Token sliding on graphs of girth five

Demian Banakh

Department of Theoretical Computer Science
Jagiellonian University

January 26, 2023

1/30

Notation

[n]={1,...,n}

All graphs are finite, simple and undirected

® Open neighborhood Ng(v) = {u | uv € E(G)}

Closed neighborhood Ng[v] = Ng(v)U v

For W C V(G), let Ng(Q) =Ug Na(v) — Q and Ng[Q] = N6(Q)U @
Diameter of G is diam(G) = max, , distg(v, u)

Girth of G is the length of the shortest cycle in G

2/30

Token sliding problem

Input: graph G and 2 independent k-sets /s, I; C G.
Question: whether there is a sequence of independent k-sets (o, ..., /;) such that

o =1Is, 1 = I,
I,'A/,'_H = {u, V} S E(G)

3/30

Token sliding problem

Input: graph G and 2 independent k-sets /s, I; C G.
Question: whether there is a sequence of independent k-sets (o, ..., /;) such that

o =1Is, 1 = I,
I;A/;+1 = {u, V} S E(G)

If we call vertices of I; tokens, then every move from [; to l;41 is "sliding” one token
along the edge maintaining the independence.

3/30

Token sliding problem

S

Token sliding problem

Token sliding problem

Token sliding problem

o

Token sliding problem

Token sliding problem

e TOKEN SLIDING is PSPACE-complete

5/30

Token sliding problem

e TOKEN SLIDING is PSPACE-complete
® TOKEN SLIDING is in P on trees, interval graphs etc.

5/30

Token sliding problem

e TOKEN SLIDING is PSPACE-complete
® TOKEN SLIDING is in P on trees, interval graphs etc.

® In 2021, the same authors proved that TOKEN SLIDING is W[1]-hard for graphs of
girth 4 or less

5/30

Token sliding problem

e TOKEN SLIDING is PSPACE-complete
® TOKEN SLIDING is in P on trees, interval graphs etc.

® In 2021, the same authors proved that TOKEN SLIDING is W[1]-hard for graphs of
girth 4 or less

TOKEN SLIDING can be solved naively by constructing a reconfiguration graph R(G, k),
where vertices are independent k-sets of G, and edges correspond to moves. Then it's
enough to verify if /; is reachable from 5 - O(n*).

5/30

Main result

Fixed-parameter tractable - O(f(k) - no(l))_

6/30

Main result

Fixed-parameter tractable - O(f(k) - no(l))_

Theorem
TOKEN SLIDING is fixed-parameter tractable when parameterized by k on graphs of

girth > 5.

6/30

Main result

Fixed-parameter tractable - O(f(k) - no(l))_

Theorem

TOKEN SLIDING is fixed-parameter tractable when parameterized by k on graphs of
girth > 5.

Goal: bound the size of G by f(k), and apply the naive algorithm.

6/30

Partition G

® letly =/1Ul,

7/30

Partition G

o let)y =1Ul,
® [, = N(Ll), and

7/30

Partition G

[] Let L]_ - ls U /tv
® |, = N(Ll), and
o [3=V\(L1ULp)

7/30

Partition G

Lemma

If ue LyU Lz, then |NL1UL2(U)’ < 2k.

8/30

4 component types

Let C be max connected component in G[L3].

C is diameter-safe if diam(G[C]) > k3

C is degree-safe if Ju € C. Ngcj(u) > k? and |[{v € Ngcj(u) | deggic)(v) =2} > k2

C is bounded if diam(G[C]) < k3 and Vu € C. deggic)(u) < k2

C is bad otherwise

9/30

Bounded components

C is bounded if diam(G[C]) < k* and Vu € C. deggc)(u) < Kk

Lemma

If C is a bounded component in G[L3], then |V (C)| < K2k

10/30

Safe components - informally

We will be trying to show that for a safe component C

e if a sequence I from I to I, exists, then also a sequence J" exists such that
[I'N Ng(C) <1

11/30

Safe components - informally

We will be trying to show that for a safe component C

e if a sequence I from I to I, exists, then also a sequence J" exists such that
[I'N Ng(C) <1

® it can absorb all k tokens, and project them back into C neighbourhood as needed

11/30

Safe components - informally

We will be trying to show that for a safe component C

® if a sequence I from Is to I; exists, then also a sequence J" exists such that
N Ng(C)| <1

® it can absorb all k tokens, and project them back into C neighbourhood as needed

11/30

Safe components - informally

We will be trying to show that for a safe component C
e if a sequence I from I to I, exists, then also a sequence J" exists such that
[FNNg(C) <1

