $\mathfrak{H}^{\prime} \subseteq \mathfrak{H}, \mathfrak{H}^{\prime} \neq \varnothing,\left|\mathfrak{H}^{\prime}\right|+\left|P\left(\mathfrak{H}^{\prime}\right)\right| \geq \sum_{E \in \mathfrak{H}^{\prime}}|E|+1$

Hypergraph properties

Lemma

If \mathfrak{H} is 2-uniform (every simplex has cardinality 2), the following are equivalent:
(i) \mathfrak{H} is a forest
(ii) for every $\mathfrak{H}^{\prime} \subseteq \mathfrak{H}, \mathfrak{H}^{\prime} \neq \varnothing$, there exists $E \in \mathfrak{H}$ such that $|E \cap P(\mathfrak{H} \backslash\{E\})| \leq 1$
(iii) for every $\mathfrak{H}^{\prime} \subseteq \mathfrak{H}, \mathfrak{H}^{\prime} \neq \varnothing,\left|\mathfrak{H}^{\prime}\right|+\left|P\left(\mathfrak{H}^{\prime}\right)\right| \geq \sum_{E \in \mathfrak{H}^{\prime}}|E|+1$

Hypergraph properties

Lemma

If \mathfrak{H} is 2-uniform (every simplex has cardinality 2), the following are equivalent:
(i) \mathfrak{H} is a forest
(ii) for every $\mathfrak{H}^{\prime} \subseteq \mathfrak{H}, \mathfrak{H}^{\prime} \neq \varnothing$, there exists $E \in \mathfrak{H}$ such that $|E \cap P(\mathfrak{H} \backslash\{E\})| \leq 1$
(iii) for every $\mathfrak{H}^{\prime} \subseteq \mathfrak{H}, \mathfrak{H}^{\prime} \neq \varnothing,\left|\mathfrak{H}^{\prime}\right|+\left|P\left(\mathfrak{H}^{\prime}\right)\right| \geq \sum_{E \in \mathfrak{H}^{\prime}}|E|+1$
(ii) and (iii) are equivalent even when considering any hypergraphs.

Theorem 2

Theorem 2

If a hypergraph \mathfrak{H}, for every $\mathfrak{H}^{\prime} \subseteq \mathfrak{H}, \mathfrak{H}^{\prime} \neq \varnothing$ has the property:

$$
\left|P\left(\mathfrak{H}^{\prime}\right)\right| \geq(\beta-1)\left|\mathfrak{H}^{\prime}\right|+1
$$

Then \mathfrak{H} has strict chromatic number $\geq \beta$.

Theorem 2

Theorem 2

If a hypergraph \mathfrak{H}, for every $\mathfrak{H}^{\prime} \subseteq \mathfrak{H}, \mathfrak{H}^{\prime} \neq \varnothing$ has the property:

$$
\left|P\left(\mathfrak{H}^{\prime}\right)\right| \geq(\beta-1)\left|\mathfrak{H}^{\prime}\right|+1
$$

Then \mathfrak{H} has strict chromatic number $\geq \beta$.
Case I. \mathfrak{H} is β-uniform.

Theorem 2

Theorem 2

If a hypergraph \mathfrak{H}, for every $\mathfrak{H}^{\prime} \subseteq \mathfrak{H}, \mathfrak{H}^{\prime} \neq \varnothing$ has the property:

$$
\left|P\left(\mathfrak{H}^{\prime}\right)\right| \geq(\beta-1)\left|\mathfrak{H}^{\prime}\right|+1
$$

Then \mathfrak{H} has strict chromatic number $\geq \beta$.
Case I. \mathfrak{H} is β-uniform.

$$
\begin{gathered}
\left|P\left(\mathfrak{H}^{\prime}\right)\right| \geq(\beta-1)\left|\mathfrak{H}^{\prime}\right|+1 \\
\left|P\left(\mathfrak{H}^{\prime}\right)\right|+\left|\mathfrak{H}^{\prime}\right| \geq \beta\left|\mathfrak{H}^{\prime}\right|+1=\sum_{E \in \mathfrak{H}^{\prime}}|E|+1
\end{gathered}
$$

Theorem 2

Theorem 2

If a hypergraph \mathfrak{H}, for every $\mathfrak{H}^{\prime} \subseteq \mathfrak{H}, \mathfrak{H}^{\prime} \neq \varnothing$ has the property:

$$
\left|P\left(\mathfrak{H}^{\prime}\right)\right| \geq(\beta-1)\left|\mathfrak{H}^{\prime}\right|+1
$$

