
Token sliding on graphs of girth five

Demian Banakh
Department of Theoretical Computer Science

Jagiellonian University

January 26, 2023

1 / 30

Notation

• [n] = {1, . . . , n}
• All graphs are finite, simple and undirected

• Open neighborhood NG (v) = {u | uv ∈ E (G)}
• Closed neighborhood NG [v] = NG (v) ∪ v

• For W ⊆ V (G), let NG (Q) =
⋃

Q NG (v)− Q and NG [Q] = NG (Q) ∪ Q

• Diameter of G is diam(G) = maxv ,u distG (v , u)

• Girth of G is the length of the shortest cycle in G

2 / 30

Token sliding problem

Input: graph G and 2 independent k-sets Is , It ⊆ G .
Question: whether there is a sequence of independent k-sets (I0, . . . , Il) such that

I0 = Is , Il = It ,

Ii∆Ii+1 = {u, v} ∈ E (G)

If we call vertices of Ii tokens, then every move from Ii to Ii+1 is ”sliding” one token
along the edge maintaining the independence.

3 / 30

Token sliding problem

Input: graph G and 2 independent k-sets Is , It ⊆ G .
Question: whether there is a sequence of independent k-sets (I0, . . . , Il) such that

I0 = Is , Il = It ,

Ii∆Ii+1 = {u, v} ∈ E (G)

If we call vertices of Ii tokens, then every move from Ii to Ii+1 is ”sliding” one token
along the edge maintaining the independence.

3 / 30

Token sliding problem

4 / 30

Token sliding problem

4 / 30

Token sliding problem

4 / 30

Token sliding problem

4 / 30

Token sliding problem

4 / 30

Token sliding problem

• TOKEN SLIDING is PSPACE-complete

• TOKEN SLIDING is in P on trees, interval graphs etc.

• In 2021, the same authors proved that TOKEN SLIDING is W[1]-hard for graphs of
girth 4 or less

TOKEN SLIDING can be solved naively by constructing a reconfiguration graph R(G , k),
where vertices are independent k-sets of G , and edges correspond to moves. Then it’s
enough to verify if It is reachable from Is - O(nk).

5 / 30

Token sliding problem

• TOKEN SLIDING is PSPACE-complete

• TOKEN SLIDING is in P on trees, interval graphs etc.

• In 2021, the same authors proved that TOKEN SLIDING is W[1]-hard for graphs of
girth 4 or less

TOKEN SLIDING can be solved naively by constructing a reconfiguration graph R(G , k),
where vertices are independent k-sets of G , and edges correspond to moves. Then it’s
enough to verify if It is reachable from Is - O(nk).

5 / 30

Token sliding problem

• TOKEN SLIDING is PSPACE-complete

• TOKEN SLIDING is in P on trees, interval graphs etc.

• In 2021, the same authors proved that TOKEN SLIDING is W[1]-hard for graphs of
girth 4 or less

TOKEN SLIDING can be solved naively by constructing a reconfiguration graph R(G , k),
where vertices are independent k-sets of G , and edges correspond to moves. Then it’s
enough to verify if It is reachable from Is - O(nk).

5 / 30

Token sliding problem

• TOKEN SLIDING is PSPACE-complete

• TOKEN SLIDING is in P on trees, interval graphs etc.

• In 2021, the same authors proved that TOKEN SLIDING is W[1]-hard for graphs of
girth 4 or less

TOKEN SLIDING can be solved naively by constructing a reconfiguration graph R(G , k),
where vertices are independent k-sets of G , and edges correspond to moves. Then it’s
enough to verify if It is reachable from Is - O(nk).

5 / 30

Main result

Fixed-parameter tractable - O(f (k) · nO(1)).

Theorem

TOKEN SLIDING is fixed-parameter tractable when parameterized by k on graphs of
girth ≥ 5.

Goal: bound the size of G by f (k), and apply the naive algorithm.

6 / 30

Main result

Fixed-parameter tractable - O(f (k) · nO(1)).

Theorem

TOKEN SLIDING is fixed-parameter tractable when parameterized by k on graphs of
girth ≥ 5.

Goal: bound the size of G by f (k), and apply the naive algorithm.

6 / 30

Main result

Fixed-parameter tractable - O(f (k) · nO(1)).

Theorem

TOKEN SLIDING is fixed-parameter tractable when parameterized by k on graphs of
girth ≥ 5.

Goal: bound the size of G by f (k), and apply the naive algorithm.

6 / 30

Partition G

• Let L1 = Is ∪ It ,

• L2 = N(L1), and

• L3 = V \(L1∪L2)

7 / 30

Partition G

• Let L1 = Is ∪ It ,

• L2 = N(L1), and

• L3 = V \(L1∪L2)

7 / 30

Partition G

• Let L1 = Is ∪ It ,

• L2 = N(L1), and

• L3 = V \(L1∪L2)

7 / 30

Partition G

Lemma

If u ∈ L2 ∪ L3, then |NL1∪L2(u)| ≤ 2k.

8 / 30

4 component types

Let C be max connected component in G [L3].

Definition

C is diameter-safe if diam(G [C]) > k3

Definition

C is degree-safe if ∃u ∈ C . NG [C](u) > k2 and |{v ∈ NG [C](u) | degG [C](v) = 2}| ≥ k2

Definition

C is bounded if diam(G [C]) ≤ k3 and ∀u ∈ C . degG [C](u) ≤ k2

Definition

C is bad otherwise

9 / 30

Bounded components

Definition

C is bounded if diam(G [C]) ≤ k3 and ∀u ∈ C . degG [C](u) ≤ k2

Lemma

If C is a bounded component in G [L3], then |V (C)| ≤ k2k
3
.

10 / 30

Safe components - informally

We will be trying to show that for a safe component C

• if a sequence Î from Is to It exists, then also a sequence Î ′ exists such that
|Î ′i ∩ NG (C)| ≤ 1

• it can absorb all k tokens, and project them back into C neighbourhood as needed

11 / 30

Safe components - informally

We will be trying to show that for a safe component C

• if a sequence Î from Is to It exists, then also a sequence Î ′ exists such that
|Î ′i ∩ NG (C)| ≤ 1

• it can absorb all k tokens, and project them back into C neighbourhood as needed

11 / 30

Safe components - informally

We will be trying to show that for a safe component C

• if a sequence Î from Is to It exists, then also a sequence Î ′ exists such that
|Î ′i ∩ NG (C)| ≤ 1

• it can absorb all k tokens, and project them back into C neighbourhood as needed

11 / 30

Safe components - informally

We will be trying to show that for a safe component C

• if a sequence Î from Is to It exists, then also a sequence Î ′ exists such that
|Î ′i ∩ NG (C)| ≤ 1

