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Definition. Partially ordered set (poset)

P = (X,≤P )

X - the ground set, or set of elements

≤P - reflexive, antisymmetric and transitive relation

≤P⊂ X ×X

Intuition: posets are sets with some inequalities between elements
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Definition. Realizer of poset P

Set {L1, L2, ..., Ld} of linear extensions of P such that

L1 ∩ L2 ∩ ... ∩ Ld = P

Definition. Dushnik-Miller dimension (or simply dimension) of poset P

The minimum possible size of realizer of P

We denote it by dim(P )
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f : x −→ (x1, x2, ..., xd) s.t. x ≤P y ⇐⇒ (x1 ≤ y1) ∧ (x2 ≤ y2) ∧ ... ∧ (xd ≤ yd)
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Computer science corner. What is the complexity of determining
whether dimension is at most k?

• NP-complete for k ≥ 3 - reduction from chromatic number 3
[M. Yannakakis, 1982]

• P for k ≤ 2 - reduction to recognition of transitively orientable
graphs
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Problem. How big can dimension be?

Standard example Sn

dim(Sn) = n

This is the worst case. Generally for |P | ≥ 4, dim(P ) ≤ |P |/2
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Problem. What makes the dimension large?

• cover graph is a forest =⇒ dim(P ) ≤ 3 (and this bound is best possible)
[Moore, Trotter, 1977]

Idea: Maybe if cover graph is ”sparse” in some measure, the
dimension is always small?
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Kelly’s example. Posets with
planar diagrams and arbitrarily
large dimension.
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• cover graph is outerplanar =⇒ dim(P ) ≤ 4 (and the
bound is best possible) [Felsner, Trotter, Wiechert,
2015]

Then maybe something stronger?
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dim(P ) = 4 for n ≥ 17
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• cover graph has tree-width at most 2 =⇒ dim(P ) ≤ 1276
[Joret, Micek, Trotter, Wang, Wiechert, 2014]

• cover graph has tree-width at most 2 =⇒ dim(P ) ≤ 12
[Seweryn, 2020]

What about other sparsity measures? Maybe tree-width?
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Alright. What about... height?

• There is a function f : N −→ N such that if height(P ) ≤ h and P has
planar cover graph, then

dim(P ) ≤ f(h)

[Streib, Trotter, 2014]

f = O(4h3)

• There is a function f : N2 −→ N such that if height(P ) ≤ h and
tree-width ≤ t, then

dim(P ) ≤ f(h, t)

[Joret, Micek, Milans, Trotter, Walczak, Wang, 2016]
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[Walczak, 2017]



• There is a function f : N2 −→ N such that if height(P ) ≤ h and cover graph does
not contain Kt as a minor, then

dim(P ) ≤ f(h, t)

[Walczak, 2017]

Now let’s move to our today’s topic...
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Let Inc(P ) be the set of incomparable pairs (ordered!) of elements in P .

We say that R ⊆ Inc(P ) is reversible, if there is a linear extension L of P s.t.
for every (x, y) ∈ R we have x ≤ y in L.

Observation. dim(P ) is the minimum number d s.t. there exist d reversible
sets R1 ∪R2 ∪ ... ∪Rd = Inc(P ).

Useful fact. R is reversible ⇐⇒ R does not contain alternating cycle.



alternating cycle on incomparable pairs (x1, y1), (x2, y2), ..., (xn, yn)

x1 x2 x3 xn

y1 y2 y3 yn
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For every d ≥ 1, if P is a poset and every block in P has dimension at most d,
the the dimension of P is at most d+ 2. Futhermore, this inequality is best
possible.
[Trotter, Walczak, Wang, 2017]



Main theorem of the article

For every d ≥ 1, if P is a poset and every block in P has dimension at most d,
the the dimension of P is at most d+ 2. Futhermore, this inequality is best
possible.
[Trotter, Walczak, Wang, 2017]

Proof sketch:
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Let’s define a tool we will be using: the merge rule