® it can absorb all k tokens, and project them back into C neighbourhood as needed

11/30

Safe components - informally

We will be trying to show that for a safe component C

® if a sequence I from Is to I; exists, then also a sequence J" exists such that
N Ng(C)| <1

® it can absorb all k tokens, and project them back into C neighbourhood as needed

11/30

Safe components - informally

We will be trying to show that for a safe component C
e if a sequence I from I to I, exists, then also a sequence J" exists such that
[FNNg(C) <1

® it can absorb all k tokens, and project them back into C neighbourhood as needed

11/30

Safe components - informally

We will be trying to show that for a safe component C
e if a sequence I from I to I, exists, then also a sequence J" exists such that
[FNNg(C) <1

® it can absorb all k tokens, and project them back into C neighbourhood as needed

11/30

Safe components - informally

We will be trying to show that for a safe component C

® if a sequence I from Is to I; exists, then also a sequence J" exists such that
N Ng(C)| <1

® it can absorb all k tokens, and project them back into C neighbourhood as needed

11/30

Safe components - informally

We will be trying to show that for a safe component C
e if a sequence I from I to I, exists, then also a sequence J" exists such that
[FNNg(C) <1

® it can absorb all k tokens, and project them back into C neighbourhood as needed

11/30

Safe components - informally

We will be trying to show that for a safe component C
e if a sequence I from I to I, exists, then also a sequence J" exists such that
[FNNg(C) <1

® it can absorb all k tokens, and project them back into C neighbourhood as needed

11/30

Degree-safe components

Definition
C is degree-safe if Ju € C. Ngcj(u) > k? and [{v € Ng|cj(u) | deggic)(v) =2} > k2
U

12/30

Degree-safe components

Lemma

A degree-safe component C in G[L3] contains an induced subdivided k-star, where all k
branches have length > 1.

13/30

Degree-safe components

Lemma
A degree-safe component C in G[L3] contains an induced subdivided k-star, where all k
branches have length > 1.

o Let Ni(u) = Nc(u), C

13/30

Degree-safe components

Lemma
A degree-safe component C in G[L3] contains an induced subdivided k-star, where all k
branches have length > 1.

o Let Ni(u) = Nc(u), L C
e and Na(u) = Ne(Na(u)) — u :

13/30

Degree-safe components

Lemma
A degree-safe component C in G[L3] contains an induced subdivided k-star, where all k
branches have length > 1.

® |et Nl(u):NC(U), C
e and No(u) = Ne(Ny(u)) — u .

® Nj(u) is an independent set, as G has no triangles

13/30

Degree-safe components

Lemma
A degree-safe component C in G[L3] contains an induced subdivided k-star, where all k
branches have length > 1.

Let Ni(u) = Nc(u), e
and Np(u) = Ne(Ny(u)) —u g
Ni(u) is an independent set, as G has no triangles
Vv € Na(u). [Ny, (uy(v)] <1, as G has no 4-cycles

13/30

Degree-safe components

Lemma
A degree-safe component C in G[L3] contains an induced subdivided k-star, where all k
branches have length > 1.

Let Ni(u) = Nc(u), e
and Np(u) = Ne(Ny(u)) —u g
Ni(u) is an independent set, as G has no triangles
Vv € Na(u). [Ny, (uy(v)] <1, as G has no 4-cycles

[Na(u)| > K2 Lo —

13/30

Degree-safe components

Lemma
A degree-safe component C in G[L3] contains an induced subdivided k-star, where all k
branches have length > 1.

° |No(u)| > K2 - C
e Claim: G[N;(u)] contains independent k-set. Why? '

13/30

Degree-safe components

Lemma
A degree-safe component C in G[L3] contains an induced subdivided k-star, where all k
branches have length > 1.

° |No(u)| > K2 - C
e Claim: G[N;(u)] contains independent k-set. Why? '

e Either 3v € No(u) deg(v) > k. Then N(v) contains
independent k-set, as G has no triangles

13/30

Degree-safe components

Lemma

A degree-safe component C in G[L3] contains an induced subdivided k-star, where all k
branches have length > 1.

|Na(u)| > k2 o C
Claim: G[N,(u)] contains independent k-set. Why?

