List avoiding orientations Peter Bradshaw, Yaobin Chen, Hao Ma, Bojan Mohar, Hehui Wu

March 30 2023

1 / 22

Introduction

Basic definitions

• G is an undirected simple graph. V(G) is a set of vertices. E(G) is a set of edges.

Introduction

Basic definitions

- G is an undirected simple graph. V(G) is a set of vertices. E(G) is a set of edges.
- D will be typically used for a directed graphs (or specific orientations)

Introduction

Basic definitions

- G is an undirected simple graph. V(G) is a set of vertices. E(G) is a set of edges.
- D will be typically used for a directed graphs (or specific orientations)
- $E_D(v)^-$, $E_D(v)^+$ denotes edges incoming/outgoing to v. Respectively we define $deg_D(v)^-$, $deg_D(v)^+$.

Theorem, Frank and Gyárfás, 1976

For a graph G and two mappings $a, b : V(G) \to \mathbb{N}$ satisfying $a(v) \le b(v)$ for every vertex v, G has an orientation D satisfying $a(v) \le deg_D^+(v) \le b(v)$ for every vertex v iff for each subset $U \in V(G)$:

Theorem, Frank and Gyárfás, 1976

For a graph G and two mappings $a, b : V(G) \to \mathbb{N}$ satisfying $a(v) \le b(v)$ for every vertex v, G has an orientation D satisfying $a(v) \le deg_D^+(v) \le b(v)$ for every vertex v iff for each subset $U \in V(G)$:

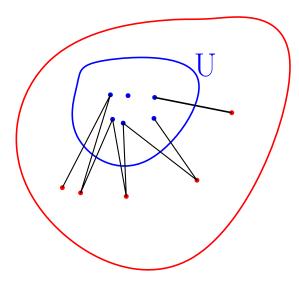
$$\sum_{v \in U} a(v) - e(U, \overline{U}) \le |E(G[U])| \le \sum_{v \in U} b(v)$$

Theorem, Frank and Gyárfás, 1976

For a graph G and two mappings $a, b: V(G) \to \mathbb{N}$ satisfying $a(v) \le b(v)$ for every vertex v, G has an orientation D satisfying $a(v) \le deg_D^+(v) \le b(v)$ for every vertex v iff for each subset $U \in V(G)$:

$$\sum_{v\in U} a(v) - e(U, \overline{U}) \leq |E(G[U])| \leq \sum_{v\in U} b(v)$$

Where $e(U, \bar{U})$ denotes the number of edges between U and \bar{U} - that is $V(G) \setminus U$



Definition

Given a graph G and a function $f: V(G) \to \mathbb{N}$, we say that an orientation D of G is *f*-avoiding if $deg^+D(v) \neq f(v)$ for each $v \in V(G)$.

Definition

Given a graph G and a function $f : V(G) \to \mathbb{N}$, we say that an orientation D of G is *f*-avoiding if $deg^+D(v) \neq f(v)$ for each $v \in V(G)$.

Theorem: S. Akbari, M. Dalirrooyfard, K. Ehsani, K. Ozeki, and R. Sherkati. [2020]

There is an *f*-avoiding orientation for every 2-connected graph *G* that is not an odd cycle and for every function $f : V(G) \to \mathbb{N}$, and that an odd cycle has an f-avoiding orientation if and only if $f(v) \neq 1$ for some vertex v of the cycle.

Definition

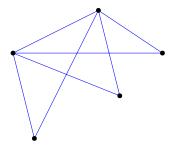
A graph G and a function $F : V(G) \to 2^{\mathbb{N}}$, an orientation D of G is said to be *F*-avoiding if $deg_D^+(v) \notin F(v)$ for each $v \in V(G)$.

6 / 22

F - avoiding orientations

Definition

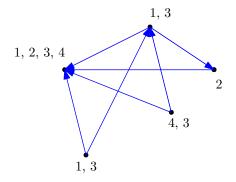
A graph G and a function $F : V(G) \to 2^{\mathbb{N}}$, an orientation D of G is said to be *F*-avoiding if $deg_D^+(v) \notin F(v)$ for each $v \in V(G)$.



F - avoiding orientations

Definition

A graph G and a function $F : V(G) \to 2^{\mathbb{N}}$, an orientation D of G is said to be *F*-avoiding if $deg_D^+(v) \notin F(v)$ for each $v \in V(G)$.



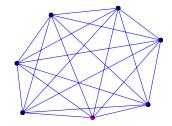
Let G be a graph, and let $F : V(G) \to 2^{\mathbb{N}}$. If $|F(v)| \leq \frac{1}{2}(deg_G(v) - 1)$ for each $v \in V(G)$, then G has an F - avoiding orientation.

