Dimension and cut vertices: an application of Ramsey theory

William T. Trotter, Bartosz Walczak and Ruidong Wang

Definition. Partially ordered set (poset)

Definition. Partially ordered set (poset)

$$
P=\left(X, \leq_{P}\right)
$$

Definition. Partially ordered set (poset)

$$
P=\left(X, \leq_{P}\right)
$$

X - the ground set, or set of elements

Definition. Partially ordered set (poset)

$P=\left(X, \leq_{P}\right)$
X - the ground set, or set of elements
\leq_{P} - reflexive, antisymmetric and transitive relation

Definition. Partially ordered set (poset)

$$
P=\left(X, \leq_{P}\right)
$$

X - the ground set, or set of elements
\leq_{P} - reflexive, antisymmetric and transitive relation

$$
\leq_{P} \subset X \times X
$$

Definition. Partially ordered set (poset)

$P=\left(X, \leq_{P}\right)$
X - the ground set, or set of elements
\leq_{P} - reflexive, antisymmetric and transitive relation

$$
\leq_{P} \subset X \times X
$$

Intuition: posets are sets with some inequalities between elements
8

chain

chain

Definition. Linear extension of poset P

Definition. Linear extension of poset P
Chain that extends P

Definition. Linear extension of poset P
Chain that extends P

Definition. Linear extension of poset P

Chain that extends P

Definition. Linear extension of poset P

Chain that extends P

Definition. Realizer of poset P

Definition. Realizer of poset P
Set $\left\{L_{1}, L_{2}, \ldots, L_{d}\right\}$ of linear extensions of P such that

$$
L_{1} \cap L_{2} \cap \ldots \cap L_{d}=P
$$

Definition. Realizer of poset P
Set $\left\{L_{1}, L_{2}, \ldots, L_{d}\right\}$ of linear extensions of P such that

$$
L_{1} \cap L_{2} \cap \ldots \cap L_{d}=P
$$

Definition. Dushnik-Miller dimension (or simply dimension) of poset P

Definition. Realizer of poset P
Set $\left\{L_{1}, L_{2}, \ldots, L_{d}\right\}$ of linear extensions of P such that

$$
L_{1} \cap L_{2} \cap \ldots \cap L_{d}=P
$$

Definition. Dushnik-Miller dimension (or simply dimension) of poset P
The minimum possible size of realizer of P

Definition. Realizer of poset P
Set $\left\{L_{1}, L_{2}, \ldots, L_{d}\right\}$ of linear extensions of P such that

$$
L_{1} \cap L_{2} \cap \ldots \cap L_{d}=P
$$

Definition. Dushnik-Miller dimension (or simply dimension) of poset P
The minimum possible size of realizer of P
We denote it by $\operatorname{dim}(P)$
$\operatorname{dim}(P)$ is equal to minimum d such that there is an embedding $P \longrightarrow \mathbb{R}^{d}$
$\operatorname{dim}(P)$ is equal to minimum d such that there is an embedding $P \longrightarrow \mathbb{R}^{d}$

$$
f: x \longrightarrow\left(x_{1}, x_{2}, \ldots, x_{d}\right) \text { s.t. } x \leq_{P} y \Longleftrightarrow\left(x_{1} \leq y_{1}\right) \wedge\left(x_{2} \leq y_{2}\right) \wedge \ldots \wedge\left(x_{d} \leq y_{d}\right)
$$

$\operatorname{dim}(P)$ is equal to minimum d such that there is an embedding $P \longrightarrow \mathbb{R}^{d}$

$$
f: x \longrightarrow\left(x_{1}, x_{2}, \ldots, x_{d}\right) \text { s.t. } x \leq_{P} y \Longleftrightarrow\left(x_{1} \leq y_{1}\right) \wedge\left(x_{2} \leq y_{2}\right) \wedge \ldots \wedge\left(x_{d} \leq y_{d}\right)
$$

$$
\begin{aligned}
& (1,3),(1,5),(1,2),(3,5), \\
& (2,5),(6,2),(6,4)
\end{aligned}
$$

Computer science corner. What is the complexity of determining whether dimension is at most k ?

