A note on polynomials and f-factors of graphs by Hamed Shirazi and Jacques Verstraëte

presented by Krzysztof Baranski

Theoretical Computer Science
Jagiellonian University
Combinatorial Optimization Seminar

k-factor

Definition

A k-regular spanning subgraph is called \mathbf{k}-factor.

k-factor

Definition

A k-regular spanning subgraph is called \mathbf{k}-factor.

Observation

A subgraph $H \subseteq G$ is a 1-factor of G iff $E(H)$ is a matching of G.

k-factor

Definition

A k-regular spanning subgraph is called \mathbf{k}-factor.

Observation

A subgraph $H \subseteq G$ is a 1-factor of G iff $E(H)$ is a matching of G.

Observation

A subgraph $H \subseteq G$ is a 2-factor of G iff $E(H)$ is a cycle cover of G.

f-factor

Let $G=(V, E)$ be a graph.

f-factor

Let $G=(V, E)$ be a graph.
Let $f: V \rightarrow 2^{\mathbb{Z}}$ be a function assigning to each $v \in V$ a set of integers in $\{0,1,2, \ldots, d(v)\}$, where $d(v)$ denotes the degree of v in G.

f-factor

Let $G=(V, E)$ be a graph.
Let $f: V \rightarrow 2^{\mathbb{Z}}$ be a function assigning to each $v \in V$ a set of integers in $\{0,1,2, \ldots, d(v)\}$, where $d(v)$ denotes the degree of v in G.

Definition

f-factor is a spanning subgraph H of G in which $d_{H}(v) \in f(v)$ for all $v \in V$.

Couple of results

- If $f(v)=\{1\}$ for every $v \in V(G)$, then f is a matching of G (1-factor).

Couple of results

- If $f(v)=\{1\}$ for every $v \in V(G)$, then f is a matching of G (1-factor).
- If $f(v)=\{2\}$ for every $v \in V(G)$, then f is a cycle cover of G (2-factor).

Couple of results

- If $f(v)=\{1\}$ for every $v \in V(G)$, then f is a matching of G (1-factor).
- If $f(v)=\{2\}$ for every $v \in V(G)$, then f is a cycle cover of G (2-factor).
- If $|f(v)|=1$ for every $v \in V(G)$, then there exists a necessary and sufficient condition for the existence of an f-factor of G (Tutte's f-factor theorem).

Couple of results

- If $f(v)=\{1\}$ for every $v \in V(G)$, then f is a matching of G (1-factor).
- If $f(v)=\{2\}$ for every $v \in V(G)$, then f is a cycle cover of G (2-factor).
- If $|f(v)|=1$ for every $v \in V(G)$, then there exists a necessary and sufficient condition for the existence of an f-factor of G (Tutte's f-factor theorem).
- No necessary and sufficient condition for an f-factor exists when we allow $|f(v)| \geq 2$, even when $|f(v)|=2$ for all $v \in V$.

Couple of results

- If $f(v)=\{1\}$ for every $v \in V(G)$, then f is a matching of G (1-factor).
- If $f(v)=\{2\}$ for every $v \in V(G)$, then f is a cycle cover of G (2-factor).
- If $|f(v)|=1$ for every $v \in V(G)$, then there exists a necessary and sufficient condition for the existence of an f-factor of G (Tutte's f-factor theorem).
- No necessary and sufficient condition for an f-factor exists when we allow $|f(v)| \geq 2$, even when $|f(v)|=2$ for all $v \in V$.
- On the other hand, if no two consecutive integers in $f(v)$ differ by more than two, then there is a necessary and sufficient condition for an f-factor (Lovász).

Theorem 1

Theorem

Let $G=(V, E)$ be a graph and suppose that f satisfies

$$
|f(v)|>\lceil d(v) / 2\rceil
$$

for every $v \in V$.
Then G has an f-factor.