Either v € Np(u) deg(v) > k. Then N(v) contains

independent k-set, as G has no triangles

Or Vv € Na(u) deg(v) < k—1. Then repeat k times: - —
add any v to IS and remove N[v] from G[N>(u)]

13/30

Degree-safe components

Lemma
A degree-safe component C in G[L3] contains an induced subdivided k-star, where all k
branches have length > 1.

|Na(u)| > k2 o C
e Claim: G[N;(u)] contains independent k-set. Why? :

e Either 3v € No(u) deg(v) > k. Then N(v) contains
independent k-set, as G has no triangles

® OrVv € Np(u) deg(v) < k—1. Then repeat k times: - —
add any v to IS and remove N[v] from G[N>(u)] ;

® This claim gives us the desired subdivided k-star

13/30

Degree-safe components

0 E

Let A be an induced subdivided k-star in C with all branches of length exactly 2. Let
B = Ng(A). If a sequence from Is to I, exists, then also a sequence such that B never
has > 1 tokens exists.

Li=1LUl

FIXXIXY XN
CoeRep Repis gy]

B L, = N(L)

S

¢ o o

14/30

Degree-safe components

0 E

Let A be an induced subdivided k-star in C with all branches of length exactly 2. Let
B = Ng(A). If a sequence from Is to I, exists, then also a sequence such that B never
has > 1 tokens exists.

® Note that kN B=LNB=10 Ly=ILUlL

FIXXIXY XN
CoeRep Repis gy]

B L, = N(L)

S

¢ o o

14/30

Degree-safe components

0 E

Let A be an induced subdivided k-star in C with all branches of length exactly 2. Let
B = Ng(A). If a sequence from Is to I, exists, then also a sequence such that B never
has > 1 tokens exists.

® Note that kN B=LNB=10 Ly=ILUlL

® | et r be root of the star A, 4% L i K\.Q\
g MW%W“\' |

B L, = N(L)

S

¢ o o

14/30

Degree-safe components

0 E

Let A be an induced subdivided k-star in C with all branches of length exactly 2. Let
B = Ng(A). If a sequence from Is to I, exists, then also a sequence such that B never
has > 1 tokens exists.

® Note that kN B=LNB=10 Ly=ILUlL

® | et r be root of the star A, 4% L i K\.Q\
o Ny=Na(r) and Ny = Na(Ny) —r (S @ /4.0 0 oleiejoie’ o ﬁ’*\'\' |

B L, = N(L)

S

¢ o o

14/30

Degree-safe components

Lemma

Let A be an induced subdivided k-star in C with all branches of length exactly 2. Let
B = Ng(A). If a sequence from Is to I, exists, then also a sequence such that B never
has > 1 tokens exists.

Note that kN B =1NB =10 Ly=ILUlL

® | et r be root of the star A, %r L i K\.Q\
My = Na(r) and Ny = Na(y) —r (8@ @/@ @ @ 8leieje 09 pmane

[]
. ~ B [Lo=N(L
® \We will convert a sequence / from - E 1
Is to I+ into a sequence /" such that A
1. B never has > 1 tokens in ii’,
C
B

14/30

Degree-safe components

Lemma

Let A be an induced subdivided k-star in C with all branches of length exactly 2. Let
B = Ng(A). If a sequence from Is to I, exists, then also a sequence such that B never
has > 1 tokens exists.

Note that kN B =1NB =10 Ly=ILUlL

® | et r be root of the star A, %r L i K\.Q\
My = Na(r) and Ny = Na(y) —r (8@ @/@ @ @ 8leieje 09 pmane

[]
——
® We will convert a sequence | from B Ly =N{L)
Is to I, into a sequence " such that A
1. B never has > 1 tokens in ii’,
2. at any step #tokens in AU B is C
same and
B

14/30

Degree-safe components

Lemma

Let A be an induced subdivided k-star in C with all branches of length exactly 2. Let
B = Ng(A). If a sequence from Is to I, exists, then also a sequence such that B never
has > 1 tokens exists.

Note that kN B =1NB =10 Li=ILUlL
o000
® | et r be root of the star A, %r I .\.\\ x\

o= WA and My — Na() ¢ ($ @ @M@ @ Wleieole s pueee

B — Ly = N(L))

We will convert a sequence | from
Is to I, into a sequence " such that A
1. B never has > 1 tokens in ii’,

2. at any step #tokens in AU B is
same and

3. positions of tokens in AU B are 5
same 14/30

Degree-safe components

e Consider step /;_1, right before some token enters vertex b € B

15/30

Degree-safe components

«* 0T

. . B

e Consider step /;_1, right before some token enters vertex b € B

® First, we move all tokens in A to Ny - now every token has its own branch

15/30

Degree-safe components

e Case b € N(r):

16 /30

Degree-safe components

e Case b € N(r):
® b¢ N(N>), as G has no 4-cycles

16 /30

Degree-safe components

e Case b e N(r):
® b¢ N(N,), as G has no 4-cycles
® slide b — r — any empty branch

