Dimension and cut vertices: an application of Ramsey theory

William T. Trotter, Bartosz Walczak and Ruidong Wang 2017

ory ong Wang

$$P = (X, \leq_P)$$

$$P = (X, \leq_P)$$

X - the ground set, or set of elements

- $P = (X, \leq_P)$
- X the ground set, or set of elements
- \leq_P reflexive, antisymmetric and transitive relation

$$P = (X, \leq_P)$$

- X the ground set, or set of elements
- \leq_P reflexive, antisymmetric and transitive relation $\leq_P \subset X \times X$

- $P = (X, \leq_P)$
- X the ground set, or set of elements
- \leq_P reflexive, antisymmetric and transitive relation $\leq_P \subset X \times X$

Intuition: posets are sets with some inequalities between elements

antichain

Set $\{L_1, L_2, ..., L_d\}$ of linear extensions of P such that

 $L_1 \cap L_2 \cap \ldots \cap L_d = P$

Set $\{L_1, L_2, ..., L_d\}$ of linear extensions of P such that $L_1 \cap L_2 \cap \ldots \cap L_d = P$

Definition. Dushnik-Miller dimension (or simply dimension) of poset P

Set $\{L_1, L_2, ..., L_d\}$ of linear extensions of P such that $L_1 \cap L_2 \cap \ldots \cap L_d = P$

Definition. Dushnik-Miller dimension (or simply dimension) of poset P The minimum possible size of realizer of P

Set $\{L_1, L_2, ..., L_d\}$ of linear extensions of P such that $L_1 \cap L_2 \cap \ldots \cap L_d = P$

Definition. Dushnik-Miller dimension (or simply dimension) of poset P The minimum possible size of realizer of PWe denote it by dim(P)

dim(P) is equal to minimum d such that there is an embedding $P \longrightarrow \mathbb{R}^d$

Computer science corner. What is the complexity of determining whether dimension is at most k?

Computer science corner. What is the complexity of determining whether dimension is at most k?

• P for $k \leq 2$ - reduction to recognition of transitively orientable graphs

Computer science corner. What is the complexity of determining whether dimension is at most k?

- P for $k \leq 2$ reduction to recognition of transitively orientable graphs
- NP-complete for $k \geq 3$ reduction from *chromatic number 3* [M. Yannakakis, 1982]

Standard example S_n

 $dim(S_n) = n$

Standard example S_n

$$\dim(S_n) = n$$

 $\{b_2, ..., b_n\}$

 a_1 (

 b_1 (

 L_1

 $\{a_2, ..., a_n\}$

$$dim(S_n) = n$$

This is the worst case. Generally for $|P| \ge 4$, $dim(P) \le |P|/2$

• cover graph is a forest $\implies dim(P) \leq 3$ (and this bound is best possible) [Moore, Trotter, 1977]

• cover graph is a forest $\implies dim(P) \leq 3$ (and this bound is best possible) [Moore, Trotter, 1977]

Idea: Maybe if cover graph is "sparse" in some measure, the dimension is always small?

• cover graph is a forest $\implies dim(P) \leq 3$ (and this bound is best possible) [Moore, Trotter, 1977]

Idea: Maybe if cover graph is "sparse" in some measure, the dimension is always small?

Kelly's example. Posets with planar diagrams and arbitrarily large dimension.

Then maybe something stronger?

Then maybe something stronger?

• cover graph is outerplanar $\implies dim(P) \le 4$ (and the bound is best possible) [Felsner, Trotter, Wiechert, 2015]

Then maybe something stronger?

• cover graph is outerplanar $\implies dim(P) \le 4$ (and the bound is best possible) [Felsner, Trotter, Wiechert, 2015]

dim(P) = 4 for $n \ge 17$

What about other sparsity measures? Maybe tree-width?

What about other sparsity measures? Maybe tree-width?