Computer science corner. What is the complexity of determining whether dimension is at most k ?

- P for $k \leq 2$ - reduction to recognition of transitively orientable graphs

Computer science corner. What is the complexity of determining whether dimension is at most k ?

- P for $k \leq 2$ - reduction to recognition of transitively orientable graphs
- NP-complete for $k \geq 3$ - reduction from chromatic number 3 [M. Yannakakis, 1982]

Problem. How big can dimension be?

Problem. How big can dimension be?

Problem. How big can dimension be?

Standard example S_{n}

$$
\operatorname{dim}\left(S_{n}\right)=n
$$

Problem. How big can dimension be?

$$
\operatorname{dim}\left(S_{n}\right)=n
$$

Problem. How big can dimension be?

Standard example S_{n}

$$
\operatorname{dim}\left(S_{n}\right)=n
$$

This is the worst case. Generally for $|P| \geq 4, \operatorname{dim}(P) \leq|P| / 2$

Problem. What makes the dimension large?

Problem. What makes the dimension large?

- cover graph is a forest $\Longrightarrow \operatorname{dim}(P) \leq 3$ (and this bound is best possible) [Moore, Trotter, 1977]

Problem. What makes the dimension large?

- cover graph is a forest $\Longrightarrow \operatorname{dim}(P) \leq 3$ (and this bound is best possible) [Moore, Trotter, 1977]

Idea: Maybe if cover graph is "sparse" in some measure, the dimension is always small?

Problem. What makes the dimension large?

- cover graph is a forest $\Longrightarrow \operatorname{dim}(P) \leq 3$ (and this bound is best possible) [Moore, Trotter, 1977]

Idea: Maybe if cover graph is "sparse" in some measure, the dimension is always small?

Kelly's example. Posets with planar diagrams and arbitrarily large dimension.

Then maybe something stronger?

Then maybe something stronger?

- cover graph is outerplanar $\Longrightarrow \operatorname{dim}(P) \leq 4$ (and the bound is best possible) [Felsner, Trotter, Wiechert, 2015]

Then maybe something stronger?

- cover graph is outerplanar $\Longrightarrow \operatorname{dim}(P) \leq 4$ (and the bound is best possible) [Felsner, Trotter, Wiechert, 2015]

$$
\operatorname{dim}(P)=4 \text { for } n \geq 17
$$

What about other sparsity measures? Maybe tree-width?

What about other sparsity measures? Maybe tree-width?

- cover graph has tree-width at most $2 \Longrightarrow \operatorname{dim}(P) \leq 1276$ [Joret, Micek, Trotter, Wang, Wiechert, 2014]

What about other sparsity measures? Maybe tree-width?

- cover graph has tree-width at most $2 \Longrightarrow \operatorname{dim}(P) \leq 1276$ [Joret, Micek, Trotter, Wang, Wiechert, 2014]
- cover graph has tree-width at most $2 \Longrightarrow \operatorname{dim}(P) \leq 12$ [Seweryn, 2020]

Alright. What about... height?

Alright. What about... height?

- There is a function $f: \mathbb{N} \longrightarrow \mathbb{N}$ such that if height $(P) \leq h$ and P has planar cover graph, then

$$
\operatorname{dim}(P) \leq f(h)
$$

[Streib, Trotter, 2014]

Alright. What about... height?

- There is a function $f: \mathbb{N} \longrightarrow \mathbb{N}$ such that if height $(P) \leq h$ and P has planar cover graph, then

$$
\operatorname{dim}(P) \leq f(h) \quad f=\mathcal{O}\left(4^{h^{3}}\right)
$$

[Streib, Trotter, 2014]

Alright. What about... height?