16 /30

Degree-safe components

e Case b e N(r):
® b¢ N(N,), as G has no 4-cycles
® slide b — r — any empty branch

16 /30

Degree-safe components

e Case b e N(r):
® b ¢ N(N,), as G has no 4-cycles
® slide b — r — any empty branch

16 /30

Degree-safe components

e Case b ¢ N(Ny):

16 /30

Degree-safe components

e Case b ¢ N(Ny):
® b e N(N,); choose a € N, adjacent to b

16 /30

Degree-safe components

e Case b ¢ N(Ny):
® b e N(N,); choose a € N, adjacent to b
® slide a token from branch a to any other empty one, if needed

16 /30

Degree-safe components

e Case b ¢ N(Ny):
® b e N(N,); choose a € N, adjacent to b
® slide a token from branch a to any other empty one, if needed

16 /30

Degree-safe components

e Case b ¢ N(Ny):
® b e N(N,); choose a € N, adjacent to b
® slide a token from branch a to any other empty one, if needed
® slide all tokens to N; of their respective branches

16 /30

Degree-safe components

e Case b ¢ N(Ny):
® b e N(N,); choose a € N, adjacent to b
slide a token from branch a to any other empty one, if needed
slide all tokens to N; of their respective branches
slide b — a

16 /30

Degree-safe components

e Case b ¢ N(Ny):
® b e N(N,); choose a € N, adjacent to b
slide a token from branch a to any other empty one, if needed
slide all tokens to N; of their respective branches
slide b — a

16 /30

Degree-safe components

e Case b € N(Np):

16 /30

Degree-safe components

e Case b € N(Np):

® unique a € Nj is adjacent to b, as G has no 4-cycles

16 /30

Degree-safe components

e Case b € N(Np):
® unique a € N; is adjacent to b, as G has no 4-cycles
® slide a token from branch a to any other empty one, if needed

16 /30

Degree-safe components

e Case b € N(Np):
® unique a € N is adjacent to b, as G has no 4-cycles
® slide a token from branch a to any other empty one, if needed

16 /30

Degree-safe components

e Case b € N(Ny):
® unique a € Nj is adjacent to b, as G has no 4-cycles
® slide a token from branch a to any other empty one, if needed
® slide all tokens to N; of their respective branches

16 /30

Degree-safe components

e Case b € N(Ny):

unique a € N is adjacent to b, as G has no 4-cycles

slide a token from branch a to any other empty one, if needed
slide all tokens to N; of their respective branches

slide b — a

16 /30

Degree-safe components

e Case b € N(Np):
® unique a € N is adjacent to b, as G has no 4-cycles
slide a token from branch a to any other empty one, if needed
slide all tokens to N; of their respective branches
slide b — a

16 /30

Degree-safe components

® The step right before a token exits B - repeat the above procedure in reverse

Corollary

Let C be a degree-safe component. If a sequence from I to I; exists, then also a
sequence such that N(C) never has > 1 tokens exists.

Proof.

Follow the path P from ¢ € N(C) to r and apply the previous lemma when c enters B.
We can always find such a path P that N[P] contains no tokens, because all of them
have been absorbed by C. Ol

17/30

Degree-safe components

® The step right before a token exits B - repeat the above procedure in reverse

e If a move /; — IA,-+1 is completely inside AU B - ignore it

Corollary

Let C be a degree-safe component. If a sequence from I to I; exists, then also a
sequence such that N(C) never has > 1 tokens exists.

Proof.

Follow the path P from ¢ € N(C) to r and apply the previous lemma when c enters B.
We can always find such a path P that N[P] contains no tokens, because all of them
have been absorbed by C. Ol

17/30

Degree-safe components

® The step right before a token exits B - repeat the above procedure in reverse
® |f a move IA, — IA,-+1 is completely inside AU B - ignore it

e If a move [, — IA,-+1 is completely outside AU B - copy it

Corollary

Let C be a degree-safe component. If a sequence from I to I; exists, then also a
sequence such that N(C) never has > 1 tokens exists.

Proof.

Follow the path P from ¢ € N(C) to r and apply the previous lemma when c enters B.
We can always find such a path P that N[P] contains no tokens, because all of them
have been absorbed by C. Ol

17/30

Degree-safe components

The step right before a token exits B - repeat the above procedure in reverse

If a move [; — IA,-+1 is completely inside AU B - ignore it

If a move f; — IA,-+1 is completely outside AU B - copy it

® This gives us a sequence I" from I to I, in which B never has more than 1 token

Corollary

Let C be a degree-safe component. If a sequence from I to I; exists, then also a
sequence such that N(C) never has > 1 tokens exists.