Let G be a graph, and let $F : V(G) \to 2^{\mathbb{N}}$. If $|F(v)| \leq \frac{1}{2}(deg_G(v) - 1)$ for each $v \in V(G)$, then G has an F - avoiding orientation.

If that conjecture is true, the bound is tight. 2k-regular graphs on n vertices with independence number less than $\frac{n}{k+1}$ and $F(v) = \{k, k+1, ..., 2k-1\}$ give sharpness. Eg. K_{2k+1} :

Let G be a graph, and let $F : V(G) \to 2^{\mathbb{N}}$. If $|F(v)| \leq \frac{1}{2}(deg_G(v) - 1)$ for each $v \in V(G)$, then G has an F - avoiding orientation.

If that conjecture is true, the bound is tight. 2k-regular graphs on n vertices with independence number less than $\frac{n}{k+1}$ and $F(v) = \{k, k+1, ..., 2k-1\}$ give sharpness. Eg. K_{2k+1} :



2k + 1 = 7

$$F(v) = \{3, 4, 5\}$$

Conjecture 2

Let G be a graph, and let $F : V(G) \to 2^{\mathbb{N}}$. If G has an orientation D such that $deg_D^+(v) \ge |F(v)| + 1$ for each $v \in V(G)$, then G has an F - avoiding orientation.

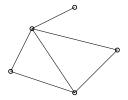
8/22

Conjecture 2

Let G be a graph, and let $F : V(G) \to 2^{\mathbb{N}}$. If G has an orientation D such that $deg_D^+(v) \ge |F(v)| + 1$ for each $v \in V(G)$, then G has an F - avoiding orientation.

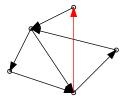
Conjecture 2

Let G be a graph, and let $F : V(G) \to 2^{\mathbb{N}}$. If G has an orientation D such that $deg_D^+(v) \ge |F(v)| + 1$ for each $v \in V(G)$, then G has an F - avoiding orientation.



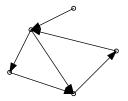
Conjecture 2

Let G be a graph, and let $F : V(G) \to 2^{\mathbb{N}}$. If G has an orientation D such that $deg_D^+(v) \ge |F(v)| + 1$ for each $v \in V(G)$, then G has an F - avoiding orientation.



Conjecture 2

Let G be a graph, and let $F : V(G) \to 2^{\mathbb{N}}$. If G has an orientation D such that $deg_D^+(v) \ge |F(v)| + 1$ for each $v \in V(G)$, then G has an F - avoiding orientation.



Let K be a field, and let f be a polynomial over the field $K[x_1, x_2, ..., x_n]$. Suppose that the degree of f is $\sum_{i=1}^{n} t_i$, where each t_i is a nonnegative integer, and suppose that the coefficient of $\prod_{i=1}^{n} x^{t_i}$ in f is nonzero. Then, if $S_1, ..., S_n$ are subsets of K each satisfying $|S_i| > t_i$, then there exist elements $s_1 \in S_1, ..., s_n \in S_n$ so that $f(s_1, ..., s_n) \neq 0$.

Let K be a field, and let f be a polynomial over the field $K[x_1, x_2, ..., x_n]$. Suppose that the degree of f is $\sum_{i=1}^{n} t_i$, where each t_i is a nonnegative integer, and suppose that the coefficient of $\prod_{i=1}^{n} x^{t_i}$ in f is nonzero. Then, if $S_1, ..., S_n$ are subsets of K each satisfying $|S_i| > t_i$, then there exist elements $s_1 \in S_1, ..., s_n \in S_n$ so that $f(s_1, ..., s_n) \neq 0$.

We define:

• matrix
$$M = (m_{v,e} : v \in V(G), e \in E(G))$$
 $m_{v,e} = 1$ if $e \in E_{G}^{+}(v_{i}), m_{v,e} = 1$ if $e \in E_{G}^{-}(v_{i})$, and $m_{v,e} = 0$

Let K be a field, and let f be a polynomial over the field $K[x_1, x_2, ..., x_n]$. Suppose that the degree of f is $\sum_{i=1}^{n} t_i$, where each t_i is a nonnegative integer, and suppose that the coefficient of $\prod_{i=1}^{n} x^{t_i}$ in f is nonzero. Then, if $S_1, ..., S_n$ are subsets of K each satisfying $|S_i| > t_i$, then there exist elements $s_1 \in S_1, ..., s_n \in S_n$ so that $f(s_1, ..., s_n) \neq 0$.