• it can absorb all k tokens, and project them back into C neighbourhood as needed

11 / 30

Safe components - informally

We will be trying to show that for a safe component C

• if a sequence Î from Is to It exists, then also a sequence Î ′ exists such that
|Î ′i ∩ NG (C)| ≤ 1

• it can absorb all k tokens, and project them back into C neighbourhood as needed

11 / 30

Safe components - informally

We will be trying to show that for a safe component C

• if a sequence Î from Is to It exists, then also a sequence Î ′ exists such that
|Î ′i ∩ NG (C)| ≤ 1

• it can absorb all k tokens, and project them back into C neighbourhood as needed

11 / 30

Safe components - informally

We will be trying to show that for a safe component C

• if a sequence Î from Is to It exists, then also a sequence Î ′ exists such that
|Î ′i ∩ NG (C)| ≤ 1

• it can absorb all k tokens, and project them back into C neighbourhood as needed

11 / 30

Safe components - informally

We will be trying to show that for a safe component C

• if a sequence Î from Is to It exists, then also a sequence Î ′ exists such that
|Î ′i ∩ NG (C)| ≤ 1

• it can absorb all k tokens, and project them back into C neighbourhood as needed

11 / 30

Safe components - informally

We will be trying to show that for a safe component C

• if a sequence Î from Is to It exists, then also a sequence Î ′ exists such that
|Î ′i ∩ NG (C)| ≤ 1

• it can absorb all k tokens, and project them back into C neighbourhood as needed

11 / 30

Safe components - informally

We will be trying to show that for a safe component C

• if a sequence Î from Is to It exists, then also a sequence Î ′ exists such that
|Î ′i ∩ NG (C)| ≤ 1

• it can absorb all k tokens, and project them back into C neighbourhood as needed

11 / 30

Degree-safe components

Definition

C is degree-safe if ∃u ∈ C . NG [C](u) > k2 and |{v ∈ NG [C](u) | degG [C](v) = 2}| ≥ k2

12 / 30

Degree-safe components

Lemma

A degree-safe component C in G [L3] contains an induced subdivided k-star, where all k
branches have length > 1.

• |N2(u)| ≥ k2

• Claim: G [N2(u)] contains independent k-set. Why?

• Either ∃v ∈ N2(u) deg(v) ≥ k. Then N(v) contains
independent k-set, as G has no triangles

• Or ∀v ∈ N2(u) deg(v) ≤ k − 1. Then repeat k times:
add any v to IS and remove N[v] from G [N2(u)]

• This claim gives us the desired subdivided k-star

13 / 30

Degree-safe components

Lemma

A degree-safe component C in G [L3] contains an induced subdivided k-star, where all k
branches have length > 1.

• Let N1(u) = NC (u),

• and N2(u) = NC (N1(u))− u

• N1(u) is an independent set, as G has no triangles

• ∀v ∈ N2(u). |NN1(u)(v)| ≤ 1, as G has no 4-cycles

• |N2(u)| ≥ k2

• Claim: G [N2(u)] contains independent k-set. Why?

• Either ∃v ∈ N2(u) deg(v) ≥ k . Then N(v) contains
independent k-set, as G has no triangles

• Or ∀v ∈ N2(u) deg(v) ≤ k − 1. Then repeat k times:
add any v to IS and remove N[v] from G [N2(u)]

• This claim gives us the desired subdivided k-star

13 / 30

Degree-safe components

Lemma

A degree-safe component C in G [L3] contains an induced subdivided k-star, where all k
branches have length > 1.

• Let N1(u) = NC (u),

• and N2(u) = NC (N1(u))− u

• N1(u) is an independent set, as G has no triangles

• ∀v ∈ N2(u). |NN1(u)(v)| ≤ 1, as G has no 4-cycles

• |N2(u)| ≥ k2

• Claim: G [N2(u)] contains independent k-set. Why?

• Either ∃v ∈ N2(u) deg(v) ≥ k . Then N(v) contains
independent k-set, as G has no triangles

• Or ∀v ∈ N2(u) deg(v) ≤ k − 1. Then repeat k times:
add any v to IS and remove N[v] from G [N2(u)]

• This claim gives us the desired subdivided k-star

13 / 30

Degree-safe components

Lemma

A degree-safe component C in G [L3] contains an induced subdivided k-star, where all k
branches have length > 1.

• Let N1(u) = NC (u),

• and N2(u) = NC (N1(u))− u

• N1(u) is an independent set, as G has no triangles

• ∀v ∈ N2(u). |NN1(u)(v)| ≤ 1, as G has no 4-cycles

• |N2(u)| ≥ k2

• Claim: G [N2(u)] contains independent k-set. Why?

• Either ∃v ∈ N2(u) deg(v) ≥ k . Then N(v) contains
independent k-set, as G has no triangles

• Or ∀v ∈ N2(u) deg(v) ≤ k − 1. Then repeat k times:
add any v to IS and remove N[v] from G [N2(u)]

• This claim gives us the desired subdivided k-star

13 / 30

Degree-safe components

Lemma

A degree-safe component C in G [L3] contains an induced subdivided k-star, where all k
branches have length > 1.

• Let N1(u) = NC (u),

• and N2(u) = NC (N1(u))− u

• N1(u) is an independent set, as G has no triangles

• ∀v ∈ N2(u). |NN1(u)(v)| ≤ 1, as G has no 4-cycles

• |N2(u)| ≥ k2

• Claim: G [N2(u)] contains independent k-set. Why?

• Either ∃v ∈ N2(u) deg(v) ≥ k . Then N(v) contains
independent k-set, as G has no triangles

• Or ∀v ∈ N2(u) deg(v) ≤ k − 1. Then repeat k times:
add any v to IS and remove N[v] from G [N2(u)]

• This claim gives us the desired subdivided k-star

13 / 30

Degree-safe components

Lemma

A degree-safe component C in G [L3] contains an induced subdivided k-star, where all k
branches have length > 1.

• Let N1(u) = NC (u),

• and N2(u) = NC (N1(u))− u

• N1(u) is an independent set, as G has no triangles

• ∀v ∈ N2(u). |NN1(u)(v)| ≤ 1, as G has no 4-cycles

• |N2(u)| ≥ k2

• Claim: G [N2(u)] contains independent k-set. Why?

• Either ∃v ∈ N2(u) deg(v) ≥ k . Then N(v) contains
independent k-set, as G has no triangles

• Or ∀v ∈ N2(u) deg(v) ≤ k − 1. Then repeat k times:
add any v to IS and remove N[v] from G [N2(u)]

• This claim gives us the desired subdivided k-star

13 / 30

Degree-safe components

Lemma

A degree-safe component C in G [L3] contains an induced subdivided k-star, where all k
branches have length > 1.

