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Terminology

We will fix sets A and B and only consider bipartite graphs joining them.
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König’s theorem

min vertex cover = max matching
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Ore’s equivalent theorem

δ – max matching cardinality
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Generalization

∀
X⊆A

|X | − δ ≤ |XG |

∀
X⊆A

f (X ) ≤ |XG |, where f : 2A → N

Let K f denote the set of those graphs G , for which ∀
X⊆A

f (X ) ≤ |XG |.

For f (X ) = |X |, K f is the set of graphs admitting an A-perfect matching.
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Given a class of graphs K f , a graph G = (V,E ) is critical in K f , iff for
every graph G ′ = (V,E ′) where E ′ ⊊ E , G ′ /∈ K f .

If f (X ) = |X |, a critical graph in K f would consist only of an A-perfect
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Which graphs are critical?

Theorem 1

Assuming

f (X ) + f (Y ) ≤ f (X ∪ Y ) + f (X ∩ Y ), if X ∩ Y = ∅
f (X ) + f (Y ) ≥ f (X ∪ Y ), if X ∩ Y ̸= ∅

G ∈ K f is critical if and only if every vertex x ∈ A has degree f ({x}).
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Lemma

Let G be an arbitrary graph of K f .

Let αG denote the set of those X ∈ A, for which:

f (X ) = |XG |

Lemma

If X ,Y ∈ αG , then X ∩ Y ∈ αG
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Theorem 1 proof

Proof, that if G is critical, then for every vertex x , φ := deg(x) == f ({x}):

Xi − violator, x ∈ Xi , yi /∈ XGi
i , Xi ∈ αG

Y :=
⋂

i∈[1..φ] Xi , Y ∈ αG

Y0 := Y \{x}
|Y G | = φ+ |Y G

0 | ≥ f ({x}) + f (Y0) ≥ f (Y ) = |Y G |
Therefore φ = f ({x}), Q.E.D.
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Correct coloring

Definition

A correct α-coloring of hypergraph H is an assignment of colors [1..α] to
vertices such that no simplex is monochromatic.
The chromatic number of hypergraph H is the smallest α for which an
α-coloring.
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Hypergraph properties
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If H is 2-uniform (every simplex has cardinality 2), the following are
equivalent:

(i) H is a forest

(ii) for every H′ ⊆ H,H′ ̸= ∅, there exists E ∈ H such that
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E∈H′ |E |+ 1
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Hypergraph properties

Lemma

If H is 2-uniform (every simplex has cardinality 2), the following are
equivalent:

(i) H is a forest
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Theorem 2

If a hypergraph H, for every H′ ⊆ H,H′ ̸= ∅ has the property:

|P(H′)| ≥ (β − 1)|H′|+ 1

Then H has strict chromatic number ≥ β.

Case I. H is β-uniform.

|P(H′)| ≥ (β − 1)|H′|+ 1

|P(H′)|+ |H′| ≥ β|H′|+ 1 =
∑
E∈H′

|E |+ 1

This is (iii) from the slide before.
(iii) implies (ii) - the statement that allows induction.
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Case II

f (X ) =

{
(β − 1)|X |+ 1 if X ̸= ∅
0 else

Critical graph will have deg(x) = f ({x}).
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Application

Conjecture by Erdos

If a hypergraph H fulfills:

for every H′ ⊆ H,H′ ̸= ∅, P(H′) ≥ |H′|+ 1

Then it has chromatic number ≤ 2.



Colorings

Lemma

A hypergraph H has chromatic number ≤ 2 if and only if it has strict
chromatic number ≥ 2.

⇐
A strict α-coloring (α ≥ 2) can be reduced to 2-coloring by mapping [3..α]
to 1.

⇒
A 2-coloring is strict by default.
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Conjecture proof

P(H′) ≥ |H′|+ 1

P(H′) ≥ (2− 1)|H′|+ 1

Due to theorem 2, this graph has strict chromatic number ≥ 2, and due to
the just proven lemma, it also has chromatic number ≤ 2. Q.E.D.
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The end

Thanks for attention!