We define:

• matrix
$$M = (m_{v,e} : v \in V(G), e \in E(G))$$
 $m_{v,e} = 1$ if $e \in E_G^+(v_i), m_{v,e} = 1$ if $e \in E_G^-(v_i)$, and $m_{v,e} = 0$
• $f_D^* = \prod_{e \in E(G)} (\sum_{v \in V(G)} m_{v,e} x_v)$

Let K be a field, and let f be a polynomial over the field $K[x_1, x_2, ..., x_n]$. Suppose that the degree of f is $\sum_{i=1}^{n} t_i$, where each t_i is a nonnegative integer, and suppose that the coefficient of $\prod_{i=1}^{n} x^{t_i}$ in f is nonzero. Then, if $S_1, ..., S_n$ are subsets of K each satisfying $|S_i| > t_i$, then there exist elements $s_1 \in S_1, ..., s_n \in S_n$ so that $f(s_1, ..., s_n) \neq 0$.

We define:

• matrix
$$M = (m_{v,e} : v \in V(G), e \in E(G))$$
 $m_{v,e} = 1$ if
 $e \in E_G^+(v_i), m_{v,e} = 1$ if $e \in E_G^-(v_i)$, and $m_{v,e} = 0$
• $f_D^* = \prod_{e \in E(G)} (\sum_{v \in V(G)} m_{v,e} x_v)$
• $f_D^* = \prod_{e \in E(D)} (x_v - x_u)$

9/22

Let *K* be a field, and let *f* be a polynomial over the field $K[x_1, x_2, ..., x_n]$. Suppose that the degree of *f* is $\sum_{i=1}^{n} t_i$, where each t_i is a nonnegative integer, and suppose that the coefficient of $\prod_{i=1}^{n} x^{t_i}$ in *f* is nonzero. Then, if $S_1, ..., S_n$ are subsets of *K* each satisfying $|S_i| > t_i$, then there exist elements $s_1 \in S_1, ..., s_n \in S_n$ so that $f(s_1, ..., s_n) \neq 0$.

We define:

• matrix
$$M = (m_{v,e} : v \in V(G), e \in E(G))$$
 $m_{v,e} = 1$ if
 $e \in E_G^+(v_i), m_{v,e} = 1$ if $e \in E_G^-(v_i)$, and $m_{v,e} = 0$
• $f_D^* = \prod_{e \in E(G)} (\sum_{v \in V(G)} m_{v,e} x_v)$
• $f_D^* = \prod_{e \in E(D)} (x_v - x_u)$

 f_D^* is a classical graph polynomial. Graph coloring for instance might be translated to such polynomial naturally.

イロト イヨト イヨト イヨト

• We will consider $F : V(G) \to 2^{\mathbb{Z}}$ defined as *imbalance*, which is the difference $deg_D^+(v) \ deg_D(v)$. and F is avoiding if $deg_D^+(v) \ deg_D(v) \notin F(v)$

- We will consider $F : V(G) \to 2^{\mathbb{Z}}$ defined as *imbalance*, which is the difference $deg_D^+(v) \ deg_D(v)$. and F is avoiding if $deg_D^+(v) \ deg_D(v) \notin F(v)$
- incidence matrix $M = (m_{v,e} : v \in V(G), e \in E(G))$

- We will consider $F : V(G) \to 2^{\mathbb{Z}}$ defined as *imbalance*, which is the difference $deg_D^+(v) \ deg_D(v)$. and F is avoiding if $deg_D^+(v) \ deg_D(v) \notin F(v)$
- incidence matrix $\mathsf{M} = (m_{v,e} : v \in V(G), e \in E(G))$
- G with acyclic orientation such that each edge $v_i v_j$ is oriented from i to j if i < j

- We will consider $F : V(G) \to 2^{\mathbb{Z}}$ defined as *imbalance*, which is the difference $deg_D^+(v) \quad deg_D(v)$. and F is avoiding if $deg_D^+(v) \quad deg_D(v) \notin F(v)$
- incidence matrix $M = (m_{v,e} : v \in V(G), e \in E(G))$
- G with acyclic orientation such that each edge $v_i v_j$ is oriented from i to j if i < j
- For each vertex $v_i \in V(G)$, we let $E_G^R(v_i)$ denote the edges $v_i v_j \in E(G)$ with j > i, and we let $E_G^L(v_i)$ denote the edges if i > j. Similarly define $deg_G^R(v)$ and $deg_G^L(v)$

|田 | |田 | |田 |

- We will consider $F : V(G) \to 2^{\mathbb{Z}}$ defined as *imbalance*, which is the difference $deg_D^+(v) \quad deg_D(v)$. and F is avoiding if $deg_D^+(v) \quad deg_D(v) \notin F(v)$
- incidence matrix $M = (m_{v,e} : v \in V(G), e \in E(G))$
- G with acyclic orientation such that each edge $v_i v_j$ is oriented from i to j if i < j
- For each vertex $v_i \in V(G)$, we let $E_G^R(v_i)$ denote the edges $v_i v_j \in E(G)$ with j > i, and we let $E_G^L(v_i)$ denote the edges if i > j. Similarly define $deg_G^R(v)$ and $deg_G^L(v)$
- For each edge e ∈ E(G), we consider a variable y_e. Given an orientation D of G, and given an edge e = v_iv_j with i < j, we set y_e = 1 if e is oriented from v_i to v_j in D, and we set y_e = −1 otherwise.