• |N2(u)| ≥ k2

• Claim: G [N2(u)] contains independent k-set. Why?

• Either ∃v ∈ N2(u) deg(v) ≥ k . Then N(v) contains
independent k-set, as G has no triangles

• Or ∀v ∈ N2(u) deg(v) ≤ k − 1. Then repeat k times:
add any v to IS and remove N[v] from G [N2(u)]

• This claim gives us the desired subdivided k-star

13 / 30

Degree-safe components

Lemma

A degree-safe component C in G [L3] contains an induced subdivided k-star, where all k
branches have length > 1.

• |N2(u)| ≥ k2

• Claim: G [N2(u)] contains independent k-set. Why?

• Either ∃v ∈ N2(u) deg(v) ≥ k . Then N(v) contains
independent k-set, as G has no triangles

• Or ∀v ∈ N2(u) deg(v) ≤ k − 1. Then repeat k times:
add any v to IS and remove N[v] from G [N2(u)]

• This claim gives us the desired subdivided k-star

13 / 30

Degree-safe components

Lemma

A degree-safe component C in G [L3] contains an induced subdivided k-star, where all k
branches have length > 1.

• |N2(u)| ≥ k2

• Claim: G [N2(u)] contains independent k-set. Why?

• Either ∃v ∈ N2(u) deg(v) ≥ k . Then N(v) contains
independent k-set, as G has no triangles

• Or ∀v ∈ N2(u) deg(v) ≤ k − 1. Then repeat k times:
add any v to IS and remove N[v] from G [N2(u)]

• This claim gives us the desired subdivided k-star

13 / 30

Degree-safe components

Lemma

A degree-safe component C in G [L3] contains an induced subdivided k-star, where all k
branches have length > 1.

• |N2(u)| ≥ k2

• Claim: G [N2(u)] contains independent k-set. Why?

• Either ∃v ∈ N2(u) deg(v) ≥ k . Then N(v) contains
independent k-set, as G has no triangles

• Or ∀v ∈ N2(u) deg(v) ≤ k − 1. Then repeat k times:
add any v to IS and remove N[v] from G [N2(u)]

• This claim gives us the desired subdivided k-star

13 / 30

Degree-safe components

Lemma

Let A be an induced subdivided k-star in C with all branches of length exactly 2. Let
B = NG (A). If a sequence from Is to It exists, then also a sequence such that B never
has > 1 tokens exists.

• Note that Is ∩ B = It ∩ B = ∅
• Let r be root of the star A,

• N1 = NA(r) and N2 = NA(N1)− r

• We will convert a sequence Î from
Is to It into a sequence Î ′ such that

1. B never has > 1 tokens in Î ′i ,
2. at any step #tokens in A ∪ B is

same and
3. positions of tokens in A ∪ B are

same

14 / 30

Degree-safe components

Lemma

Let A be an induced subdivided k-star in C with all branches of length exactly 2. Let
B = NG (A). If a sequence from Is to It exists, then also a sequence such that B never
has > 1 tokens exists.

• Note that Is ∩ B = It ∩ B = ∅

• Let r be root of the star A,

• N1 = NA(r) and N2 = NA(N1)− r

• We will convert a sequence Î from
Is to It into a sequence Î ′ such that

1. B never has > 1 tokens in Î ′i ,
2. at any step #tokens in A ∪ B is

same and
3. positions of tokens in A ∪ B are

same

14 / 30

Degree-safe components

Lemma

Let A be an induced subdivided k-star in C with all branches of length exactly 2. Let
B = NG (A). If a sequence from Is to It exists, then also a sequence such that B never
has > 1 tokens exists.

• Note that Is ∩ B = It ∩ B = ∅
• Let r be root of the star A,

• N1 = NA(r) and N2 = NA(N1)− r

• We will convert a sequence Î from
Is to It into a sequence Î ′ such that

1. B never has > 1 tokens in Î ′i ,
2. at any step #tokens in A ∪ B is

same and
3. positions of tokens in A ∪ B are

same

14 / 30

Degree-safe components

Lemma

Let A be an induced subdivided k-star in C with all branches of length exactly 2. Let
B = NG (A). If a sequence from Is to It exists, then also a sequence such that B never
has > 1 tokens exists.

• Note that Is ∩ B = It ∩ B = ∅
• Let r be root of the star A,

• N1 = NA(r) and N2 = NA(N1)− r

• We will convert a sequence Î from
Is to It into a sequence Î ′ such that

1. B never has > 1 tokens in Î ′i ,
2. at any step #tokens in A ∪ B is

same and
3. positions of tokens in A ∪ B are

same

14 / 30

Degree-safe components

Lemma

Let A be an induced subdivided k-star in C with all branches of length exactly 2. Let
B = NG (A). If a sequence from Is to It exists, then also a sequence such that B never
has > 1 tokens exists.

• Note that Is ∩ B = It ∩ B = ∅
• Let r be root of the star A,

• N1 = NA(r) and N2 = NA(N1)− r

• We will convert a sequence Î from
Is to It into a sequence Î ′ such that

1. B never has > 1 tokens in Î ′i ,

2. at any step #tokens in A ∪ B is
same and

3. positions of tokens in A ∪ B are
same

14 / 30

Degree-safe components

Lemma

Let A be an induced subdivided k-star in C with all branches of length exactly 2. Let
B = NG (A). If a sequence from Is to It exists, then also a sequence such that B never
has > 1 tokens exists.

• Note that Is ∩ B = It ∩ B = ∅
• Let r be root of the star A,

• N1 = NA(r) and N2 = NA(N1)− r

• We will convert a sequence Î from
Is to It into a sequence Î ′ such that

1. B never has > 1 tokens in Î ′i ,
2. at any step #tokens in A ∪ B is

same and

3. positions of tokens in A ∪ B are
same

14 / 30

Degree-safe components

Lemma

Let A be an induced subdivided k-star in C with all branches of length exactly 2. Let
B = NG (A). If a sequence from Is to It exists, then also a sequence such that B never
has > 1 tokens exists.