Combinatorial Nullstellensatz

Theorem

Let $g \in \mathbb{F}\left[X_{1}, X_{2}, \ldots, X_{n}\right]$ be a polynomial, and suppose the coefficient of the monomial $\prod_{i=1}^{n} X_{i}^{t_{i}}$ in g is non-zero, where $t_{1}+t_{2}+\ldots+t_{n}$ is the total degree of g.
Then, for any sets $S_{1}, S_{2}, \ldots, S_{n} \subset \mathbb{F}$ with $\left|S_{1}\right|>t_{1},\left|S_{2}\right|>t_{2}, \ldots,\left|S_{n}\right|>t_{n}$, there exists $x \in S_{1} \times S_{2} \times \ldots \times S_{n}$ such that $g(x) \neq 0$.

Theorem 1 - proof

Theorem

Let $G=(V, E)$ be a graph and suppose that f satisfies

$$
|f(v)|>\lceil d(v) / 2\rceil
$$

for every $v \in V$.
Then G has an f-factor.

Theorem 1 - proof

Theorem

Let $G=(V, E)$ be a graph and suppose that f satisfies

$$
|f(v)|>\lceil d(v) / 2\rceil
$$

for every $v \in V$.
Then G has an f-factor.

Proof:

Theorem 1 - proof

Theorem

Let $G=(V, E)$ be a graph and suppose that f satisfies

$$
|f(v)|>\lceil d(v) / 2\rceil
$$

for every $v \in V$.
Then G has an f-factor.

Proof:

Let's consider the polynomial over \mathbb{R} defined by

$$
g=\prod_{v \in V} \prod_{c \in f(v)^{c}}\left(\sum_{e \ni v} X_{e}-c\right)
$$

where $f(v)^{c}=\{0,1,2, \ldots, d(v)\} \backslash f(v)$.

Theorem 1 - proof

$$
g=\prod_{v \in V} \prod_{c \in f(v)^{c}}\left(\sum_{e \ni v} X_{e}-c\right)
$$

Theorem 1 - proof

$$
g=\prod_{v \in V} \prod_{c \in f(v)^{c}}\left(\sum_{e \ni v} X_{e}-c\right)
$$

I claim that there exists a largest degree monomial in g of the form $a \prod_{e \in E} X_{e}^{t_{e}}$ where $t_{e} \in\{0,1\}$ for all $e \in E$ and $a \neq 0$.

Theorem 1 - proof

$$
g=\prod_{v \in V} \prod_{c \in f(v)^{c}}\left(\sum_{e \ni v} X_{e}-c\right)
$$

I claim that there exists a largest degree monomial in g of the form $a \prod_{e \in E} X_{e}^{t_{e}}$ where $t_{e} \in\{0,1\}$ for all $e \in E$ and $a \neq 0$.

The degree of g is exactly

$$
\sum_{v \in V}\left|f(v)^{c}\right|
$$

Theorem 1 - proof

$$
g=\prod_{v \in V} \prod_{c \in f(v)^{c}}\left(\sum_{e \ni v} X_{e}-c\right)
$$

I claim that there exists a largest degree monomial in g of the form $a \prod_{e \in E} X_{e}^{t_{e}}$ where $t_{e} \in\{0,1\}$ for all $e \in E$ and $a \neq 0$.

The degree of g is exactly

$$
\sum_{v \in V}\left|f(v)^{c}\right|
$$

Theorem 1 - proof

Every graph on V has an orientation such that the outdegree of every vertex $v \in V$ is at least $\left\lfloor\frac{1}{2} d(v)\right\rfloor$.

Theorem 1 - proof

Every graph on V has an orientation such that the outdegree of every vertex $v \in V$ is at least $\left\lfloor\frac{1}{2} d(v)\right\rfloor$.

$$
|f(v)|>\left\lceil\frac{1}{2} d(v)\right\rceil \Longrightarrow\left|f(v)^{c}\right| \leq\left\lfloor\frac{1}{2} d(v)\right\rfloor
$$

Theorem 1 - proof

Every graph on V has an orientation such that the outdegree of every vertex $v \in V$ is at least $\left\lfloor\frac{1}{2} d(v)\right\rfloor$.

$$
|f(v)|>\left\lceil\frac{1}{2} d(v)\right\rceil \Longrightarrow\left|f(v)^{c}\right| \leq\left\lfloor\frac{1}{2} d(v)\right\rfloor
$$

