Critically paintable, choosable or colorable graphs

Grzegorz Gawryał
Jagiellonian University

Thursday 30 March, 2023

Based on A. Riasat and U. Schauz publication

Paintability

- A game on a graph between Lister and Painter. Before the game, both players know the graph and some function $I: V \rightarrow\{0,1, \ldots\}$.

Paintability

- A game on a graph between Lister and Painter. Before the game, both players know the graph and some function $I: V \rightarrow\{0,1, \ldots\}$.
- In i-th turn, Lister marks some uncolored vertices,

Paintability

- A game on a graph between Lister and Painter. Before the game, both players know the graph and some function $I: V \rightarrow\{0,1, \ldots\}$.
- In i-th turn, Lister marks some uncolored vertices,
- and then Painter colors some independent set of the marked vertices and i-th turn ends.

Paintability

- A game on a graph between Lister and Painter. Before the game, both players know the graph and some function $I: V \rightarrow\{0,1, \ldots\}$.
- In i-th turn, Lister marks some uncolored vertices,
- and then Painter colors some independent set of the marked vertices and i-th turn ends.
- Lister wins if some vertex has been marked more than $I(v)$ times.

Paintability

- A game on a graph between Lister and Painter. Before the game, both players know the graph and some function $I: V \rightarrow\{0,1, \ldots\}$.
- In i-th turn, Lister marks some uncolored vertices,
- and then Painter colors some independent set of the marked vertices and i-th turn ends.
- Lister wins if some vertex has been marked more than $I(v)$ times.
- Painter wins if all vertices have been colored before Lister wins.

Paintability

- A game on a graph between Lister and Painter. Before the game, both players know the graph and some function $I: V \rightarrow\{0,1, \ldots\}$.
- In i-th turn, Lister marks some uncolored vertices,
- and then Painter colors some independent set of the marked vertices and i-th turn ends.
- Lister wins if some vertex has been marked more than $I(v)$ times.
- Painter wins if all vertices have been colored before Lister wins.
- G is I-paintable if Painter has the winning strategy.

Paintability example

Relation between paintability

G is I-paintable $\Longrightarrow G$ is I-choosable.

Relation between paintability

G is l-paintable $\Longrightarrow G$ is I-choosable.
Moreover, if $\forall v: I(v)=k$, then:
G is l-choosable $\Longrightarrow G$ is k-colorable.

Relation between paintability

G is l-paintable $\Longrightarrow G$ is I-choosable.
Moreover, if $\forall v: I(v)=k$, then:
G is l-choosable $\Longrightarrow G$ is k-colorable.
Implications in other directions don't hold generally.

Criticality

Graph G is almost I-paintable (choosable, colorable), if it is not I-paintable (choosable, colorable), but $\forall v: G \backslash\{v\}$ is.

Criticality

Graph G is almost l-paintable (choosable, colorable), if it is not l-paintable (choosable, colorable), but $\forall v: G \backslash\{v\}$ is.

Lemma

If G doesn't contain an almost I-paintable (colorable, choosable) induced subgraph, then it is I-paintable (colorable, choosable).

Strong version of Brooks' Theorem

Theorem (Hladký, Král, Schauz; 2010)

For any connected graph:

- if it is a Gallai Tree, then it is not degree-choosable,
- otherwise it is degree-paintable.

Strong version of Brooks' Theorem

Theorem (Hladký, Král, Schauz; 2010)

For any connected graph:

- if it is a Gallai Tree, then it is not degree-choosable,
- otherwise it is degree-paintable.

Cut Lemma

Lemma (Cut Lemma)

Let $G=(U \cup W, E)$. Let $\forall u \in U: \eta(u)=|N(u) \cap W|$. If $G[W]$ is I-paintable (choosable) and $G[U]$ is $(I-\eta)$-paintable (choosable), then G is I-paintable.

Cut Lemma

Lemma (Cut Lemma)

Let $G=(U \cup W, E)$. Let $\forall u \in U: \eta(u)=|N(u) \cap W|$. If $G[W]$ is I-paintable (choosable) and $G[U]$ is $(I-\eta)$-paintable (choosable), then G is I-paintable.