• Note that Is ∩ B = It ∩ B = ∅
• Let r be root of the star A,

• N1 = NA(r) and N2 = NA(N1)− r

• We will convert a sequence Î from
Is to It into a sequence Î ′ such that

1. B never has > 1 tokens in Î ′i ,
2. at any step #tokens in A ∪ B is

same and
3. positions of tokens in A ∪ B are

same 14 / 30

Degree-safe components

• Consider step Ii−1, right before some token enters vertex b ∈ B

• First, we move all tokens in A to N2 - now every token has its own branch

15 / 30

Degree-safe components

• Consider step Ii−1, right before some token enters vertex b ∈ B

• First, we move all tokens in A to N2 - now every token has its own branch

15 / 30

Degree-safe components

• Case b ∈ N(r):

• b /∈ N(N2), as G has no 4-cycles
• slide b → r → any empty branch

16 / 30

Degree-safe components

• Case b ∈ N(r):
• b /∈ N(N2), as G has no 4-cycles

• slide b → r → any empty branch

16 / 30

Degree-safe components

• Case b ∈ N(r):
• b /∈ N(N2), as G has no 4-cycles
• slide b → r → any empty branch

16 / 30

Degree-safe components

• Case b ∈ N(r):
• b /∈ N(N2), as G has no 4-cycles
• slide b → r → any empty branch

16 / 30

Degree-safe components

• Case b ∈ N(r):
• b /∈ N(N2), as G has no 4-cycles
• slide b → r → any empty branch

16 / 30

Degree-safe components

• Case b /∈ N(N1):

• b ∈ N(N2); choose a ∈ N2 adjacent to b
• slide a token from branch a to any other empty one, if needed
• slide all tokens to N1 of their respective branches
• slide b → a

16 / 30

Degree-safe components

• Case b /∈ N(N1):
• b ∈ N(N2); choose a ∈ N2 adjacent to b

• slide a token from branch a to any other empty one, if needed
• slide all tokens to N1 of their respective branches
• slide b → a

16 / 30

Degree-safe components

• Case b /∈ N(N1):
• b ∈ N(N2); choose a ∈ N2 adjacent to b
• slide a token from branch a to any other empty one, if needed

• slide all tokens to N1 of their respective branches
• slide b → a

16 / 30

Degree-safe components

• Case b /∈ N(N1):
• b ∈ N(N2); choose a ∈ N2 adjacent to b
• slide a token from branch a to any other empty one, if needed

• slide all tokens to N1 of their respective branches
• slide b → a

16 / 30

Degree-safe components

• Case b /∈ N(N1):
• b ∈ N(N2); choose a ∈ N2 adjacent to b
• slide a token from branch a to any other empty one, if needed
• slide all tokens to N1 of their respective branches

• slide b → a

16 / 30

Degree-safe components

• Case b /∈ N(N1):
• b ∈ N(N2); choose a ∈ N2 adjacent to b
• slide a token from branch a to any other empty one, if needed
• slide all tokens to N1 of their respective branches
• slide b → a

16 / 30

Degree-safe components

• Case b /∈ N(N1):
• b ∈ N(N2); choose a ∈ N2 adjacent to b
• slide a token from branch a to any other empty one, if needed
• slide all tokens to N1 of their respective branches
• slide b → a

16 / 30

Degree-safe components

• Case b ∈ N(N1):

• unique a ∈ N1 is adjacent to b, as G has no 4-cycles
• slide a token from branch a to any other empty one, if needed
• slide all tokens to N1 of their respective branches
• slide b → a

16 / 30

Degree-safe components

• Case b ∈ N(N1):
• unique a ∈ N1 is adjacent to b, as G has no 4-cycles

• slide a token from branch a to any other empty one, if needed
• slide all tokens to N1 of their respective branches
• slide b → a

16 / 30

Degree-safe components

• Case b ∈ N(N1):
• unique a ∈ N1 is adjacent to b, as G has no 4-cycles
• slide a token from branch a to any other empty one, if needed

• slide all tokens to N1 of their respective branches
• slide b → a

16 / 30

Degree-safe components

• Case b ∈ N(N1):
• unique a ∈ N1 is adjacent to b, as G has no 4-cycles
• slide a token from branch a to any other empty one, if needed

• slide all tokens to N1 of their respective branches
• slide b → a

16 / 30

Degree-safe components

• Case b ∈ N(N1):
• unique a ∈ N1 is adjacent to b, as G has no 4-cycles
• slide a token from branch a to any other empty one, if needed
• slide all tokens to N1 of their respective branches

• slide b → a

16 / 30

Degree-safe components

• Case b ∈ N(N1):
• unique a ∈ N1 is adjacent to b, as G has no 4-cycles
• slide a token from branch a to any other empty one, if needed
• slide all tokens to N1 of their respective branches
• slide b → a

16 / 30

Degree-safe components

• Case b ∈ N(N1):
• unique a ∈ N1 is adjacent to b, as G has no 4-cycles
• slide a token from branch a to any other empty one, if needed
• slide all tokens to N1 of their respective branches
• slide b → a

16 / 30

Degree-safe components

• The step right before a token exits B - repeat the above procedure in reverse

• If a move Îi → Îi+1 is completely inside A ∪ B - ignore it

• If a move Îi → Îi+1 is completely outside A ∪ B - copy it

• This gives us a sequence Î ′ from Is to It in which B never has more than 1 token

Corollary

Let C be a degree-safe component. If a sequence from Is to It exists, then also a
sequence such that N(C) never has > 1 tokens exists.

Proof.

Follow the path P from c ∈ N(C) to r and apply the previous lemma when c enters B.
We can always find such a path P that N[P] contains no tokens, because all of them
have been absorbed by C.

17 / 30

Degree-safe components

• The step right before a token exits B - repeat the above procedure in reverse

• If a move Îi → Îi+1 is completely inside A ∪ B - ignore it

• If a move Îi → Îi+1 is completely outside A ∪ B - copy it

• This gives us a sequence Î ′ from Is to It in which B never has more than 1 token

Corollary

Let C be a degree-safe component. If a sequence from Is to It exists, then also a
sequence such that N(C) never has > 1 tokens exists.

Proof.

Follow the path P from c ∈ N(C) to r and apply the previous lemma when c enters B.
We can always find such a path P that N[P] contains no tokens, because all of them
have been absorbed by C.

17 / 30

Degree-safe components

• The step right before a token exits B - repeat the above procedure in reverse

• If a move Îi → Îi+1 is completely inside A ∪ B - ignore it

• If a move Îi → Îi+1 is completely outside A ∪ B - copy it

• This gives us a sequence Î ′ from Is to It in which B never has more than 1 token

Corollary

Let C be a degree-safe component. If a sequence from Is to It exists, then also a
sequence such that N(C) never has > 1 tokens exists.

Proof.

Follow the path P from c ∈ N(C) to r and apply the previous lemma when c enters B.
We can always find such a path P that N[P] contains no tokens, because all of them
have been absorbed by C.

17 / 30

Degree-safe components

• The step right before a token exits B - repeat the above procedure in reverse

• If a move Îi → Îi+1 is completely inside A ∪ B - ignore it

• If a move Îi → Îi+1 is completely outside A ∪ B - copy it

• This gives us a sequence Î ′ from Is to It in which B never has more than 1 token

Corollary

Let C be a degree-safe component. If a sequence from Is to It exists, then also a
sequence such that N(C) never has > 1 tokens exists.