- There is a function $f: \mathbb{N} \longrightarrow \mathbb{N}$ such that if height $(P) \leq h$ and P has planar cover graph, then

$$
\operatorname{dim}(P) \leq f(h) \quad f=\mathcal{O}\left(4^{h^{3}}\right)
$$

[Streib, Trotter, 2014]

- There is a function $f: \mathbb{N}^{2} \longrightarrow \mathbb{N}$ such that if $\operatorname{height}(P) \leq h$ and tree-width $\leq t$, then

$$
\operatorname{dim}(P) \leq f(h, t)
$$

[Joret, Micek, Milans, Trotter, Walczak, Wang, 2016]

- There is a function $f: \mathbb{N}^{2} \longrightarrow \mathbb{N}$ such that if $\operatorname{height}(P) \leq h$ and cover graph does not contain K_{t} as a minor, then

$$
\operatorname{dim}(P) \leq f(h, t)
$$

[Walczak, 2017]

- There is a function $f: \mathbb{N}^{2} \longrightarrow \mathbb{N}$ such that if $\operatorname{height}(P) \leq h$ and cover graph does not contain K_{t} as a minor, then

$$
\operatorname{dim}(P) \leq f(h, t)
$$

[Walczak, 2017]

Now let's move to our today's topic...

Definition. An articulation point is a vertex that disconnects the graph when removed.

Definition. An articulation point is a vertex that disconnects the graph when removed.

Definition. An articulation point is a vertex that disconnects the graph when removed.
Definition. A block in a graph G, is a maximal induced 2-vertex-connected subgraph $H \subseteq G$.

Definition. An articulation point is a vertex that disconnects the graph when removed.
Definition. A block in a graph G, is a maximal induced 2-vertex-connected subgraph $H \subseteq G$.

Let $\operatorname{Inc}(P)$ be the set of incomparable pairs (ordered!) of elements in P.

Let $\operatorname{Inc}(P)$ be the set of incomparable pairs (ordered!) of elements in P.

We say that $R \subseteq \operatorname{Inc}(P)$ is reversible, if there is a linear extension L of P s.t. for every $(x, y) \in R$ we have $x \leq y$ in L.

Let $\operatorname{Inc}(P)$ be the set of incomparable pairs (ordered!) of elements in P.

We say that $R \subseteq \operatorname{Inc}(P)$ is reversible, if there is a linear extension L of P s.t. for every $(x, y) \in R$ we have $x \leq y$ in L.

Observation. $\operatorname{dim}(P)$ is the minimum number d s.t. there exist d reversible sets $R_{1} \cup R_{2} \cup \ldots \cup R_{d}=\operatorname{Inc}(P)$.

Let $\operatorname{Inc}(P)$ be the set of incomparable pairs (ordered!) of elements in P.

We say that $R \subseteq \operatorname{Inc}(P)$ is reversible, if there is a linear extension L of P s.t. for every $(x, y) \in R$ we have $x \leq y$ in L.

Observation. $\operatorname{dim}(P)$ is the minimum number d s.t. there exist d reversible sets $R_{1} \cup R_{2} \cup \ldots \cup R_{d}=\operatorname{Inc}(P)$.

Useful fact. R is reversible $\Longleftrightarrow R$ does not contain alternating cycle.

alternating cycle on incomparable pairs $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$

Main theorem of the article

Main theorem of the article
For every $d \geq 1$, if P is a poset and every block in P has dimension at most d, the the dimension of P is at most $d+2$. Futhermore, this inequality is best possible.
[Trotter, Walczak, Wang, 2017]

Main theorem of the article
For every $d \geq 1$, if P is a poset and every block in P has dimension at most d, the the dimension of P is at most $d+2$. Futhermore, this inequality is best possible.
[Trotter, Walczak, Wang, 2017]

Proof sketch:

Let's define a tool we will be using: the merge rule

Let's define a tool we will be using: the merge rule

Let's define a tool we will be using: the merge rule

Let's define a tool we will be using: the merge rule

Let's define a tool we will be using: the merge rule

$\operatorname{dim}\left(B_{i}\right) \leq d$
t - number of blocks

$\operatorname{dim}\left(B_{i}\right) \leq d$
t - number of blocks

$$
\text { root of } B_{i}-\rho\left(B_{i}\right)
$$

B_{5}
$\operatorname{dim}\left(B_{i}\right) \leq d$
t - number of blocks
tail of u relative to B_{i}
$T\left(u, B_{i}\right)$ for $u \in B_{i}$
$T\left(u, B_{i}\right) \subseteq\{u\} \cup B_{i+1} \cup \ldots \cup B_{t}$
$T\left(u, B_{i}\right)$ is the set of vertices from which you must go through u to reach B_{i}

$L_{1}\left(B_{i}\right), L_{2}\left(B_{i}\right), \ldots, L_{d}\left(B_{i}\right)$ - realizer of B_{i}

$L_{1}\left(B_{i}\right), L_{2}\left(B_{i}\right), \ldots, L_{d}\left(B_{i}\right)$ - realizer of B_{i}

Fix j and take

$$
L_{j}\left(B_{1}\right), L_{j}\left(B_{2}\right), \ldots, L_{j}\left(B_{t}\right)
$$

$L_{1}\left(B_{i}\right), L_{2}\left(B_{i}\right), \ldots, L_{d}\left(B_{i}\right)$ - realizer of B_{i}

Fix j and take

$$
L_{j}\left(B_{1}\right), L_{j}\left(B_{2}\right), \ldots, L_{j}\left(B_{t}\right)
$$

Iteratively construct linear extensions M_{i} of $P_{i}=B_{1} \cup B_{2} \cup \ldots \cup B_{i}$ using merge rule, starting from $M_{1}=L_{j}\left(B_{1}\right)$

$L_{1}\left(B_{i}\right), L_{2}\left(B_{i}\right), \ldots, L_{d}\left(B_{i}\right)$ - realizer of B_{i}

Fix j and take

$$
L_{j}\left(B_{1}\right), L_{j}\left(B_{2}\right), \ldots, L_{j}\left(B_{t}\right)
$$

Iteratively construct linear extensions M_{i} of $P_{i}=B_{1} \cup B_{2} \cup \ldots \cup B_{i}$ using merge rule, starting from $M_{1}=L_{j}\left(B_{1}\right)$

$L_{1}\left(B_{i}\right), L_{2}\left(B_{i}\right), \ldots, L_{d}\left(B_{i}\right)$ - realizer of B_{i}

Fix j and take

$$
L_{j}\left(B_{1}\right), L_{j}\left(B_{2}\right), \ldots, L_{j}\left(B_{t}\right)
$$

Iteratively construct linear extensions M_{i} of $P_{i}=B_{1} \cup B_{2} \cup \ldots \cup B_{i}$ using merge rule, starting from $M_{1}=L_{j}\left(B_{1}\right)$
$L_{1}\left(B_{i}\right), L_{2}\left(B_{i}\right), \ldots, L_{d}\left(B_{i}\right)$ - realizer of B_{i}

Fix j and take

$$
L_{j}\left(B_{1}\right), L_{j}\left(B_{2}\right), \ldots, L_{j}\left(B_{t}\right)
$$

Iteratively construct linear extensions M_{i} of
$P_{i}=B_{1} \cup B_{2} \cup \ldots \cup B_{i}$ using merge rule, starting from $M_{1}=L_{j}\left(B_{1}\right)$

$$
\begin{aligned}
& L_{1}\left(B_{i}\right), L_{2}\left(B_{i}\right), \ldots, L_{d}\left(B_{i}\right) \text { - realizer } \\
& \text { of } B_{i}
\end{aligned}
$$

linear extension of $P_{4}=B_{1} \cup \ldots \cup B_{4}$

$L_{1}\left(B_{i}\right), L_{2}\left(B_{i}\right), \ldots, L_{d}\left(B_{i}\right)$ - realizer of B_{i}