Then \mathfrak{H} has strict chromatic number $\geq \beta$.
Case I. \mathfrak{H} is β-uniform.

$$
\begin{gathered}
\left|P\left(\mathfrak{H}^{\prime}\right)\right| \geq(\beta-1)\left|\mathfrak{H}^{\prime}\right|+1 \\
\left|P\left(\mathfrak{H}^{\prime}\right)\right|+\left|\mathfrak{H}^{\prime}\right| \geq \beta\left|\mathfrak{H}^{\prime}\right|+1=\sum_{E \in \mathfrak{H}^{\prime}}|E|+1
\end{gathered}
$$

This is (iii) from the slide before.
(iii) implies (ii) - the statement that allows induction.

Case I

(ii) for every $\mathfrak{H}^{\prime} \subseteq \mathfrak{H}, \mathfrak{H}^{\prime} \neq \varnothing$, there exists $E \in \mathfrak{H}$ such that $|E \cap P(\mathfrak{H} \backslash\{E\})| \leq 1$

Case I

(ii) for every $\mathfrak{H}^{\prime} \subseteq \mathfrak{H}, \mathfrak{H}^{\prime} \neq \varnothing$, there exists $E \in \mathfrak{H}$ such that $|E \cap P(\mathfrak{H} \backslash\{E\})| \leq 1$

Case I

(ii) for every $\mathfrak{H}^{\prime} \subseteq \mathfrak{H}, \mathfrak{H}^{\prime} \neq \varnothing$, there exists $E \in \mathfrak{H}$ such that $|E \cap P(\mathfrak{H} \backslash\{E\})| \leq 1$

Case I

(ii) for every $\mathfrak{H}^{\prime} \subseteq \mathfrak{H}, \mathfrak{H}^{\prime} \neq \varnothing$, there exists $E \in \mathfrak{H}$ such that $|E \cap P(\mathfrak{H} \backslash\{E\})| \leq 1$

$$
08
$$

Case II

Case II

Case II

$$
f(X)= \begin{cases}(\beta-1)|X|+1 & \text { if } X \neq \varnothing \\ 0 & \text { else }\end{cases}
$$

Case II

Critical graph will have $\operatorname{deg}(x)=f(\{x\})$.

Application

Conjecture by Erdos

If a hypergraph \mathfrak{H} fulfills:
for every $\mathfrak{H}^{\prime} \subseteq \mathfrak{H}, \mathfrak{H}^{\prime} \neq \varnothing, P\left(\mathfrak{H}^{\prime}\right) \geq\left|\mathfrak{H}^{\prime}\right|+1$
Then it has chromatic number ≤ 2.

Colorings

Lemma

A hypergraph \mathfrak{H} has chromatic number ≤ 2 if and only if it has strict chromatic number ≥ 2.

Colorings

Lemma

A hypergraph \mathfrak{H} has chromatic number ≤ 2 if and only if it has strict chromatic number ≥ 2.

\Leftarrow
A strict α-coloring ($\alpha \geq 2$) can be reduced to 2-coloring by mapping [3.. α] to 1 .

Colorings

Lemma

A hypergraph \mathfrak{H} has chromatic number ≤ 2 if and only if it has strict chromatic number ≥ 2.

\Leftarrow
A strict α-coloring ($\alpha \geq 2$) can be reduced to 2-coloring by mapping [3.. α] to 1 .
\Rightarrow
A 2-coloring is strict by default.

Conjecture proof

$$
P\left(\mathfrak{H}^{\prime}\right) \geq\left|\mathfrak{H}^{\prime}\right|+1
$$

$$
P\left(\mathfrak{H}^{\prime}\right) \geq(2-1)\left|\mathfrak{H}^{\prime}\right|+1
$$

Conjecture proof

$$
\begin{gathered}
P\left(\mathfrak{H}^{\prime}\right) \geq\left|\mathfrak{H}^{\prime}\right|+1 \\
P\left(\mathfrak{H}^{\prime}\right) \geq(2-1)\left|\mathfrak{H}^{\prime}\right|+1
\end{gathered}
$$

Due to theorem 2, this graph has strict chromatic number ≥ 2, and due to the just proven lemma, it also has chromatic number ≤ 2. Q.E.D.

The end

Thanks for attention!