Proof.

Follow the path P from c ∈ N(C) to r and apply the previous lemma when c enters B.
We can always find such a path P that N[P] contains no tokens, because all of them
have been absorbed by C.

17 / 30

Diameter-safe components

Definition

C is diameter-safe if diam(G [C]) > k3

Diameter path A of a diameter-safe component C is the longest shortest path u → v in C .

18 / 30

Diameter-safe components

Lemma

Let A be a diameter path of C , and B = NG (A). If a sequence from Is to It exists, then
also a sequence such that B never has > 1 tokens exists.

• Note that Is ∩ B = It ∩ B = ∅
• Like before, we will convert a

sequence Î from Is to It into a
sequence Î ′ such that

1. B never has > 1 tokens in Î ′i ,
2. at any step #tokens in A ∪ B is

same and
3. positions of tokens in A ∪ B are

same

19 / 30

Diameter-safe components

Lemma

Let A be a diameter path of C , and B = NG (A). If a sequence from Is to It exists, then
also a sequence such that B never has > 1 tokens exists.

• Note that Is ∩ B = It ∩ B = ∅

• Like before, we will convert a
sequence Î from Is to It into a
sequence Î ′ such that

1. B never has > 1 tokens in Î ′i ,
2. at any step #tokens in A ∪ B is

same and
3. positions of tokens in A ∪ B are

same

19 / 30

Diameter-safe components

Lemma

Let A be a diameter path of C , and B = NG (A). If a sequence from Is to It exists, then
also a sequence such that B never has > 1 tokens exists.

• Note that Is ∩ B = It ∩ B = ∅
• Like before, we will convert a
sequence Î from Is to It into a
sequence Î ′ such that

1. B never has > 1 tokens in Î ′i ,
2. at any step #tokens in A ∪ B is

same and
3. positions of tokens in A ∪ B are

same

19 / 30

Diameter-safe components

• No 2 non-consecutive vertices in A are adjacent, as A is a shortest path

• Consider step Ii−1, right before some token enters vertex b ∈ B

20 / 30

Diameter-safe components

• ∀x , y ∈ NA(b) dA(x , y) ≥ 3, as G has no 4-cycles

• We call the vertices between consecutive neighbours of b gap intervals

21 / 30

Diameter-safe components

• ∀x , y ∈ NA(b) dA(x , y) ≥ 3, as G has no 4-cycles

• We call the vertices between consecutive neighbours of b gap intervals

21 / 30

Diameter-safe components

• ∀x , y ∈ NA(b) dA(x , y) ≥ 3, as G has no 4-cycles

• We call the vertices between consecutive neighbours of b gap intervals
• Case |NA(b)| > k :

• slide all tokens in A to first ≤ k − 1 gap intervals 1-to-1
• slide b → next neighbour of b in A

21 / 30

Diameter-safe components

• ∀x , y ∈ NA(b) dA(x , y) ≥ 3, as G has no 4-cycles

• We call the vertices between consecutive neighbours of b gap intervals
• Case |NA(b)| > k :

• slide all tokens in A to first ≤ k − 1 gap intervals 1-to-1

• slide b → next neighbour of b in A

21 / 30

Diameter-safe components

• ∀x , y ∈ NA(b) dA(x , y) ≥ 3, as G has no 4-cycles

• We call the vertices between consecutive neighbours of b gap intervals
• Case |NA(b)| > k :

• slide all tokens in A to first ≤ k − 1 gap intervals 1-to-1
• slide b → next neighbour of b in A

21 / 30

Diameter-safe components

• ∀x , y ∈ NA(b) dA(x , y) ≥ 3, as G has no 4-cycles

• We call the vertices between consecutive neighbours of b gap intervals
• Case |NA(b)| > k :

• slide all tokens in A to first ≤ k − 1 gap intervals 1-to-1
• slide b → next neighbour of b in A

21 / 30

Diameter-safe components

• ∀x , y ∈ NA(b) dA(x , y) ≥ 3, as G has no 4-cycles
• We call the vertices between consecutive neighbours of b gap intervals
• Case |NA(b)| ≤ k : then there are ≤ k − 1 gap intervals + maybe 2 intervals at both
ends of A. Hence there exists an interval i of size at least

α =
diam(C)− |NA(b)|

|NA(b)|+ 1
≥ k3 − k

k + 1
≥ 2k

• slide all tokens (≤ k − 1) in A to interval i
• slide b → any neighbour of b in A

21 / 30

Diameter-safe components

• ∀x , y ∈ NA(b) dA(x , y) ≥ 3, as G has no 4-cycles
• We call the vertices between consecutive neighbours of b gap intervals
• Case |NA(b)| ≤ k : then there are ≤ k − 1 gap intervals + maybe 2 intervals at both
ends of A. Hence there exists an interval i of size at least

α =
diam(C)− |NA(b)|

|NA(b)|+ 1
≥ k3 − k

k + 1
≥ 2k

• slide all tokens (≤ k − 1) in A to interval i

• slide b → any neighbour of b in A

21 / 30

Diameter-safe components

• ∀x , y ∈ NA(b) dA(x , y) ≥ 3, as G has no 4-cycles
• We call the vertices between consecutive neighbours of b gap intervals
• Case |NA(b)| ≤ k : then there are ≤ k − 1 gap intervals + maybe 2 intervals at both
ends of A. Hence there exists an interval i of size at least

α =
diam(C)− |NA(b)|

|NA(b)|+ 1
≥ k3 − k

k + 1
≥ 2k

• slide all tokens (≤ k − 1) in A to interval i
• slide b → any neighbour of b in A

21 / 30

Diameter-safe components

• ∀x , y ∈ NA(b) dA(x , y) ≥ 3, as G has no 4-cycles
• We call the vertices between consecutive neighbours of b gap intervals
• Case |NA(b)| ≤ k : then there are ≤ k − 1 gap intervals + maybe 2 intervals at both
ends of A. Hence there exists an interval i of size at least

α =
diam(C)− |NA(b)|

|NA(b)|+ 1
≥ k3 − k

k + 1
≥ 2k

• slide all tokens (≤ k − 1) in A to interval i
• slide b → any neighbour of b in A 21 / 30

Diameter-safe components

• The step right before a token exits B - repeat the above procedure in reverse

• If a move Îi → Îi+1 is completely inside A ∪ B - ignore it

• If a move Îi → Îi+1 is completely outside A ∪ B - copy it

• This gives us a sequence Î ′ from Is to It in which B never has more than 1 token

Corollary

Let C be a diameter-safe component. If a sequence from Is to It exists, then also a
sequence such that N(C) never has > 1 tokens exists.

Proof.

Follow the path P from c ∈ N(C) to the closest vertex in diameter-path A and apply the
previous lemma when c enters B.