Proof.

Follow the path P from ¢ € N(C) to r and apply the previous lemma when c enters B.
We can always find such a path P that N[P] contains no tokens, because all of them
have been absorbed by C. Ol

17/30

Diameter-safe components

Definition
C is diameter-safe if diam(G[C]) > k3

Diameter path A of a diameter-safe component C is the longest shortest path u — v in C.

18/30

Diameter-safe components

Lemma

Let A be a diameter path of C, and B = Ng(A). If a sequence from Is to I, exists, then
also a sequence such that B never has > 1 tokens exists.

LW=1LsUlL

FIXIIXTXNN
|(-<ﬁuw* *eeve |
ANERNGN

Ly = N(Ly)
|@B [\

s w o5

19/30

Diameter-safe components

Lemma

Let A be a diameter path of C, and B = Ng(A). If a sequence from Is to I, exists, then
also a sequence such that B never has > 1 tokens exists.

LW=1LsUlL

FIXIIXTXNN
|(-<ﬁuw* *eeve |
ARG

Ly = N(Ly)
|@B [\

s w o5

® Notethat kL NB=,NB=10

19/30

Diameter-safe components

Lemma

Let A be a diameter path of C, and B = Ng(A). If a sequence from Is to I, exists, then
also a sequence such that B never has > 1 tokens exists.

e Notethat lNB=LNB=10 Ly =1sUl

® Like before, we will convert a % ﬁ.\\. ¢ %\.Q\
sequence | from /s to I; into a |’/./.ﬁfuw$ 0 00 ® ‘

sequence |’ such that L= N(L))
1. B never has > 1 tokens in IA,-/,
2. at any step #tokensin AU B is @B / \
same and | | _
3. positions of tokens in AU B are Eb ™ e B A
same C

19/30

Diameter-safe components

Ly =IsUl

FIXXYIXIXN

FARN

(/@MV& XXX
AN NS AN
&ZB [\

D ‘o o5

® No 2 non-consecutive vertices in A are adjacent, as A is a shortest path

e Consider step /;_1, right before some token enters vertex b € B

20/30

Diameter-safe components

CNCEIN22N A

<

® Vx,y € Na(b) da(x,y) > 3, as G has no 4-cycles

21/30

Diameter-safe components

® Vx,y € Na(b) da(x,y) >3, as G has no 4-cycles
® We call the vertices between consecutive neighbours of b gap intervals

21/30

Diameter-safe components

® Vx,y € Na(b) da(x,y) >3, as G has no 4-cycles

e We call the vertices between consecutive neighbours of b gap intervals
e Case |Na(b)| > k:

21/30

Diameter-safe components

b
® Vx,y € Na(b) da(x,y) >3, as G has no 4-cycles
® \We call the vertices between consecutive neighbours of b gap intervals
e Case |Na(b)| > k:
® slide all tokens in A to first < k — 1 gap intervals 1-to-1

21/30

Diameter-safe components

® Vx,y € Na(b) da(x,y) >3, as G has no 4-cycles

® \We call the vertices between consecutive neighbours of b gap intervals
e Case |Na(b)| > k:

® slide all tokens in A to first < k — 1 gap intervals 1-to-1

® slide b — next neighbour of bin A

21/30

Diameter-safe components

® Vx,y € Na(b) da(x,y) > 3, as G has no 4-cycles

® We call the vertices between consecutive neighbours of b gap intervals
e Case |Na(b)| > k:

® slide all tokens in A to first < k — 1 gap intervals 1-to-1

® slide b — next neighbour of bin A

21/30

Diameter-safe components

CONCZIN/Z20\ A

<

b
® Vx,y € Na(b) da(x,y) > 3, as G has no 4-cycles
® \We call the vertices between consecutive neighbours of b gap intervals
® Case |Na(b)| < k: then there are < k — 1 gap intervals + maybe 2 intervals at both
ends of A. Hence there exists an interval i of size at least
_ diam(C) — [Na(b)| _ k3 — k -y
INa(b)| + 1 T k+1 —

21/30

Diameter-safe components

® Vx,y € Na(b) da(x,y) >3, as G has no 4-cycles

® We call the vertices between consecutive neighbours of b gap intervals

® Case |Na(b)| < k: then there are < k — 1 gap intervals + maybe 2 intervals at both
ends of A. Hence there exists an interval / of size at least

. o 3 o
_ diam(C) — |Na(b)| S k> —k > ok
|Na(b)| + 1 T k+1 T
® slide all tokens (< k —1) in A to interval i