Consequence: Gallai Trees are almost degree-paintable and choosable.

Cut Lemma

> Lemma (Cut Lemma)
> Let $G=(U \cup W, E)$. Let $\forall u \in U: \eta(u)=|N(u) \cap W|$. If $G[W]$ is I-paintable (choosable) and $G[U]$ is $(I-\eta)$-paintable (choosable), then G is I-paintable.

Consequence: Gallai Trees are almost degree-paintable and choosable. Moreover, almost I-paintable (choosable) graphs satisify $\forall v: d(v) \geq I(v)$.

Low-degree subgraphs

For almost paintable (choosable) G, a low-degree subgraph is an induced subgraph on vertices for which $d(v)=I(v)$.

Low-degree subgraphs

For almost paintable (choosable) G, a low-degree subgraph is an induced subgraph on vertices for which $d(v)=I(v)$.

Lemma

The low-degree subgraph H of any almost paintable (choosable) graph G is a Gallai Forest.

Low-degree subgraphs

For almost paintable (choosable) G, a low-degree subgraph is an induced subgraph on vertices for which $d(v)=I(v)$.

Lemma

The low-degree subgraph H of any almost paintable (choosable) graph G is a Gallai Forest.

Proof: if some biconnected component B of H is neither clique nor cycle, then it is degree-paintable (choosable). Using almost-paintability, $G \backslash B$ is I-paintable, so from the cut lemma, G would also be.

Edge density lower bound

Lemma (Gallai, Kritische)

For a Gallai Tree $G=(V, E)$ different from $K_{\Delta+1}$ and with $\Delta \geq 3$:

$$
\frac{|E|}{|V|}<\frac{\Delta-1}{2}+\frac{1}{\Delta}
$$

Edge density lower bound

Lemma (Gallai, Kritische)

For a Gallai Tree $G=(V, E)$ different from $K_{\Delta+1}$ and with $\Delta \geq 3$:

$$
\frac{|E|}{|V|}<\frac{\Delta-1}{2}+\frac{1}{\Delta}
$$

$$
G \text { - connected, non-complete }
$$

Edge density lower bound

Lemma (Gallai, Kritische)

For a Gallai Tree $G=(V, E)$ different from $K_{\Delta+1}$ and with $\Delta \geq 3$:

$$
\frac{|E|}{|V|}<\frac{\Delta-1}{2}+\frac{1}{\Delta}
$$

Edge density lower bound

Lemma (Gallai, Kritische)

For a Gallai Tree $G=(V, E)$ different from $K_{\Delta+1}$ and with $\Delta \geq 3$:

$$
\frac{|E|}{|V|}<\frac{\Delta-1}{2}+\frac{1}{\Delta}
$$

Edge density lower bound

Lemma (Gallai, Kritische)

For a Gallai Tree $G=(V, E)$ different from $K_{\Delta+1}$ and with $\Delta \geq 3$:

$$
\frac{|E|}{|V|}<\frac{\Delta-1}{2}+\frac{1}{\Delta}
$$

Edge density lower bound

Lemma (Gallai, Kritische)

For a Gallai Tree $G=(V, E)$ different from $K_{\Delta+1}$ and with $\Delta \geq 3$:

$$
\frac{|E|}{|V|}<\frac{\Delta-1}{2}+\frac{1}{\Delta}
$$

Edge density lower bound

Lemma (Gallai, Kritische)

For a Gallai Tree $G=(V, E)$ different from $K_{\Delta+1}$ and with $\Delta \geq 3$:

$$
\frac{|E|}{|V|}<\frac{\Delta-1}{2}+\frac{1}{\Delta}
$$

Edge density - cont.

On the other side:
$2|E| \geq(\delta+1)|V(G \backslash H)|+\delta|V(H)|=(\delta+1)|V|-|V(H)|$

Edge density - cont.

