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Konig's theorem

min vertex cover = max matching
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Generalization

v oIX| =6 <X
XCA

YV f(X)<|X®|, wheref:2A 5N
XCA

Let K” denote the set of those graphs G, for which XzA f(X) < |X€.

For f(X) = |X|, K is the set of graphs admitting an A-perfect matching.
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Assuming

fX)+f(Y)<Ff(XUY)+Ff(XNY), fXNY=0
f(X)+f(Y)>f(XUY), fXNY #£o

G € Kf is critical if and only if every vertex x € A has degree f({x}).

The < is trivial.

XX = f({u}) =1 < f({u})
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Lemma

Let G be an arbitrary graph of K*.

Let av¢ denote the set of those X € A, for which:

F(X) = |X°|

A B

cA | X% =4 = f(X)
therefore X € ag

If X,Y € ag, then XNY € ag
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Theorem 1 proof

Proof, that if G is critical, then for every vertex x, ¢ := deg(x) == f({x}):
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Theorem 1 proof

Proof, that if G is critical, then for every vertex x, ¢ := deg(x) == f({x}):
A B
x =
Y

Xj —violator, x € X;, y; ¢ X,-G’, Xi € ag

Y = ﬂie[l..cp] Xi, Y €ag

Yo := Y\{x}

Vel =@ +1YS > f({x}) + f(Yo) = F(Y) = |V
Therefore ¢ = f({x}), Q.E.D.
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Hypergraphs
Definition
A hypergraph is a set of sets §.

vertex

We call elements of §) simplices.
We call elements of simplices (elements of ( Jg.g E) vertices.
We denote the set of vertices of $) as P()).



Correct coloring

Definition

A correct a-coloring of hypergraph $ is an assignment of colors [1..a] to
vertices such that no simplex is monochromatic.

The chromatic number of hypergraph $) is the smallest « for which an
a-coloring.
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Hypergraph properties

If 5 is 2-uniform (every simplex has cardinality 2), the following are
equivalent:

(i) $ is a forest

(i) for every ' C 9,9’ # &, there exists E € §) such that
[ENPO\{EDI <1

(iii) for every $' C 9, %' # @, [9'| + [P(H)] > D ey |E| +1

(i) and (iii) are equivalent even when considering any hypergraphs.
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If a hypergraph §), for every ' C §, 5’ # @ has the property:

P = (B -1)I9+1
Then $) has strict chromatic number > 3.

Case I. $ is S-uniform.

IP(H)] = (8 -1l +1

P& + 19| = B9 | +1= > |E[+1
Ecsy

This is (iii) from the slide before.
(iii) implies (ii) - the statement that allows induction.
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if X £ o
(8-1)|X[+1
f(X):{

else
0
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€3 Us

FX) = {(5—1)\X\+1 if X £ o

0 else

Critical graph will have deg(x) = f({x}).



Application

Conjecture by Erdos

If a hypergraph $ fulfills:
for every ' C 9,9 # @, P($) > |9+ 1

Then it has chromatic number < 2.
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Colorings

A hypergraph £ has chromatic number < 2 if and only if it has strict
chromatic number > 2.

P
A strict a-coloring (a > 2) can be reduced to 2-coloring by mapping [3..c]
to 1.

=
A 2-coloring is strict by default.
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Conjecture proof

P($') > |9'[+1

P(®) = (2-1I9+1

Due to theorem 2, this graph has strict chromatic number > 2, and due to
the just proven lemma, it also has chromatic number < 2. Q.E.D.



Thanks for attention!