22 / 30

Diameter-safe components

• The step right before a token exits B - repeat the above procedure in reverse

• If a move Îi → Îi+1 is completely inside A ∪ B - ignore it

• If a move Îi → Îi+1 is completely outside A ∪ B - copy it

• This gives us a sequence Î ′ from Is to It in which B never has more than 1 token

Corollary

Let C be a diameter-safe component. If a sequence from Is to It exists, then also a
sequence such that N(C) never has > 1 tokens exists.

Proof.

Follow the path P from c ∈ N(C) to the closest vertex in diameter-path A and apply the
previous lemma when c enters B.

22 / 30

Diameter-safe components

• The step right before a token exits B - repeat the above procedure in reverse

• If a move Îi → Îi+1 is completely inside A ∪ B - ignore it

• If a move Îi → Îi+1 is completely outside A ∪ B - copy it

• This gives us a sequence Î ′ from Is to It in which B never has more than 1 token

Corollary

Let C be a diameter-safe component. If a sequence from Is to It exists, then also a
sequence such that N(C) never has > 1 tokens exists.

Proof.

Follow the path P from c ∈ N(C) to the closest vertex in diameter-path A and apply the
previous lemma when c enters B.

22 / 30

Diameter-safe components

• The step right before a token exits B - repeat the above procedure in reverse

• If a move Îi → Îi+1 is completely inside A ∪ B - ignore it

• If a move Îi → Îi+1 is completely outside A ∪ B - copy it

• This gives us a sequence Î ′ from Is to It in which B never has more than 1 token

Corollary

Let C be a diameter-safe component. If a sequence from Is to It exists, then also a
sequence such that N(C) never has > 1 tokens exists.

Proof.

Follow the path P from c ∈ N(C) to the closest vertex in diameter-path A and apply the
previous lemma when c enters B.

22 / 30

Diameter-safe components

• The step right before a token exits B - repeat the above procedure in reverse

• If a move Îi → Îi+1 is completely inside A ∪ B - ignore it

• If a move Îi → Îi+1 is completely outside A ∪ B - copy it

• This gives us a sequence Î ′ from Is to It in which B never has more than 1 token

Corollary

Let C be a diameter-safe component. If a sequence from Is to It exists, then also a
sequence such that N(C) never has > 1 tokens exists.

Proof.

Follow the path P from c ∈ N(C) to the closest vertex in diameter-path A and apply the
previous lemma when c enters B.

22 / 30

Safe components: replacement gadget

Lemma

Let C be a safe component in G [L3] and G ′

be the graph obtained from G as follows:

• delete C

• ∀v ∈ N(C) add new vertices
v → v ′ → v ′′

• add a path p1, . . . p3k
• add edges v ′′ → p1

Then (G , Is , It) ≡ (G ′, Is , It).

23 / 30

Safe components: replacement gadget

Proof.

• From previous corollaries, there exist a sequence Î from Is to It with at most 1 token
in N(C) at all times

• The replacement component can absorb/project k tokens

• So we can mimic Î in the replacement component

• Note that size of replacement component is 3k + 2|N(C)|, and N(C) ⊆ L2

24 / 30

Safe components: replacement gadget

Proof.

• From previous corollaries, there exist a sequence Î from Is to It with at most 1 token
in N(C) at all times

• The replacement component can absorb/project k tokens

• So we can mimic Î in the replacement component

• Note that size of replacement component is 3k + 2|N(C)|, and N(C) ⊆ L2

24 / 30

Safe components: replacement gadget

Proof.

• From previous corollaries, there exist a sequence Î from Is to It with at most 1 token
in N(C) at all times

• The replacement component can absorb/project k tokens

• So we can mimic Î in the replacement component

• Note that size of replacement component is 3k + 2|N(C)|, and N(C) ⊆ L2

24 / 30

Safe components: replacement gadget

Proof.

• From previous corollaries, there exist a sequence Î from Is to It with at most 1 token
in N(C) at all times

• The replacement component can absorb/project k tokens

• So we can mimic Î in the replacement component

• Note that size of replacement component is 3k + 2|N(C)|, and N(C) ⊆ L2

24 / 30

Bounding the size of G

Lemma

Assume u ∈ L1 with deg(u) > 2k2 (WLOG u ∈ Is). Then there exists I ′s such that
Is∆I ′s = {u, u′} ∈ E (G) and deg(u′) ≤ 2k2.

We can apply this lemma exhaustively until ∆(L1) ≤ 2k2.

Corollary

For (G , Is , It), there exists equivalent (G ′, Is , It) such that |L2| ≤ 4k3, and each safe
component is replaced in G ′ by replacement component of size at most 3k +8k3 = O(k3)

Lemma

In G ′, every bad component has at most kO(k3) vertices.

From now on, we refer to both bounded and bad components as bounded components.

25 / 30

Bounding the size of G

Lemma

Assume u ∈ L1 with deg(u) > 2k2 (WLOG u ∈ Is). Then there exists I ′s such that
Is∆I ′s = {u, u′} ∈ E (G) and deg(u′) ≤ 2k2.

We can apply this lemma exhaustively until ∆(L1) ≤ 2k2.

Corollary

For (G , Is , It), there exists equivalent (G ′, Is , It) such that |L2| ≤ 4k3, and each safe
component is replaced in G ′ by replacement component of size at most 3k +8k3 = O(k3)

Lemma

In G ′, every bad component has at most kO(k3) vertices.

From now on, we refer to both bounded and bad components as bounded components.

25 / 30

Bounding the size of G

Lemma

Assume u ∈ L1 with deg(u) > 2k2 (WLOG u ∈ Is). Then there exists I ′s such that
Is∆I ′s = {u, u′} ∈ E (G) and deg(u′) ≤ 2k2.

We can apply this lemma exhaustively until ∆(L1) ≤ 2k2.

Corollary

For (G , Is , It), there exists equivalent (G ′, Is , It) such that |L2| ≤ 4k3, and each safe
component is replaced in G ′ by replacement component of size at most 3k +8k3 = O(k3)

Lemma

In G ′, every bad component has at most kO(k3) vertices.

From now on, we refer to both bounded and bad components as bounded components.

25 / 30

Bounding the size of G

Lemma

Assume u ∈ L1 with deg(u) > 2k2 (WLOG u ∈ Is). Then there exists I ′s such that
Is∆I ′s = {u, u′} ∈ E (G) and deg(u′) ≤ 2k2.

We can apply this lemma exhaustively until ∆(L1) ≤ 2k2.

Corollary

For (G , Is , It), there exists equivalent (G ′, Is , It) such that |L2| ≤ 4k3, and each safe
component is replaced in G ′ by replacement component of size at most 3k +8k3 = O(k3)

Lemma

In G ′, every bad component has at most kO(k3) vertices.