21/30

Diameter-safe components

e Vx,y € Na(b) da(x,y) > 3, as G has no 4-cycles

® We call the vertices between consecutive neighbours of b gap intervals

e Case |Na(b)| < k: then there are < k — 1 gap intervals + maybe 2 intervals at both
ends of A. Hence there exists an interval i of size at least

. _ 3_
_ diam(C) — |Na(b)| > k> — k > ok
|NA(b)|+1 k+1

® slide all tokens (< k — 1) in A to interval i

® slide b — any neighbour of b in A 21/30

Diameter-safe components

® Vx,y € Na(b) da(x,y) > 3, as G has no 4-cycles

® \We call the vertices between consecutive neighbours of b gap intervals

® Case |Na(b)| < k: then there are < k — 1 gap intervals + maybe 2 intervals at both
ends of A. Hence there exists an interval i of size at least

. _ 3_
_ diam(C) — |Na(b)| > k> — k > ok
|Na(b)| + 1 k+1

® slide all tokens (< k — 1) in A to interval i

® slide b — any neighbour of bin A 21730

Diameter-safe components

® The step right before a token exits B - repeat the above procedure in reverse

22/30

Diameter-safe components

® The step right before a token exits B - repeat the above procedure in reverse

® If a move /; — f;+1 is completely inside AU B - ignore it

22/30

Diameter-safe components

® The step right before a token exits B - repeat the above procedure in reverse
® If a move /; — f;+1 is completely inside AU B - ignore it

® If a move /; — /A,-+1 is completely outside AU B - copy it

22/30

Diameter-safe components

® The step right before a token exits B - repeat the above procedure in reverse
® If a move /; — f;+1 is completely inside AU B - ignore it
® If a move /; — /A,-+1 is completely outside AU B - copy it

® This gives us a sequence I" from Is to I+ in which B never has more than 1 token

22/30

Diameter-safe components

® The step right before a token exits B - repeat the above procedure in reverse
® If a move /; — f;H is completely inside AU B - ignore it
® If a move /; — /A,-H is completely outside AU B - copy it

® This gives us a sequence I" from Is to I+ in which B never has more than 1 token

Corollary

Let C be a diameter-safe component. If a sequence from I to I; exists, then also a
sequence such that N(C) never has > 1 tokens exists.

Proof.

Follow the path P from ¢ € N(C) to the closest vertex in diameter-path A and apply the
previous lemma when c enters B. []

22/30

Safe components: replacement gadget

Let C be a safe component in G[L3] and G’ ' =
be the graph obtained from G as follows: |././J.B/MM + \’WL\.\.\’(L)l
® delete C o

® Vv € N(C) add new vertices &)
v—ov = v

® add a path pi,...p3k

Li=I1,Ul
9ececcen.
.

Cy

® add edges v — p;
Then (Gv IS7 It) = (le /57 /t)

23/30

Safe components: replacement gadget

® From previous corollaries, there exist a sequence I from Is to I with at most 1 token
in N(C) at all times

[&/30

Safe components: replacement gadget

PEITTOII X
wweselssienslesvweie
B > L, =N

[

Ce

E

® From previous corollaries, there exist a sequence I from Is to I with at most 1 token
in N(C) at all times

® The replacement component can absorb/project k tokens

[i4/30

Safe components: replacement gadget

pecscegel"
wweselssienslesvweie
B > Ly = N(L1)

[

Ce

g

® From previous corollaries, there exist a sequence I from Is to I with at most 1 token
in N(C) at all times

® The replacement component can absorb/project k tokens

® So we can mimic / in the replacement component

[i4/30

Safe components: replacement gadget

peeseegel "
wweselssienslesvweie
B > L, =N

[

Ce

g

® From previous corollaries, there exist a sequence I from Is to I with at most 1 token
in N(C) at all times

® The replacement component can absorb/project k tokens

® So we can mimic [in the replacement component
® Note that size of replacement component is 3k + 2|N(C)|, and N(C) C L,
g4/30

Bounding the size of G

Lemma

Assume u € Ly with deg(u) > 2k? (WLOG u € Is). Then there exists I. such that
IsAlL = {u,u'} € E(G) and deg(u') < 2k>.

25/30

Bounding the size of G

Lemma

Assume u € Ly with deg(u) > 2k? (WLOG u € Is). Then there exists I. such that
IsAlL = {u,u'} € E(G) and deg(u') < 2k>.

We can apply this lemma exhaustively until A(L;) < 2k°.

25/30

Bounding the size of G

Lemma
Assume u € Ly with deg(u) > 2k? (WLOG u € Is). Then there exists I. such that
IsAlL = {u,u'} € E(G) and deg(u') < 2k>.