At the end we have L_{j}, a linear extension of P that equals $L_{j}\left(B_{i}\right)$ when restricted to B_{i}

$L_{1}\left(B_{i}\right), L_{2}\left(B_{i}\right), \ldots, L_{d}\left(B_{i}\right)$ - realizer of B_{i}

At the end we have L_{j}, a linear extension of P that equals $L_{j}\left(B_{i}\right)$ when restricted to B_{i}

This way we create $L_{1}, L_{2}, \ldots, L_{d}$, which is a realizer of P^{*}, an extension of P

Let $I \subseteq \operatorname{Inc}(P)$ be the set of incomparable pairs in P that are not "killed" by $L_{1}, L_{2}, \ldots, L_{d}$.

Let $I \subseteq \operatorname{Inc}(P)$ be the set of incomparable pairs in P that are not "killed" by $L_{1}, L_{2}, \ldots, L_{d}$.

Which means that $(x, y) \in I$ is still is $L_{1} \cap L_{2} \cap \ldots \cap L_{d}$ though we don't want it

Let $I \subseteq \operatorname{Inc}(P)$ be the set of incomparable pairs in P that are not "killed" by $L_{1}, L_{2}, \ldots, L_{d}$.

Which means that $(x, y) \in I$ is still is $L_{1} \cap L_{2} \cap \ldots \cap L_{d}$ though we don't want it
if $I=\emptyset$, we are done. Now we show that if it is not empty, we can find two reversible sets $R_{1}, R_{2} \subseteq I$ s.t. $R_{1} \cup R_{2}=I$

Let $I \subseteq \operatorname{Inc}(P)$ be the set of incomparable pairs in P that are not "killed" by $L_{1}, L_{2}, \ldots, L_{d}$.

Which means that $(x, y) \in I$ is still is $L_{1} \cap L_{2} \cap \ldots \cap L_{d}$ though we don't want it
if $I=\emptyset$, we are done. Now we show that if it is not empty, we can find two reversible sets $R_{1}, R_{2} \subseteq I$ s.t. $R_{1} \cup R_{2}=I$

This will end the proof, because we will be able to add two linear extensions of $P-L_{d+1}$ and L_{d+2} s.t. $L_{1}, L_{2}, \ldots, L_{d}, L_{d+1}, L_{d+2}$ will be a realizer of P

Interval property for tails. Tails form intervals in L_{j} for all $1 \leq j \leq d$

Interval property for tails. Tails form intervals in L_{j} for all $1 \leq j \leq d$

Take any $(x, y) \in I$

Take any $(x, y) \in I$

L_{1}	L_{2}			L_{d}

Take any $(x, y) \in I$

Consider all paths from x to y in cover graph. Let i be the smallest index s.t. every path from x to y passes through B_{i}

Consider all paths from x to y in cover graph. Let i be the smallest index s.t. every path from x to y passes through B_{i}

Let u and v be articulation points through which these paths enter and leave B_{i}

Consider all paths from x to y in cover graph. Let i be the smallest index s.t. every path from x to y passes through B_{i}

Let u and v be articulation points through which these paths enter and leave B_{i}

Consider all paths from x to y in cover graph. Let i be the smallest index s.t. every path from x to y passes through B_{i}

Let u and v be articulation points through which these paths enter and leave B_{i}

Note: It can happen that $x=u$ or $y=v$, incoming arguments still hold in these cases.

Claim. $x \in T\left(u, B_{i}\right), y \notin T\left(u, B_{i}\right), y \in T\left(v, B_{i}\right), x \notin T\left(v, B_{i}\right)$

Claim. $x \in T\left(u, B_{i}\right), y \notin T\left(u, B_{i}\right), y \in T\left(v, B_{i}\right), x \notin T\left(v, B_{i}\right)$
Claim. $T\left(u, B_{i}\right) \cap T\left(v, B_{i}\right)=\emptyset$