• cover graph has tree-width at most 2 \implies $dim(P) \le 1276$ [Joret, Micek, Trotter, Wang, Wiechert, 2014]

What about other sparsity measures? Maybe tree-width?

- cover graph has tree-width at most 2 $\implies dim(P) \le \frac{1276}{1276}$ [Joret, Micek, Trotter, Wang, Wiechert, 2014]
- cover graph has tree-width at most $2 \implies dim(P) \le 12$ [Seweryn, 2020]

• There is a function $f: \mathbb{N} \longrightarrow \mathbb{N}$ such that if $height(P) \leq h$ and P has planar cover graph, then

 $\dim(P) \le f(h)$

[Streib, Trotter, 2014]

• There is a function $f: \mathbb{N} \longrightarrow \mathbb{N}$ such that if $height(P) \leq h$ and P has planar cover graph, then

$$\dim(P) \le f(h) \qquad f$$

[Streib, Trotter, 2014]

 $f = \mathcal{O}(4^{h^3})$

• There is a function $f: \mathbb{N} \longrightarrow \mathbb{N}$ such that if $height(P) \leq h$ and P has planar cover graph, then

$$\dim(P) \le f(h) \qquad f$$

[Streib, Trotter, 2014]

• There is a function $f: \mathbb{N}^2 \longrightarrow \mathbb{N}$ such that if $height(P) \leq h$ and tree-width < t, then

$$\dim(P) \le f(h,t)$$

[Joret, Micek, Milans, Trotter, Walczak, Wang, 2016]

 $f = \mathcal{O}(4^{h^3})$

• There is a function $f: \mathbb{N}^2 \longrightarrow \mathbb{N}$ such that if $height(P) \leq h$ and cover graph does not contain K_t as a minor, then

$$\dim(P) \le f(h,t)$$

[Walczak, 2017]

• There is a function $f: \mathbb{N}^2 \longrightarrow \mathbb{N}$ such that if $height(P) \leq h$ and cover graph does not contain K_t as a minor, then

$$\dim(P) \le f(h,t)$$

[Walczak, 2017]

Now let's move to our today's topic...

removed.

Definition. An *articulation point* is a vertex that disconnects the graph when

removed.

Definition. An *articulation point* is a vertex that disconnects the graph when

removed.

Definition. A *block* in a graph G, is a maximal induced 2-vertex-connected subgraph $H \subseteq G$.

Definition. An *articulation point* is a vertex that disconnects the graph when

Definition. An *articulation point* is a vertex that disconnects the graph when

Definition. A *block* in a graph G, is a maximal induced 2-vertex-connected subgraph $H \subseteq G$.

We say that $R \subseteq Inc(P)$ is reversible, if there is a linear extension L of P s.t. for every $(x, y) \in R$ we have $x \leq y$ in L.

We say that $R \subseteq Inc(P)$ is reversible, if there is a linear extension L of P s.t. for every $(x, y) \in R$ we have $x \leq y$ in L.

Observation. dim(P) is the minimum number d s.t. there exist d reversible sets $R_1 \cup R_2 \cup \ldots \cup R_d = Inc(P)$.

We say that $R \subseteq Inc(P)$ is reversible, if there is a linear extension L of P s.t. for every $(x, y) \in R$ we have $x \leq y$ in L.

Observation. dim(P) is the minimum number d s.t. there exist d reversible sets $R_1 \cup R_2 \cup \ldots \cup R_d = Inc(P)$.

Useful fact. R is reversible $\iff R$ does not contain *alternating cycle*.

alternating cycle on incomparable pairs $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$

Main theorem of the article

Main theorem of the article

For every $d \ge 1$, if P is a poset and every block in P has dimension at most d, the the dimension of P is at most d+2. Futhermore, this inequality is best possible.

[Trotter, Walczak, Wang, 2017]

Main theorem of the article

For every $d \ge 1$, if P is a poset and every block in P has dimension at most d, the the dimension of P is at most d+2. Futhermore, this inequality is best possible.