We can apply this lemma exhaustively until A(L;) < 2k°.

Corollary

For (G, Is, I+), there exists equivalent (G', Is, I+) such that |Lo| < 4k3, and each safe
component is replaced in G' by replacement component of size at most 3k + 8k3 = O(k3)

25/30

Bounding the size of G

Lemma
Assume u € Ly with deg(u) > 2k? (WLOG u € Is). Then there exists I. such that
IsAlL = {u,u'} € E(G) and deg(u') < 2k>.

We can apply this lemma exhaustively until A(L;) < 2k°.

Corollary

For (G, Is, I+), there exists equivalent (G', Is, I+) such that |Lo| < 4k3, and each safe
component is replaced in G' by replacement component of size at most 3k + 8k3 = O(k3)

Lemma

In G', every bad component has at most kO(F) vertices.

25/30

Bounding the size of G

Lemma
Assume u € Ly with deg(u) > 2k? (WLOG u € Is). Then there exists I. such that
IsAlL = {u,u'} € E(G) and deg(u') < 2k>.

We can apply this lemma exhaustively until A(L;) < 2k°.

Corollary

For (G, Is, I+), there exists equivalent (G', Is, I+) such that |Lo| < 4k3, and each safe
component is replaced in G' by replacement component of size at most 3k + 8k3 = O(k3)

Lemma

In G', every bad component has at most kO(F) vertices.

From now on, we refer to both bounded and bad components as bounded components.

25/30

Bounding the size of G

It remains to bound the number of safe and bounded components.

26 /30

Bounding the size of G

It remains to bound the number of safe and bounded components.

Definition

Let C; and G, be components in G[L3], and D; = N(C;). We call G; and G, equivalent if
D1 = D, = D and G[N[(]] is isomorphic to G[N[(,]] by an isomorphism that fixes D
point-wise. Let 5(G) be the number of equivalence classes of bounded components, and
o(G) - of safe components.

26 /30

Bounding the size of G

It remains to bound the number of safe and bounded components.

Definition

Let C; and G, be components in G[L3], and D; = N(C;). We call G; and G, equivalent if
D1 = D, = D and G[N[(]] is isomorphic to G[N[(,]] by an isomorphism that fixes D
point-wise. Let 5(G) be the number of equivalence classes of bounded components, and
o(G) - of safe components.

Lemma
Let S; and Sy be equivalent safe components. Then (G, Is, I;) = (G — S2, Is, I¢).

26 /30

Bounding the size of G

It remains to bound the number of safe and bounded components.

Definition

Let C; and G, be components in G[L3], and D; = N(C;). We call G; and G, equivalent if
D1 = D, = D and G[N[(]] is isomorphic to G[N[(,]] by an isomorphism that fixes D
point-wise. Let 5(G) be the number of equivalence classes of bounded components, and
o(G) - of safe components.

Lemma
Let S; and Sy be equivalent safe components. Then (G, Is, I;) = (G — S2, Is, I¢).

Let By, ..., Bki1 be equivalent bounded components. Then (G, s, I;) = (G — By, Is, I1).

26 /30

Bounding the size of G

It remains to bound the number of safe and bounded components.

Definition
Let C; and G, be components in G[L3], and D; = N(C;). We call G; and G, equivalent if
D1 = D, = D and G[N[(]] is isomorphic to G[N[(,]] by an isomorphism that fixes D
point-wise. Let 5(G) be the number of equivalence classes of bounded components, and
o(G) - of safe components.

Lemma

Let S; and Sy be equivalent safe components. Then (G, Is, I;) = (G — S2, Is, It). Let
Bi,...,Bki1 be equivalent bounded components. Then (G, s, ;) = (G — By, Is, It).

We can exhaustively remove equivalent components, and obtain

26 /30

Bounding the size of G

It remains to bound the number of safe and bounded components.

Definition
Let C; and G, be components in G[L3], and D; = N(C;). We call G; and G, equivalent if
D1 = D, = D and G[N[(]] is isomorphic to G[N[(,]] by an isomorphism that fixes D
point-wise. Let 5(G) be the number of equivalence classes of bounded components, and
o(G) - of safe components.

Lemma

Let S; and Sy be equivalent safe components. Then (G, Is, I;) = (G — S2, Is, It). Let
Bi,...,Bki1 be equivalent bounded components. Then (G, s, ;) = (G — By, Is, It).

We can exhaustively remove equivalent components, and obtain

Corollary

G has at most o(G) safe components and kf3(G) bounded components.