Claim. $x \in T\left(u, B_{i}\right), y \notin T\left(u, B_{i}\right), y \in T\left(v, B_{i}\right), x \notin T\left(v, B_{i}\right)$
Claim. $T\left(u, B_{i}\right) \cap T\left(v, B_{i}\right)=\emptyset$
Claim. $u<v$ in P

Claim. $x \in T\left(u, B_{i}\right), y \notin T\left(u, B_{i}\right), y \in T\left(v, B_{i}\right), x \notin T\left(v, B_{i}\right)$
Claim. $T\left(u, B_{i}\right) \cap T\left(v, B_{i}\right)=\emptyset$
Claim. $u<v$ in P

L_{1}

L_{2}

L_{d}

Claim. At least one of the two following statements hold:
(1) for all $y^{\prime} \geq x$ in $P, y^{\prime} \in T\left(u, B_{i}\right)$ (this implies $y^{\prime}<y$ in P^{*})
(2) for all $x^{\prime} \leq y$ in $P, x^{\prime} \in T\left(v, B_{i}\right)$ (this implies $x<x^{\prime}$ in P^{*})

Claim. At least one of the two following statements hold:
(1) for all $y^{\prime} \geq x$ in $P, y^{\prime} \in T\left(u, B_{i}\right)$ (this implies $y^{\prime}<y$ in P^{*})
(2) for all $x^{\prime} \leq y$ in $P, x^{\prime} \in T\left(v, B_{i}\right)$ (this implies $x<x^{\prime}$ in P^{*}) If not:

Claim. At least one of the two following statements hold:
(1) for all $y^{\prime} \geq x$ in $P, y^{\prime} \in T\left(u, B_{i}\right)$ (this implies $y^{\prime}<y$ in P^{*})
(2) for all $x^{\prime} \leq y$ in $P, x^{\prime} \in T\left(v, B_{i}\right)$ (this implies $x<x^{\prime}$ in P^{*})

If not:
x

Claim. At least one of the two following statements hold:
(1) for all $y^{\prime} \geq x$ in $P, y^{\prime} \in T\left(u, B_{i}\right)$ (this implies $y^{\prime}<y$ in P^{*})
(2) for all $x^{\prime} \leq y$ in $P, x^{\prime} \in T\left(v, B_{i}\right)$ (this implies $x<x^{\prime}$ in P^{*}) If not:

y

Claim. At least one of the two following statements hold:
(1) for all $y^{\prime} \geq x$ in $P, y^{\prime} \in T\left(u, B_{i}\right)$ (this implies $y^{\prime}<y$ in P^{*})
(2) for all $x^{\prime} \leq y$ in $P, x^{\prime} \in T\left(v, B_{i}\right)$ (this implies $x<x^{\prime}$ in P^{*}) If not:

Claim. At least one of the two following statements hold:
(1) for all $y^{\prime} \geq x$ in $P, y^{\prime} \in T\left(u, B_{i}\right)$ (this implies $y^{\prime}<y$ in P^{*})
(2) for all $x^{\prime} \leq y$ in $P, x^{\prime} \in T\left(v, B_{i}\right)$ (this implies $x<x^{\prime}$ in P^{*}) If not:

Claim. At least one of the two following statements hold:
(1) for all $y^{\prime} \geq x$ in $P, y^{\prime} \in T\left(u, B_{i}\right)$ (this implies $y^{\prime}<y$ in P^{*})
(2) for all $x^{\prime} \leq y$ in $P, x^{\prime} \in T\left(v, B_{i}\right)$ (this implies $x<x^{\prime}$ in P^{*})

If not:

Claim. At least one of the two following statements hold:
(1) for all $y^{\prime} \geq x$ in $P, y^{\prime} \in T\left(u, B_{i}\right)$ (this implies $y^{\prime}<y$ in $\left.P^{*}\right) \quad R_{1}$
(2) for all $x^{\prime} \leq y$ in $P, x^{\prime} \in T\left(v, B_{i}\right)$ (this implies $x<x^{\prime}$ in P^{*}) $\quad R_{2}$