On the other side:
$2|E| \geq(\delta+1)|V(G \backslash H)|+\delta|V(H)|=(\delta+1)|V|-|V(H)|$

Combined with a previous result:
$2 \frac{|E|}{|V|}>\delta+\frac{\delta-2}{\delta^{2}+2 \delta-2}$

Edge density - cont.

On the other side:
$2|E| \geq(\delta+1)|V(G \backslash H)|+\delta|V(H)|=(\delta+1)|V|-|V(H)|$

Combined with a previous result:
$2 \frac{|E|}{|V|}>\delta+\frac{\delta-2}{\delta^{2}+2 \delta-2}$

Lemma

If $G \neq K_{k+1}$ is almost I-paintable (I-choosable, I-colorable), where $k:=\min (I(v)) \geq 3$, then:

$$
2 \frac{|E|}{|V|}>k+\frac{k-2}{k^{2}+2 k-2}
$$

$$
0880
$$

Graphs on surfaces

Lemma (Euler's formula)

For any connected graph G drawn on a surface with a genus g : $2-g=|V(G)|-|E(G)|+|F(G)|$
Moreover:

$$
2-g \leq|V(G)|-\frac{1}{3}|E(G)|
$$

Bounding degeneracy

$$
6(2-g) \leq 6|V|-2|E| \leq(6-\delta)|V|
$$

Bounding degeneracy

$$
6(2-g) \leq 6|V|-2|E| \leq(6-\delta)|V|
$$

So, when $\delta \geq 6$:

$$
0 \geq 6(2-g)+(\delta-6)|V| \geq 6(2-g)+(\delta-6)(\delta+1)
$$

Bounding degeneracy

$6(2-g) \leq 6|V|-2|E| \leq(6-\delta)|V|$
So, when $\delta \geq 6$:
$0 \geq 6(2-g)+(\delta-6)|V| \geq 6(2-g)+(\delta-6)(\delta+1)$
$\delta \leq \frac{5+\sqrt{1+24 g}}{2}<\left\lfloor\frac{7+\sqrt{1+24 g}}{2}\right\rfloor:=H(g)$, the Heawood number

Bounding degeneracy

$6(2-g) \leq 6|V|-2|E| \leq(6-\delta)|V|$
So, when $\delta \geq 6$:
$0 \geq 6(2-g)+(\delta-6)|V| \geq 6(2-g)+(\delta-6)(\delta+1)$
$\delta \leq \frac{5+\sqrt{1+24 g}}{2}<\left\lfloor\frac{7+\sqrt{1+24 g}}{2}\right\rfloor:=H(g)$, the Heawood number

And for $\delta<6$, but $g \geq 1: \delta \leq 5<H(1) \leq \cdots \leq H(g)$

Bounding degeneracy

$6(2-g) \leq 6|V|-2|E| \leq(6-\delta)|V|$
So, when $\delta \geq 6$:
$0 \geq 6(2-g)+(\delta-6)|V| \geq 6(2-g)+(\delta-6)(\delta+1)$
$\delta \leq \frac{5+\sqrt{1+24 g}}{2}<\left\lfloor\frac{7+\sqrt{1+24 g}}{2}\right\rfloor:=H(g)$, the Heawood number

And for $\delta<6$, but $g \geq 1: \delta \leq 5<H(1) \leq \cdots \leq H(g)$
So, the graph is $H(g)$ - 1-degenerate, and from the cut lemma also $H(g)$-paintable.

Heawood's Map-Coloring Theorem

Theorem
 A graph G on a surface with genus $g \geq 1$ is $H(g)$-paintable, choosable, and colorable. Except for the Klein Bottle, this is the best possible bound.

Heawood's Map-Coloring Theorem

Theorem
 A graph G on a surface with genus $g \geq 1$ is $H(g)$-paintable, choosable, and colorable. Except for the Klein Bottle, this is the best possible bound.

The lower bound holds, because $K_{H(g)}$ can be embedded on all surfaces of genus g, except for the Klein Bottle.