26 /30

Bounding the size of G

Definition
Let C; and G, be components in G[L3], and D; = N(C;). We call G; and G, equivalent if
Dy = Dy = D and G[N[(]] is isomorphic to G[N[C,]] by an isomorphism that fixes D
point-wise. Let 5(G) be the number of equivalence classes of bounded components, and
o(G) - of safe components.

Corollary
G has at most o(G) safe components and kf3(G) bounded components.

27/30

Bounding the size of G

Definition
Let C; and G, be components in G[L3], and D; = N(C;). We call G; and G, equivalent if
Dy = Dy = D and G[N[(]] is isomorphic to G[N[C,]] by an isomorphism that fixes D
point-wise. Let 3(G) be the number of equivalence classes of bounded components, and
o(G) - of safe components.

Corollary
G has at most o(G) safe components and kf3(G) bounded components.

Lemma

o 5(G) = 200 and B(G) = 2k°*

27/30

Bounding the size of G

Definition
Let C; and G, be components in G[L3], and D; = N(C;). We call G; and G, equivalent if
Dy = Dy = D and G[N[(]] is isomorphic to G[N[C,]] by an isomorphism that fixes D
point-wise. Let 3(G) be the number of equivalence classes of bounded components, and
o(G) - of safe components.

Corollary
G has at most o(G) safe components and kf3(G) bounded components.

Lemma

* 7(G) = 20(K°) 4pnd B(G) = kO(k)
o |Ls] < k3. 20(K) | |O(K?) . kOl

27/30

Bounding the size of G

Definition
Let C; and G, be components in G[L3], and D; = N(C;). We call G; and G, equivalent if
Dy = Dy = D and G[N[(]] is isomorphic to G[N[C,]] by an isomorphism that fixes D
point-wise. Let 3(G) be the number of equivalence classes of bounded components, and
o(G) - of safe components.

Corollary
G has at most o(G) safe components and kf3(G) bounded components.

Lemma
« o(6) = 20 and () -
o |Ls] < k3. 20(K) | |O(K?) . kOl
3
o |V(G)| = |L1| + |Lo| + |L3] = 2K°*”

kO(k)

27/30

Summary

1. While A(L;) > 2k2, equivalently modify Is or /;

28/30

Summary

1. While A(L;) > 2k2, equivalently modify Is or /;
2. Replace all safe components with a small gadget

28/30

Summary

1. While A(L;) > 2k2, equivalently modify Is or /;
2. Replace all safe components with a small gadget

3. Partition the components of L3 into equivalence classes

28/30

Summary

sl N

While A(L;) > 2k2, equivalently modify Is or I
Replace all safe components with a small gadget
Partition the components of L3 into equivalence classes

Remove redundant components from each class

28/30

Summary

While A(L;) > 2k2, equivalently modify Is or I
Replace all safe components with a small gadget
Partition the components of L3 into equivalence classes

Remove redundant components from each class

AR I

Solve the resulting instance naively with e.g. BFS on its reconfiguration graph

28/30

Summary

While A(L;) > 2k2, equivalently modify Is or I
Replace all safe components with a small gadget
Partition the components of L3 into equivalence classes

Remove redundant components from each class

AR I

Solve the resulting instance naively with e.g. BFS on its reconfiguration graph

Time complexity: O(kn3) + koK) + O(k2(f(kk))2)

28/30

Summary

While A(L;) > 2k2, equivalently modify Is or I
Replace all safe components with a small gadget
Partition the components of L3 into equivalence classes

Remove redundant components from each class

AR I

Solve the resulting instance naively with e.g. BFS on its reconfiguration graph

Time complexity: O(kn3) + koK) + O(k2(f(kk))2)

Corollary

TOKEN SLIDING is fixed-parameter tractable when parameterized by k on graphs of
girth > 5.

28/30

Open questions

It remains open

e whether Token Sliding admits a (polynomial) kernel on graphs of girth five or more

29/30

Open questions

It remains open
e whether Token Sliding admits a (polynomial) kernel on graphs of girth five or more

® whether the problem remains tractable if we forbid cycles of length pmodq

29/30

Open questions

It remains open
e whether Token Sliding admits a (polynomial) kernel on graphs of girth five or more
® whether the problem remains tractable if we forbid cycles of length pmodq

® whether the problem remains tractable if we exclude odd cycles

29/30

References

@ Valentin Bartier, Nicolas Bousquet, Jihad Hanna, Amer E. Mouawad and Sebastian Siebertz (2022)
Token sliding on graphs of girth five
arXiv

The End

30/30

https://arxiv.org/abs/2205.01009

	Introduction
	Main result