From now on, we refer to both bounded and bad components as bounded components.

25 / 30

Bounding the size of G

Lemma

Assume u ∈ L1 with deg(u) > 2k2 (WLOG u ∈ Is). Then there exists I ′s such that
Is∆I ′s = {u, u′} ∈ E (G) and deg(u′) ≤ 2k2.

We can apply this lemma exhaustively until ∆(L1) ≤ 2k2.

Corollary

For (G , Is , It), there exists equivalent (G ′, Is , It) such that |L2| ≤ 4k3, and each safe
component is replaced in G ′ by replacement component of size at most 3k +8k3 = O(k3)

Lemma

In G ′, every bad component has at most kO(k3) vertices.

From now on, we refer to both bounded and bad components as bounded components.

25 / 30

Bounding the size of G
It remains to bound the number of safe and bounded components.

Definition

Let C1 and C2 be components in G [L3], and Di = N(Ci). We call C1 and C2 equivalent if
D1 = D2 = D and G [N[C1]] is isomorphic to G [N[C2]] by an isomorphism that fixes D
point-wise. Let β(G) be the number of equivalence classes of bounded components, and
σ(G) - of safe components.

Lemma

Let S1 and S2 be equivalent safe components. Then (G , Is , It) ≡ (G − S2, Is , It). Let
B1, . . . ,Bk+1 be equivalent bounded components. Then (G , Is , It) ≡ (G − B1, Is , It).

We can exhaustively remove equivalent components, and obtain

Corollary

G has at most σ(G) safe components and kβ(G) bounded components.

26 / 30

Bounding the size of G
It remains to bound the number of safe and bounded components.

Definition

Let C1 and C2 be components in G [L3], and Di = N(Ci). We call C1 and C2 equivalent if
D1 = D2 = D and G [N[C1]] is isomorphic to G [N[C2]] by an isomorphism that fixes D
point-wise. Let β(G) be the number of equivalence classes of bounded components, and
σ(G) - of safe components.

Lemma

Let S1 and S2 be equivalent safe components. Then (G , Is , It) ≡ (G − S2, Is , It). Let
B1, . . . ,Bk+1 be equivalent bounded components. Then (G , Is , It) ≡ (G − B1, Is , It).

We can exhaustively remove equivalent components, and obtain

Corollary

G has at most σ(G) safe components and kβ(G) bounded components.

26 / 30

Bounding the size of G
It remains to bound the number of safe and bounded components.

Definition

Let C1 and C2 be components in G [L3], and Di = N(Ci). We call C1 and C2 equivalent if
D1 = D2 = D and G [N[C1]] is isomorphic to G [N[C2]] by an isomorphism that fixes D
point-wise. Let β(G) be the number of equivalence classes of bounded components, and
σ(G) - of safe components.

Lemma

Let S1 and S2 be equivalent safe components. Then (G , Is , It) ≡ (G − S2, Is , It).

Lemma

Let S1 and S2 be equivalent safe components. Then (G , Is , It) ≡ (G − S2, Is , It). Let
B1, . . . ,Bk+1 be equivalent bounded components. Then (G , Is , It) ≡ (G − B1, Is , It).

We can exhaustively remove equivalent components, and obtain

Corollary

G has at most σ(G) safe components and kβ(G) bounded components.

26 / 30

Bounding the size of G
It remains to bound the number of safe and bounded components.

Definition

Let C1 and C2 be components in G [L3], and Di = N(Ci). We call C1 and C2 equivalent if
D1 = D2 = D and G [N[C1]] is isomorphic to G [N[C2]] by an isomorphism that fixes D
point-wise. Let β(G) be the number of equivalence classes of bounded components, and
σ(G) - of safe components.

Lemma

Let S1 and S2 be equivalent safe components. Then (G , Is , It) ≡ (G − S2, Is , It).

Lemma

Let B1, . . . ,Bk+1 be equivalent bounded components. Then (G , Is , It) ≡ (G − B1, Is , It).

Lemma

Let S1 and S2 be equivalent safe components. Then (G , Is , It) ≡ (G − S2, Is , It). Let
B1, . . . ,Bk+1 be equivalent bounded components. Then (G , Is , It) ≡ (G − B1, Is , It).

We can exhaustively remove equivalent components, and obtain

Corollary

G has at most σ(G) safe components and kβ(G) bounded components.

26 / 30

Bounding the size of G
It remains to bound the number of safe and bounded components.

Definition

Let C1 and C2 be components in G [L3], and Di = N(Ci). We call C1 and C2 equivalent if
D1 = D2 = D and G [N[C1]] is isomorphic to G [N[C2]] by an isomorphism that fixes D
point-wise. Let β(G) be the number of equivalence classes of bounded components, and
σ(G) - of safe components.

Lemma

Let S1 and S2 be equivalent safe components. Then (G , Is , It) ≡ (G − S2, Is , It). Let
B1, . . . ,Bk+1 be equivalent bounded components. Then (G , Is , It) ≡ (G − B1, Is , It).

We can exhaustively remove equivalent components, and obtain

Corollary

G has at most σ(G) safe components and kβ(G) bounded components.

26 / 30

Bounding the size of G
It remains to bound the number of safe and bounded components.

Definition

Let C1 and C2 be components in G [L3], and Di = N(Ci). We call C1 and C2 equivalent if
D1 = D2 = D and G [N[C1]] is isomorphic to G [N[C2]] by an isomorphism that fixes D
point-wise. Let β(G) be the number of equivalence classes of bounded components, and
σ(G) - of safe components.

Lemma

Let S1 and S2 be equivalent safe components. Then (G , Is , It) ≡ (G − S2, Is , It). Let
B1, . . . ,Bk+1 be equivalent bounded components. Then (G , Is , It) ≡ (G − B1, Is , It).

We can exhaustively remove equivalent components, and obtain

Corollary

G has at most σ(G) safe components and kβ(G) bounded components.
26 / 30

Bounding the size of G

Definition

Let C1 and C2 be components in G [L3], and Di = N(Ci). We call C1 and C2 equivalent if
D1 = D2 = D and G [N[C1]] is isomorphic to G [N[C2]] by an isomorphism that fixes D
point-wise. Let β(G) be the number of equivalence classes of bounded components, and
σ(G) - of safe components.

Corollary

G has at most σ(G) safe components and kβ(G) bounded components.

Lemma

• σ(G) = 2O(k6) and β(G) = 2k
O(k3)

• |L3| ≤ k3 · 2O(k6) + kO(k3) · 2kO(k3)

• |V (G)| = |L1|+ |L2|+ |L3| = 2k
O(k3)

27 / 30

Bounding the size of G

Definition

Let C1 and C2 be components in G [L3], and Di = N(Ci). We call C1 and C2 equivalent if
D1 = D2 = D and G [N[C1]] is isomorphic to G [N[C2]] by an isomorphism that fixes D
point-wise. Let β(G) be the number of equivalence classes of bounded components, and
σ(G) - of safe components.