[Trotter, Walczak, Wang, 2017]

Proof sketch:

Let's define a tool we will be using: the merge rule

w separates subposets P^\prime and $P^{\prime\prime}$

w separates subposets P' and P''

[A < w < B] and [C < w < D] are linear extensions of P' and P''

w separates subposets P' and P''

[A < w < B] and [C < w < D] are linear extensions of P' and P''

[A < C < w < D < B] is a linear extension of $P' \cup P''$ is equal to respective "old" extensions when

$dim(B_i) \le d$ *t* - number of blocks

 $dim(B_i) \le d$ t - number of blocks

tail of u relative to B_i $T(u, B_i)$ for $u \in B_i$ $T(u, B_i) \subseteq \{u\} \cup B_{i+1} \cup ... \cup B_t$ $T(u, B_i)$ is the set of vertices from which you must go through u to reach B_i

$L_1(B_i), L_2(B_i), ..., L_d(B_i)$ - realizer of B_i

 $L_1(B_i), L_2(B_i), ..., L_d(B_i)$ - realizer of B_i

Fix j and take $L_j(B_1), L_j(B_2), ..., L_j(B_t)$

$$L_1(B_i), L_2(B_i), ..., L_d(B_i)$$
 - realize of B_i

Fix j and take $L_j(B_1), L_j(B_2), ..., L_j(B_t)$

Iteratively construct linear extensions M_i of $P_i = B_1 \cup B_2 \cup ... \cup B_i$ using merge rule, starting from $M_1 = L_j(B_1)$

$$L_1(B_i), L_2(B_i), ..., L_d(B_i)$$
 - realized of B_i

Fix j and take $L_j(B_1), L_j(B_2), ..., L_j(B_t)$

Iteratively construct linear extensions M_i of $P_i = B_1 \cup B_2 \cup ... \cup B_i$ using merge rule, starting from $M_1 = L_j(B_1)$

$$L_1(B_i), L_2(B_i), ..., L_d(B_i)$$
 - realized of B_i

Fix j and take $L_j(B_1), L_j(B_2), ..., L_j(B_t)$

Iteratively construct linear extensions M_i of $P_i = B_1 \cup B_2 \cup ... \cup B_i$ using merge rule, starting from $M_1 = L_j(B_1)$

$$L_1(B_i), L_2(B_i), ..., L_d(B_i)$$
 - realizer of B_i

Fix j and take $L_j(B_1), L_j(B_2), ..., L_j(B_t)$

Iteratively construct linear extensions M_i of $P_i = B_1 \cup B_2 \cup ... \cup B_i$ using merge rule, starting from $M_1 = L_j(B_1)$

linear extension of $P_4 = B_1 \cup \ldots \cup B_4$

$$\rho(B_4)$$

 $L_1(B_i), L_2(B_i), ..., L_d(B_i)$ - realizer of B_i

At the end we have L_j , a linear extension of P that equals $L_j(B_i)$ when restricted to B_i

 $L_1(B_i), L_2(B_i), ..., L_d(B_i)$ - realizer of B_i

At the end we have L_j , a linear extension of P that equals $L_j(B_i)$ when restricted to B_i

This way we create $L_1, L_2, ..., L_d$, which is a realizer of P^* , an extension of P

Let $I \subseteq Inc(P)$ be the set of incomparable pairs in P that are not "killed" by $L_1, L_2, ..., L_d$.

Let $I \subseteq Inc(P)$ be the set of incomparable pairs in P that are not "killed" by $L_1, L_2, ..., L_d$.

Which means that $(x, y) \in I$ is still is $L_1 \cap L_2 \cap \ldots \cap L_d$ though we don't want it

Let $I \subseteq Inc(P)$ be the set of incomparable pairs in P that are not "killed" by $L_1, L_2, ..., L_d$.