P ′

P ′′

A

B

C

D

w

[A < w < B] and [C < w < D] are
linear extensions of P ′ and P ′′

respectively

w separates subposets P ′ and P ′′

[A < C < w < D < B] is a linear
extension of P ′ ∪ P ′′ is equal to
respective ”old” extensions when
restricted to P ′ or P ′′.
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dim(Bi) ≤ d

root of Bi - ρ(Bi)

t - number of blocks
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dim(Bi) ≤ d

u = ρ(B5)

T (u,Bi) for u ∈ Bi

T (u,Bi) ⊆ {u}∪Bi+1∪ ...∪Bt

tail of u relative to Bi

t - number of blocks

T (u,Bi) is the set of
vertices from which you
must go through u to reach
Bi
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of Bi

ρ(B4)

linear extension of
P4 = B1 ∪ ... ∪B4
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B5

B6

B7

L1(Bi), L2(Bi), ..., Ld(Bi) - realizer
of Bi

At the end we have Lj, a linear
extension of P that equals Lj(Bi)
when restricted to Bi

This way we create
L1, L2, ..., Ld, which is a realizer
of P ∗, an extension of P
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Let I ⊆ Inc(P ) be the set of incomparable pairs in P that are not ”killed” by
L1, L2, ..., Ld.

Which means that (x, y) ∈ I is still is L1∩L2∩ ...∩Ld though we don’t want it

if I = ∅, we are done. Now we show that if it is not empty, we can find two
reversible sets R1, R2 ⊆ I s.t. R1 ∪R2 = I

This will end the proof, because we will be able to add two linear extensions of
P - Ld+1 and Ld+2 s.t. L1, L2, ..., Ld, Ld+1, Ld+2 will be a realizer of P
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Take any (x, y) ∈ I

L1 L2 Ld

x
x

x

x

x

y

y

y y

y

x and y cannot belong to one
block
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Consider all paths from x to y in cover graph. Let i be the smallest index s.t.
every path from x to y passes through Bi

Let u and v be articulation points through which these paths enter and leave Bi

x u

Bi

v y

Note: It can happen that x = u or y = v, incoming arguments still hold in these cases.
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Claim. u < v in P
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x
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(1) for all y′ ≥ x in P , y′ ∈ T (u,Bi) (this implies y′ < y in P ∗)

(2) for all x′ ≤ y in P , x′ ∈ T (v,Bi) (this implies x < x′ in P ∗)

If not:

x u

Bi

v y

y′

x′

So x ≤ y in P and (x, y) 6∈ I
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(1) for all y′ ≥ x in P , y′ ∈ T (u,Bi) (this implies y′ < y in P ∗)

(2) for all x′ ≤ y in P , x′ ∈ T (v,Bi) (this implies x < x′ in P ∗)
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Now we prove that R1 is reversible. Assume it is not, then it has an alternating cycle:

x1 x2 x3 xn
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Claim. At least one of the two following statements hold:

(1) for all y′ ≥ x in P , y′ ∈ T (u,Bi) (this implies y′ < y in P ∗)

(2) for all x′ ≤ y in P , x′ ∈ T (v,Bi) (this implies x < x′ in P ∗)

R1

R2

Now we prove that R1 is reversible. Assume it is not, then it has an alternating cycle:

x1 x2 x3 xn

y1 y2 y3 yn>P ∗ >P ∗ >P ∗ >P ∗>P ∗

End of proof �
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Using the Product Ramsey Theorem, authors prove that for any d ≥ 1 there are
posets Pd s.t. every block of Pd has dimension at most d, but dim(Pd) = d+2

Product Ramsey Theorem. For every 4-tuple (r, d, k,m) of positive integers
with m ≥ k, there is an integer n0 ≥ k s.t. if we have d set Xi and |Xi| ≥ n0

for every i = 1, 2, ..., d, then whenever we have a coloring φ which assigns to
each kd-grid g in X1 ×X2 × ...×Xd a color φ(g) from a set R of r colors,
then there is a color α ∈ R, and there are m-element subsets H1, ..., Hd of
X1, ..., Xd respectively, s. t. φ(g) = α for every kd grid in H1 × ...×Hd



Thank you!