Therefore it is possible to assign to each $v \in V$ a set $E(v)$ of edges containing v such that $|E(v)|=\left|f(v)^{c}\right|$ and, for all distinct $u, v \in V$,

$$
E(u) \cap E(v)=\emptyset .
$$

Theorem 1 - proof

Every graph on V has an orientation such that the outdegree of every vertex $v \in V$ is at least $\left\lfloor\frac{1}{2} d(v)\right\rfloor$.

$$
|f(v)|>\left\lceil\frac{1}{2} d(v)\right\rceil \Longrightarrow\left|f(v)^{c}\right| \leq\left\lfloor\frac{1}{2} d(v)\right\rfloor
$$

Therefore it is possible to assign to each $v \in V$ a set $E(v)$ of edges containing v such that $|E(v)|=\left|f(v)^{c}\right|$ and, for all distinct $u, v \in V$,

$$
E(u) \cap E(v)=\emptyset .
$$

Then

$$
\prod_{v \in V} \prod_{e \in E(v)} X_{e}
$$

is a monomial of the required degree in g.

Theorem 1 - proof

Combinatorial Nullstellensatz

Let $g \in \mathbb{F}\left[X_{1}, X_{2}, \ldots, X_{n}\right]$ be a polynomial, and suppose the coefficient of the monomial $\prod_{i=1}^{n} X_{i}^{t_{i}}$ in g is non-zero, where $t_{1}+t_{2}+\ldots+t_{n}$ is the total degree of g.
Then, for any sets $S_{1}, S_{2}, \ldots, S_{n} \subset \mathbb{F}$ with $\left|S_{1}\right|>t_{1},\left|S_{2}\right|>t_{2}, \ldots,\left|S_{n}\right|>t_{n}$, there exists $x \in S_{1} \times S_{2} \times \ldots \times S_{n}$ such that $g(x) \neq 0$.

Theorem 1 - proof

Combinatorial Nullstellensatz

Let $g \in \mathbb{F}\left[X_{1}, X_{2}, \ldots, X_{n}\right]$ be a polynomial, and suppose the coefficient of the monomial $\prod_{i=1}^{n} X_{i}^{t_{i}}$ in g is non-zero, where $t_{1}+t_{2}+\ldots+t_{n}$ is the total degree of g.
Then, for any sets $S_{1}, S_{2}, \ldots, S_{n} \subset \mathbb{F}$ with $\left|S_{1}\right|>t_{1},\left|S_{2}\right|>t_{2}, \ldots,\left|S_{n}\right|>t_{n}$, there exists $x \in S_{1} \times S_{2} \times \ldots \times S_{n}$ such that $g(x) \neq 0$.

$$
g=\prod_{v \in V} \prod_{c \in f(v)^{c}}\left(\sum_{e \ni v} X_{e}-c\right)
$$

Theorem 1 - proof

Combinatorial Nullstellensatz

Let $g \in \mathbb{F}\left[X_{1}, X_{2}, \ldots, X_{n}\right]$ be a polynomial, and suppose the coefficient of the monomial $\prod_{i=1}^{n} X_{i}^{t_{i}}$ in g is non-zero, where $t_{1}+t_{2}+\ldots+t_{n}$ is the total degree of g.
Then, for any sets $S_{1}, S_{2}, \ldots, S_{n} \subset \mathbb{F}$ with $\left|S_{1}\right|>t_{1},\left|S_{2}\right|>t_{2}, \ldots,\left|S_{n}\right|>t_{n}$, there exists $x \in S_{1} \times S_{2} \times \ldots \times S_{n}$ such that $g(x) \neq 0$.

$$
\begin{gathered}
g=\prod_{v \in V} \prod_{c \in f(v)^{c}}\left(\sum_{e \ni v} X_{e}-c\right) \\
a \prod_{e \in E} X_{e}^{t_{e}}=a \prod_{v \in V} \prod_{e \in E(v)} X_{e}, \text { where } t_{e} \in\{0,1\} \text { and } a \neq 0
\end{gathered}
$$