Corollary

G has at most σ(G) safe components and kβ(G) bounded components.

Lemma

• σ(G) = 2O(k6) and β(G) = 2k
O(k3)

• |L3| ≤ k3 · 2O(k6) + kO(k3) · 2kO(k3)

• |V (G)| = |L1|+ |L2|+ |L3| = 2k
O(k3)

27 / 30

Bounding the size of G

Definition

Let C1 and C2 be components in G [L3], and Di = N(Ci). We call C1 and C2 equivalent if
D1 = D2 = D and G [N[C1]] is isomorphic to G [N[C2]] by an isomorphism that fixes D
point-wise. Let β(G) be the number of equivalence classes of bounded components, and
σ(G) - of safe components.

Corollary

G has at most σ(G) safe components and kβ(G) bounded components.

Lemma

• σ(G) = 2O(k6) and β(G) = 2k
O(k3)

• |L3| ≤ k3 · 2O(k6) + kO(k3) · 2kO(k3)

• |V (G)| = |L1|+ |L2|+ |L3| = 2k
O(k3)

27 / 30

Bounding the size of G

Definition

Let C1 and C2 be components in G [L3], and Di = N(Ci). We call C1 and C2 equivalent if
D1 = D2 = D and G [N[C1]] is isomorphic to G [N[C2]] by an isomorphism that fixes D
point-wise. Let β(G) be the number of equivalence classes of bounded components, and
σ(G) - of safe components.

Corollary

G has at most σ(G) safe components and kβ(G) bounded components.

Lemma

• σ(G) = 2O(k6) and β(G) = 2k
O(k3)

• |L3| ≤ k3 · 2O(k6) + kO(k3) · 2kO(k3)

• |V (G)| = |L1|+ |L2|+ |L3| = 2k
O(k3)

27 / 30

Summary

1. While ∆(L1) > 2k2, equivalently modify Is or It

2. Replace all safe components with a small gadget

3. Partition the components of L3 into equivalence classes

4. Remove redundant components from each class

5. Solve the resulting instance naively with e.g. BFS on its reconfiguration graph

Time complexity: O(kn3) + 2k
O(k3)

+ O(k2
(f (k)

k

)2
)

Corollary

TOKEN SLIDING is fixed-parameter tractable when parameterized by k on graphs of
girth ≥ 5.

28 / 30

Summary

1. While ∆(L1) > 2k2, equivalently modify Is or It

2. Replace all safe components with a small gadget

3. Partition the components of L3 into equivalence classes

4. Remove redundant components from each class

5. Solve the resulting instance naively with e.g. BFS on its reconfiguration graph

Time complexity: O(kn3) + 2k
O(k3)

+ O(k2
(f (k)

k

)2
)

Corollary

TOKEN SLIDING is fixed-parameter tractable when parameterized by k on graphs of
girth ≥ 5.

28 / 30

Summary

1. While ∆(L1) > 2k2, equivalently modify Is or It

2. Replace all safe components with a small gadget

3. Partition the components of L3 into equivalence classes

4. Remove redundant components from each class

5. Solve the resulting instance naively with e.g. BFS on its reconfiguration graph

Time complexity: O(kn3) + 2k
O(k3)

+ O(k2
(f (k)

k

)2
)

Corollary

TOKEN SLIDING is fixed-parameter tractable when parameterized by k on graphs of
girth ≥ 5.

28 / 30

Summary

1. While ∆(L1) > 2k2, equivalently modify Is or It

2. Replace all safe components with a small gadget

3. Partition the components of L3 into equivalence classes

4. Remove redundant components from each class

5. Solve the resulting instance naively with e.g. BFS on its reconfiguration graph

Time complexity: O(kn3) + 2k
O(k3)

+ O(k2
(f (k)

k

)2
)

Corollary

TOKEN SLIDING is fixed-parameter tractable when parameterized by k on graphs of
girth ≥ 5.

28 / 30

Summary

1. While ∆(L1) > 2k2, equivalently modify Is or It

2. Replace all safe components with a small gadget

3. Partition the components of L3 into equivalence classes

4. Remove redundant components from each class

5. Solve the resulting instance naively with e.g. BFS on its reconfiguration graph

Time complexity: O(kn3) + 2k
O(k3)

+ O(k2
(f (k)

k

)2
)

Corollary

TOKEN SLIDING is fixed-parameter tractable when parameterized by k on graphs of
girth ≥ 5.

28 / 30

Summary

1. While ∆(L1) > 2k2, equivalently modify Is or It

2. Replace all safe components with a small gadget

3. Partition the components of L3 into equivalence classes

4. Remove redundant components from each class

5. Solve the resulting instance naively with e.g. BFS on its reconfiguration graph

Time complexity: O(kn3) + 2k
O(k3)

+ O(k2
(f (k)

k

)2
)

Corollary

TOKEN SLIDING is fixed-parameter tractable when parameterized by k on graphs of
girth ≥ 5.

28 / 30

Summary

1. While ∆(L1) > 2k2, equivalently modify Is or It

2. Replace all safe components with a small gadget

3. Partition the components of L3 into equivalence classes

4. Remove redundant components from each class

5. Solve the resulting instance naively with e.g. BFS on its reconfiguration graph

Time complexity: O(kn3) + 2k
O(k3)

+ O(k2
(f (k)

k

)2
)

Corollary

TOKEN SLIDING is fixed-parameter tractable when parameterized by k on graphs of
girth ≥ 5.

28 / 30

Open questions

It remains open

• whether Token Sliding admits a (polynomial) kernel on graphs of girth five or more

• whether the problem remains tractable if we forbid cycles of length pmodq

• whether the problem remains tractable if we exclude odd cycles

29 / 30

Open questions

It remains open

• whether Token Sliding admits a (polynomial) kernel on graphs of girth five or more

• whether the problem remains tractable if we forbid cycles of length pmodq

• whether the problem remains tractable if we exclude odd cycles

29 / 30

Open questions

It remains open

• whether Token Sliding admits a (polynomial) kernel on graphs of girth five or more

• whether the problem remains tractable if we forbid cycles of length pmodq

• whether the problem remains tractable if we exclude odd cycles

29 / 30

References

Valentin Bartier, Nicolas Bousquet, Jihad Hanna, Amer E. Mouawad and Sebastian Siebertz (2022)

Token sliding on graphs of girth five

arXiv

The End

30 / 30

https://arxiv.org/abs/2205.01009

	Introduction
	Main result