Heawood's Map-Coloring Theorem

Theorem

A graph G on a surface with genus $g \geq 1$ is $H(g)$-paintable, choosable, and colorable. Except for the Klein Bottle, this is the best possible bound.

The lower bound holds, because $K_{H(g)}$ can be embedded on all surfaces of genus g, except for the Klein Bottle.

If the graph doesn't contain $K_{H(g)}$, then the number of required colors can be decreased by 1 for list coloring.

Heawood's Map-Coloring Theorem

Theorem

A graph G on a surface with genus $g \geq 1$ is $H(g)$-paintable, choosable, and colorable. Except for the Klein Bottle, this is the best possible bound.

The lower bound holds, because $K_{H(g)}$ can be embedded on all surfaces of genus g, except for the Klein Bottle.

If the graph doesn't contain $K_{H(g)}$, then the number of required colors can be decreased by 1 for list coloring.
Likely, it's also true for paintability - proven for all g except $g \in\{1,3\}$.

Critical graphs on surfaces

Let G be an almost-paintable graph on a surface with genus g.
Recall, that $6(2-g) \leq 6|V|-2|E| \leq(6-\delta)|V|$.

Critical graphs on surfaces

Let G be an almost-paintable graph on a surface with genus g.
Recall, that $6(2-g) \leq 6|V|-2|E| \leq(6-\delta)|V|$.

If $\delta \geq 7$, then, using the fact, that $\forall v \in V: I(v) \leq d(v)$:
$|V| \leq \frac{6(g-2)}{\delta-6} \leq \frac{6(g-2)}{\min (I)-6}$

Critical graphs on surfaces

Let G be an almost-paintable graph on a surface with genus g.
Recall, that $6(2-g) \leq 6|V|-2|E| \leq(6-\delta)|V|$.

If $\delta \geq 7$, then, using the fact, that $\forall v \in V: I(v) \leq d(v)$:
$|V| \leq \frac{6(g-2)}{\delta-6} \leq \frac{6(g-2)}{\min (I)-6}$

And if $\min (I)=6$ and $G \neq K_{7}:$
$6(2-g) \leq 6|V|-2|E| \leq\left(6-\left(6+\frac{6-2}{6^{2}+2 \cdot 6-2}\right)\right)|V| \leq \frac{2}{23}|V|$

Critical graphs on surfaces

Let G be an almost-paintable graph on a surface with genus g.
Recall, that $6(2-g) \leq 6|V|-2|E| \leq(6-\delta)|V|$.

If $\delta \geq 7$, then, using the fact, that $\forall v \in V: I(v) \leq d(v)$:
$|V| \leq \frac{6(g-2)}{\delta-6} \leq \frac{6(g-2)}{\min (I)-6}$

And if $\min (I)=6$ and $G \neq K_{7}:$
$6(2-g) \leq 6|V|-2|E| \leq\left(6-\left(6+\frac{6-2}{6^{2}+2 \cdot 6-2}\right)\right)|V| \leq \frac{2}{23}|V|$
In both cases $|V(G)|<69(g-2)$, so if $\min (I) \geq 6$, then there are only finitely many pairs (G, I) of almost I-paintable (choosable) graphs.

Almost 2-paintable and choosable graphs

If G has a vertex v with $d(v)=1, I(v) \geq 2$, then G is I-paintable iff $G \backslash\{v\}$ is so.

Almost 2-paintable and choosable graphs

If G has a vertex v with $d(v)=1, I(v) \geq 2$, then G is I-paintable iff $G \backslash\{v\}$ is so.

Assume we have no 1 -vertices. Let C_{n} be a cycle of length n and:

$\mathrm{O}_{a, b, c}$

$\mathrm{O}_{a, b, c, d, e, f}$

$K_{4}^{a, b, c, d, e, f}$
$\Theta_{a, b, c}$

$\Theta_{a, b, c, d}$

Almost 2-paintable and choosable graphs

If G has a vertex v with $d(v)=1, I(v) \geq 2$, then G is I-paintable iff $G \backslash\{v\}$ is so.