Theorem 1 - proof

Combinatorial Nullstellensatz

Let $g \in \mathbb{F}\left[X_{1}, X_{2}, \ldots, X_{n}\right]$ be a polynomial, and suppose the coefficient of the monomial $\prod_{i=1}^{n} X_{i}^{t_{i}}$ in g is non-zero, where $t_{1}+t_{2}+\ldots+t_{n}$ is the total degree of g.
Then, for any sets $S_{1}, S_{2}, \ldots, S_{n} \subset \mathbb{F}$ with $\left|S_{1}\right|>t_{1},\left|S_{2}\right|>t_{2}, \ldots,\left|S_{n}\right|>t_{n}$, there exists $x \in S_{1} \times S_{2} \times \ldots \times S_{n}$ such that $g(x) \neq 0$.

$$
\begin{gathered}
g=\prod_{v \in V} \prod_{c \in f(v)^{c}}\left(\sum_{e \ni v} X_{e}-c\right) \\
a \prod_{e \in E} X_{e}^{t_{e}}=a \prod_{v \in V} \prod_{e \in E(v)} X_{e}, \text { where } t_{e} \in\{0,1\} \text { and } a \neq 0 \\
S_{1}=S_{2}=\ldots=S_{n}=\{0,1\}
\end{gathered}
$$

Theorem 1 - proof

Combinatorial Nullstellensatz

Let $g \in \mathbb{F}\left[X_{1}, X_{2}, \ldots, X_{n}\right]$ be a polynomial, and suppose the coefficient of the monomial $\prod_{i=1}^{n} X_{i}^{t_{i}}$ in g is non-zero, where $t_{1}+t_{2}+\ldots+t_{n}$ is the total degree of g.
Then, for any sets $S_{1}, S_{2}, \ldots, S_{n} \subset \mathbb{F}$ with $\left|S_{1}\right|>t_{1},\left|S_{2}\right|>t_{2}, \ldots,\left|S_{n}\right|>t_{n}$, there exists $x \in S_{1} \times S_{2} \times \ldots \times S_{n}$ such that $g(x) \neq 0$.

$$
\begin{gathered}
g=\prod_{v \in V} \prod_{c \in f(v)^{c}}\left(\sum_{e \ni v} X_{e}-c\right) \\
a \prod_{e \in E} X_{e}^{t_{e}}=a \prod_{v \in V} \prod_{e \in E(v)} X_{e}, \text { where } t_{e} \in\{0,1\} \text { and } a \neq 0 \\
S_{1}=S_{2}=\ldots=S_{n}=\{0,1\}
\end{gathered}
$$

By the combinatorial nullstellensatz, there exists $x \in\{0,1\}^{|E|}$ such that $g(x) \neq 0$.

Theorem 1 - proof

Combinatorial Nullstellensatz

Let $g \in \mathbb{F}\left[X_{1}, X_{2}, \ldots, X_{n}\right]$ be a polynomial, and suppose the coefficient of the monomial $\prod_{i=1}^{n} X_{i}^{t_{i}}$ in g is non-zero, where $t_{1}+t_{2}+\ldots+t_{n}$ is the total degree of g.
Then, for any sets $S_{1}, S_{2}, \ldots, S_{n} \subset \mathbb{F}$ with $\left|S_{1}\right|>t_{1},\left|S_{2}\right|>t_{2}, \ldots,\left|S_{n}\right|>t_{n}$, there exists $x \in S_{1} \times S_{2} \times \ldots \times S_{n}$ such that $g(x) \neq 0$.

$$
\begin{gathered}
g=\prod_{v \in V} \prod_{c \in f(v)^{c}}\left(\sum_{e \ni v} X_{e}-c\right) \\
a \prod_{e \in E} X_{e}^{t_{e}}=a \prod_{v \in V} \prod_{e \in E(v)} X_{e}, \text { where } t_{e} \in\{0,1\} \text { and } a \neq 0 \\
S_{1}=S_{2}=\ldots=S_{n}=\{0,1\}
\end{gathered}
$$

By the combinatorial nullstellensatz, there exists $x \in\{0,1\}^{|E|}$ such that $g(x) \neq 0$. Now $F=\left\{e \in E: x_{e}=1\right\}$ is the edge set of an f-factor of G.