Claim. At least one of the two following statements hold:
(1) for all $y^{\prime} \geq x$ in $P, y^{\prime} \in T\left(u, B_{i}\right)$ (this implies $y^{\prime}<y$ in P^{*}) $\quad R_{1}$
(2) for all $x^{\prime} \leq y$ in $P, x^{\prime} \in T\left(v, B_{i}\right)$ (this implies $x<x^{\prime}$ in P^{*}) $\quad R_{2}$

Now we prove that R_{1} is reversible. Assume it is not, then it has an alternating cycle:

Claim. At least one of the two following statements hold:
(1) for all $y^{\prime} \geq x$ in $P, y^{\prime} \in T\left(u, B_{i}\right)$ (this implies $y^{\prime}<y$ in $\left.P^{*}\right) \quad R_{1}$
(2) for all $x^{\prime} \leq y$ in $P, x^{\prime} \in T\left(v, B_{i}\right)$ (this implies $x<x^{\prime}$ in P^{*}) $\quad R_{2}$

Now we prove that R_{1} is reversible. Assume it is not, then it has an alternating cycle:

Claim. At least one of the two following statements hold:
(1) for all $y^{\prime} \geq x$ in $P, y^{\prime} \in T\left(u, B_{i}\right)$ (this implies $y^{\prime}<y$ in $\left.P^{*}\right) \quad R_{1}$
(2) for all $x^{\prime} \leq y$ in $P, x^{\prime} \in T\left(v, B_{i}\right)$ (this implies $x<x^{\prime}$ in P^{*}) $\quad R_{2}$

Now we prove that R_{1} is reversible. Assume it is not, then it has an alternating cycle:

Claim. At least one of the two following statements hold:
(1) for all $y^{\prime} \geq x$ in $P, y^{\prime} \in T\left(u, B_{i}\right)$ (this implies $y^{\prime}<y$ in $\left.P^{*}\right) \quad R_{1}$
(2) for all $x^{\prime} \leq y$ in $P, x^{\prime} \in T\left(v, B_{i}\right)$ (this implies $x<x^{\prime}$ in P^{*}) $\quad R_{2}$

Now we prove that R_{1} is reversible. Assume it is not, then it has an alternating cycle:

Claim. At least one of the two following statements hold:
(1) for all $y^{\prime} \geq x$ in $P, y^{\prime} \in T\left(u, B_{i}\right)$ (this implies $y^{\prime}<y$ in $\left.P^{*}\right) \quad R_{1}$
(2) for all $x^{\prime} \leq y$ in $P, x^{\prime} \in T\left(v, B_{i}\right)$ (this implies $x<x^{\prime}$ in P^{*}) $\quad R_{2}$

Now we prove that R_{1} is reversible. Assume it is not, then it has an alternating cycle:

Using the Product Ramsey Theorem, authors prove that for any $d \geq 1$ there are posets P_{d} s.t. every block of P_{d} has dimension at most d, but $\operatorname{dim}\left(P_{d}\right)=d+2$

Using the Product Ramsey Theorem, authors prove that for any $d \geq 1$ there are posets P_{d} s.t. every block of P_{d} has dimension at most d, but $\operatorname{dim}\left(P_{d}\right)=d+2$

Product Ramsey Theorem. For every 4-tuple (r, d, k, m) of positive integers with $m \geq k$, there is an integer $n_{0} \geq k$ s.t. if we have d set X_{i} and $\left|X_{i}\right| \geq n_{0}$ for every $i=1,2, \ldots, d$, then whenever we have a coloring ϕ which assigns to each k^{d}-grid g in $X_{1} \times X_{2} \times \ldots \times X_{d}$ a color $\phi(g)$ from a set R of r colors, then there is a color $\alpha \in R$, and there are m-element subsets H_{1}, \ldots, H_{d} of X_{1}, \ldots, X_{d} respectively, s. t. $\phi(g)=\alpha$ for every k^{d} grid in $H_{1} \times \ldots \times H_{d}$

Thank you!