Assume we have no 1 -vertices. Let C_{n} be a cycle of length n and:

$\mathrm{O}_{a, b, c}$

$\mathrm{O}_{a, b, c, d, e, f}$

$K_{4}^{a, b, c, d, e, f}$

$\Theta_{a, b, c}$

$\Theta_{a, b, c, d}$

We'll show, that:
$\mathcal{T}_{c h}:=C_{2 a} \cup \Theta_{2,2,2 \alpha}$ and $\mathcal{T}_{p}:=C_{2 \alpha} \cup\left\{\Theta_{2,2,2}\right\}$ are exactly the classes of 2-choosable (paintable) graphs.

2-choosability and paintability identification

Proof sketch:
(1) Taking vertex minors (taking subgraph, then contracting vertices $=$ contracting all edges incident to it) preserves 2-choosability and 2-paintability.

2-choosability and paintability identification

Proof sketch:
(1) Taking vertex minors (taking subgraph, then contracting vertices $=$ contracting all edges incident to it) preserves 2-choosability and 2-paintability.
(2) G is either $C_{\alpha} \vee \Theta_{\alpha, \beta, \gamma}$ or contains $C_{3}, K_{3,3}, 0-0$, $0=0$, or a subdivided K_{4}.

2-choosability and paintability identification

Proof sketch:

(1) Taking vertex minors (taking subgraph, then contracting vertices $=$ contracting all edges incident to it) preserves 2-choosability and 2-paintability.
(2) G is either $C_{\alpha} \vee \Theta_{\alpha, \beta, \gamma}$ or contains $C_{3}, K_{3,3}, 0-0$, $0=0$, or a subdivided K_{4}.
(3) Identify minimal elements of $G \backslash \mathcal{T}_{c h}$ w.r.t. induced subgraphs.

2-choosability and paintability identification

Proof sketch:
(1) Taking vertex minors (taking subgraph, then contracting vertices $=$ contracting all edges incident to it) preserves 2-choosability and 2-paintability.
(2) G is either $C_{\alpha} \vee \Theta_{\alpha, \beta, \gamma}$ or contains $C_{3}, K_{3,3}, 0_{0}$, o-0, or a subdivided K_{4}.
(3) Identify minimal elements of $G \backslash \mathcal{T}_{c h}$ w.r.t. induced subgraphs.
(9) Identify minimal elements w.r.t usual subgraphs.

2-choosability and paintability identification

Proof sketch:

(1) Taking vertex minors (taking subgraph, then contracting vertices $=$ contracting all edges incident to it) preserves 2-choosability and 2-paintability.
(2) G is either $C_{\alpha} \vee \Theta_{\alpha, \beta, \gamma}$ or contains $C_{3}, K_{3,3}, 0-0,0$, or a subdivided K_{4}.
(3) Identify minimal elements of $G \backslash \mathcal{T}_{c h}$ w.r.t. induced subgraphs.
(9) Identify minimal elements w.r.t usual subgraphs.
(5) Identify minimal elements w.r.t vertex minors.

$\Theta_{1,3,3}$

$$
K_{2,4}=\Theta_{2,2,2,2}
$$

$\mathrm{OH}_{4,0,4}$
$\mathrm{OH}_{4,1,4}$

Almost 2-choosable graphs w.r.t. vertex deletion:

$\Theta_{2 a, 2,2,2}$

$K_{3,3}$

$\Theta_{2 a+1,2 b+1,2 c+1}$

$K_{4}^{2 a, 1,1,2 d, 1,1}$

$\Theta_{2 a, 2 b+4,2 c+4}$

$\mathrm{O}=\mathrm{a}^{2,2,1,1,2,2}$

Almost 2-paintable graphs w.r.t. vertex deletion:

$K_{2,4}$

$K_{3,3}$

$\Theta_{2 a+1}, 2 b+1,2 c+1$

$K_{4}^{2,1,1,2,1,1}$

$\Theta_{2 a, 2 b, 2 c+4}$

$\mathrm{O}=\mathrm{D}^{2,2,1,1,2,2}$