Theorem 2

Theorem

Let $G=(V, E)$ be a graph, and let f satisfy

$$
|E|>\sum_{v \in V}\left|f(v)^{c} \backslash\{0\}\right|
$$

where $f(v)^{c}=\{0,1,2, \ldots, d(v)\} \backslash f(v)$.
Then G contains a non-trivial partial f-factor.

Theorem 2

Theorem

Let $G=(V, E)$ be a graph, and let f satisfy

$$
|E|>\sum_{v \in V}\left|f(v)^{c} \backslash\{0\}\right|
$$

where $f(v)^{c}=\{0,1,2, \ldots, d(v)\} \backslash f(v)$. Then G contains a non-trivial partial f-factor.

Definition

$\underset{\tilde{f}}{\text { Partial }} \mathbf{f}$-factor of a graph $G=(V, E)$ is an \tilde{f}-factor of G where $\tilde{f}(v)=f(v) \cup\{0\}$ for all $v \in V$.

Theorem 2

Theorem

Let $G=(V, E)$ be a graph, and let f satisfy

$$
|E|>\sum_{v \in V}\left|f(v)^{c} \backslash\{0\}\right|
$$

where $f(v)^{c}=\{0,1,2, \ldots, d(v)\} \backslash f(v)$. Then G contains a non-trivial partial f-factor.

Definition

$\underset{\tilde{f}}{\text { Partial }} \mathbf{f}$-factor of a graph $G=(V, E)$ is an \tilde{f}-factor of G where $\tilde{f}(v)=f(v) \cup\{0\}$ for all $v \in V$.

Definition

Partial f-factor is non-trivial if it is non-empty.

Theorem 2 - proof

Theorem

Let $G=(V, E)$ be a graph, and let f satisfy

$$
|E|>\sum_{v \in V}\left|f(v)^{c} \backslash\{0\}\right|
$$

where $f(v)^{c}=\{0,1,2, \ldots, d(v)\} \backslash f(v)$.
Then G contains a non-trivial partial f-factor.

Theorem 2 - proof

Theorem

Let $G=(V, E)$ be a graph, and let f satisfy

$$
|E|>\sum_{v \in V}\left|f(v)^{c} \backslash\{0\}\right|
$$

where $f(v)^{c}=\{0,1,2, \ldots, d(v)\} \backslash f(v)$.
Then G contains a non-trivial partial f-factor.

Proof:

Theorem 2 - proof

Theorem

Let $G=(V, E)$ be a graph, and let f satisfy

$$
|E|>\sum_{v \in V}\left|f(v)^{c} \backslash\{0\}\right|
$$

where $f(v)^{c}=\{0,1,2, \ldots, d(v)\} \backslash f(v)$.
Then G contains a non-trivial partial f-factor.

Proof:

Let's consider the polynomial over \mathbb{R} defined by

$$
g=\prod_{v \in V} \prod_{c \in f(v)^{\wedge} \backslash\{0\}}\left(\frac{c-\sum_{e \ni v} X_{e}}{c}\right)-\prod_{e \in E}\left(1-X_{e}\right) .
$$

Theorem 2 - proof

$$
g=\prod_{v \in V} \prod_{c \in f(v) \subset \backslash\{0\}}\left(\frac{c-\sum_{e \ni v} X_{e}}{c}\right)-\prod_{e \in E}\left(1-X_{e}\right) .
$$

Theorem 2 - proof

$$
g=\prod_{v \in V} \prod_{c \in f(V) \backslash\{\{0\}}\left(\frac{c-\sum_{e \ni v} X_{e}}{c}\right)-\prod_{e \in E}\left(1-X_{e}\right) .
$$

Then $g(0)=1-1=0$.