Which means that $(x, y) \in I$ is still is $L_1 \cap L_2 \cap \ldots \cap L_d$ though we don't want it

if $I = \emptyset$, we are done. Now we show that if it is not empty, we can find two reversible sets $R_1, R_2 \subseteq I$ s.t. $R_1 \cup R_2 = I$

Let $I \subseteq Inc(P)$ be the set of incomparable pairs in P that are not "killed" by $L_1, L_2, ..., L_d$.

Which means that $(x, y) \in I$ is still is $L_1 \cap L_2 \cap \ldots \cap L_d$ though we don't want it

if $I = \emptyset$, we are done. Now we show that if it is not empty, we can find two reversible sets $R_1, R_2 \subseteq I$ s.t. $R_1 \cup R_2 = I$

This will end the proof, because we will be able to add two linear extensions of $P - L_{d+1}$ and L_{d+2} s.t. $L_1, L_2, \dots, L_d, L_{d+1}, L_{d+2}$ will be a realizer of P

Interval property for tails. Tails form intervals in L_j for all $1 \le j \le d$

Interval property for tails. Tails form intervals in L_j for all $1 \le j \le d$

 L_d

Take any $(x, y) \in I$

\boldsymbol{x} and \boldsymbol{y} cannot belong to one

Let u and v be articulation points through which these paths enter and leave B_i

Let u and v be articulation points through which these paths enter and leave B_i

Let u and v be articulation points through which these paths enter and leave B_i

Note: It can happen that x = u or y = v, incoming arguments still hold in these cases.

Claim. $x \in T(u, B_i)$, $y \notin T(u, B_i)$, $y \in T(v, B_i)$, $x \notin T(v, B_i)$

Claim. $x \in T(u, B_i)$, $y \notin T(u, B_i)$, $y \in T(v, B_i)$, $x \notin T(v, B_i)$ Claim. $T(u, B_i) \cap T(v, B_i) = \emptyset$

Claim. $x \in T(u, B_i)$, $y \notin T(u, B_i)$, $y \in T(v, B_i)$, $x \notin T(v, B_i)$ Claim. $T(u, B_i) \cap T(v, B_i) = \emptyset$

Claim. u < v in P

Claim. $x \in T(u, B_i), y \notin T(u, B_i), y \in T(v, B_i), x \notin T(v, B_i)$ Claim. $T(u, B_i) \cap T(v, B_i) = \emptyset$

Claim. u < v in P

$T(v, B_i)$

 $T(u, B_i)$

Now we prove that R_1 is reversible. Assume it is not, then it has an alternating cycle:

Now we prove that R_1 is reversible. Assume it is not, then it has an alternating cycle:

Now we prove that R_1 is reversible. Assume it is not, then it has an alternating cycle:

Now we prove that R_1 is reversible. Assume it is not, then it has an alternating cycle:

Now we prove that R_1 is reversible. Assume it is not, then it has an alternating cycle:

Using the *Product Ramsey Theorem*, authors prove that for any $d \ge 1$ there are posets P_d s.t. every block of P_d has dimension at most d, but $dim(P_d) = d + 2$

Using the *Product Ramsey Theorem*, authors prove that for any $d \ge 1$ there are posets P_d s.t. every block of P_d has dimension at most d, but $dim(P_d) = d + 2$

Product Ramsey Theorem. For every 4-tuple (r, d, k, m) of positive integers with $m \geq k$, there is an integer $n_0 \geq k$ s.t. if we have d set X_i and $|X_i| \geq n_0$ for every i = 1, 2, ..., d, then whenever we have a coloring ϕ which assigns to each k^d -grid g in $X_1 \times X_2 \times \ldots \times X_d$ a color $\phi(g)$ from a set R of r colors, then there is a color $\alpha \in R$, and there are *m*-element subsets H_1, \ldots, H_d of X_1, \ldots, X_d respectively, s. t. $\phi(g) = \alpha$ for every k^d grid in $H_1 \times \ldots \times H_d$

Thank you!