Theorem 2 - proof

$$
g=\prod_{v \in V} \prod_{c \in f(v)^{c} \backslash\{0\}}\left(\frac{c-\sum_{e \ni v} X_{e}}{c}\right)-\prod_{e \in E}\left(1-X_{e}\right) .
$$

Then $g(0)=1-1=0$.
By the inequality of the theorem, the total degree of the first term in g is

$$
\sum_{v \in V}\left|f(v)^{c} \backslash\{0\}\right|<|E|
$$

so the largest degree monomial in g is precisely $(-1)^{|E|+1} \prod_{e \in E} X_{e}$.

Theorem 2 - proof

$$
g=\prod_{v \in V} \prod_{c \in f(v)^{c} \backslash\{0\}}\left(\frac{c-\sum_{e \ni v} X_{e}}{c}\right)-\prod_{e \in E}\left(1-X_{e}\right) .
$$

Then $g(0)=1-1=0$.
By the inequality of the theorem, the total degree of the first term in g is

$$
\sum_{v \in V}\left|f(v)^{c} \backslash\{0\}\right|<|E|
$$

so the largest degree monomial in g is precisely $(-1)^{|E|+1} \prod_{e \in E} X_{e}$. By the combinatorial nullstellensatz, there exists a non-zero $x \in\{0,1\}|E|$ such that $g(x) \neq 0$.

Theorem 2 - proof

$$
g=\prod_{v \in V} \prod_{c \in f(v)^{c} \backslash\{0\}}\left(\frac{c-\sum_{e \ni v} X_{e}}{c}\right)-\prod_{e \in E}\left(1-X_{e}\right) .
$$

Then $g(0)=1-1=0$.
By the inequality of the theorem, the total degree of the first term in g is

$$
\sum_{v \in V}\left|f(v)^{c} \backslash\{0\}\right|<|E|
$$

so the largest degree monomial in g is precisely $(-1)^{|E|+1} \prod_{e \in E} X_{e}$. By the combinatorial nullstellensatz, there exists a non-zero $x \in\{0,1\}^{|E|}$ such that $g(x) \neq 0$.
This implies that the first term in g is not zero at x,

Theorem 2 - proof

$$
g=\prod_{v \in V} \prod_{c \in f(v)^{c} \backslash\{0\}}\left(\frac{c-\sum_{e \ni v} X_{e}}{c}\right)-\prod_{e \in E}\left(1-X_{e}\right) .
$$

Then $g(0)=1-1=0$.
By the inequality of the theorem, the total degree of the first term in g is

$$
\sum_{v \in V}\left|f(v)^{c} \backslash\{0\}\right|<|E|
$$

so the largest degree monomial in g is precisely $(-1)^{|E|+1} \prod_{e \in E} X_{e}$. By the combinatorial nullstellensatz, there exists a non-zero $x \in\{0,1\}^{|E|}$ such that $g(x) \neq 0$.
This implies that the first term in g is not zero at x, and so for all $v \in V: \sum_{e \ni v} x_{e} \in f(v) \cup\{0\}$.

Theorem 2 - proof

$$
g=\prod_{v \in V} \prod_{c \in f(v)^{c} \backslash\{0\}}\left(\frac{c-\sum_{e \ni v} X_{e}}{c}\right)-\prod_{e \in E}\left(1-X_{e}\right)
$$

Then $g(0)=1-1=0$.
By the inequality of the theorem, the total degree of the first term in g is

$$
\sum_{v \in V}\left|f(v)^{c} \backslash\{0\}\right|<|E|
$$

so the largest degree monomial in g is precisely $(-1)^{|E|+1} \prod_{e \in E} X_{e}$. By the combinatorial nullstellensatz, there exists a non-zero $x \in\{0,1\}|E|$ such that $g(x) \neq 0$.
This implies that the first term in g is not zero at x, and so for all $v \in V: \sum_{e \ni v} x_{e} \in f(v) \cup\{0\}$.
Now $F=\left\{e \in E: x_{e}=1\right\}$ is the edge set of a non-trivial partial f-factor of G.

Bibliography

(1) Shirazi, H; Verstraëte, J. A note on polynomials and f-factors of graphs, 2008.
(2) Diestel, R. Graph Theory, Graduate Texts in Mathematics 173, 2017: 35