<ロト <部ト <注入 < 注入 = 二 =

- We will consider $F : V(G) \to 2^{\mathbb{Z}}$ defined as *imbalance*, which is the difference $deg_D^+(v) \quad deg_D(v)$. and F is avoiding if $deg_D^+(v) \quad deg_D(v) \notin F(v)$
- incidence matrix $M = (m_{v,e} : v \in V(G), e \in E(G))$
- G with acyclic orientation such that each edge $v_i v_j$ is oriented from i to j if i < j
- For each vertex $v_i \in V(G)$, we let $E_G^R(v_i)$ denote the edges $v_i v_j \in E(G)$ with j > i, and we let $E_G^L(v_i)$ denote the edges if i > j. Similarly define $deg_G^R(v)$ and $deg_G^L(v)$
- For each edge e ∈ E(G), we consider a variable y_e. Given an orientation D of G, and given an edge e = v_iv_j with i < j, we set y_e = 1 if e is oriented from v_i to v_j in D, and we set y_e = −1 otherwise.

<ロト <部ト <注入 < 注入 = 二 =

The Imbalance in every vertex is a linear polynomial:

$$deg_D^+(v) - deg_D(v) = \sum_{e \in E(G)} m_{v_e y_e} = \sum_{e \in E_G^R(v)} y_e - \sum_{e \in E_G^L(v)} y_e$$

11/22

The Imbalance in every vertex is a linear polynomial:

$$deg_D^+(v) - deg_D(v) = \sum_{e \in E(G)} m_{v_e y_e} = \sum_{e \in E_G^R(v)} y_e - \sum_{e \in E_G^L(v)} y_e$$

So the polynomial is defined as:

$$f_0 = \prod_{i=1}^n \prod_{a \in F(v_i)} \left(\sum_{e \in E_G^R(v)} y_e - \sum_{e \in E_G^L(v)} y_e - a \right)$$

We can use Combinatorial Nullstellensatz if there exists monomial with coefficient $\neq 0$ s. t. each y_e appears at most once in it, as $deg(f_0) = \sum_{i \in [n]} t_i$

Each y_e is present only in one term, because of the acyclic orientation. Def $f_0 = \sum_{i=1}^{n} t_i$, where $t_i = F(v_i)$, as we only care about the monomial of maximum degree:

12 / 22

Each y_e is present only in one term, because of the acyclic orientation. Def $f_0 = \sum_{i=1}^{n} t_i$, where $t_i = F(v_i)$, as we only care about the monomial of maximum degree:

$$f = \prod_{i \in [n]} \left(\sum_{e \in E_G^R(v_i)} y_e - \sum_{e \in E_G^L(v_i)} y_e \right)^{t_i} = \prod_{i \in [n]} \left(\sum_{e \in E(G)} m_{ve} y_e \right)^{t_i}$$

Main Construction

Each y_e is present only in one term, because of the acyclic orientation. Def $f_0 = \sum_{i=1}^{n} t_i$, where $t_i = F(v_i)$, as we only care about the monomial of maximum degree:

$$f = \prod_{i \in [n]} \left(\sum_{e \in E_G^R(v_i)} y_e - \sum_{e \in E_G^L(v_i)} y_e \right)^{t_i} = \prod_{i \in [n]} \left(\sum_{e \in E(G)} m_{ve} y_e \right)^{t_i}$$

The problem is to find a monomial with a nonzero coefficient in f of a form: $y_A = y_{e_1}y_{e_2}...y_{e_{|A|}}$ for $A \in E(G)$ s. t. no y_e^2 does not divide that monomial.

Theorem

Let $F: V(G) \to 2^{\mathbb{Z}}$ be an assignment of forbidden imbalances for a graph G. Suppose that there exists an ordering of V(G) and a spanning subgraph H of G such that for each vertex $v \in V(G)$, it holds that $|F(v)| \leq deg_{G}^{L}(v) - 2deg_{H}^{L}(v) + deg_{G}^{L}(v)$. Then G has an F-avoiding orientation.

Theorem

Let $F: V(G) \to 2^{\mathbb{Z}}$ be an assignment of forbidden imbalances for a graph G. Suppose that there exists an ordering of V(G) and a spanning subgraph H of G such that for each vertex $v \in V(G)$, it holds that $|F(v)| \leq deg_{G}^{L}(v) - 2deg_{H}^{L}(v) + deg_{G}^{L}(v)$. Then G has an F-avoiding orientation.

One can prove it by considering the polynomial f and its prefix products

Theorem

Let $F: V(G) \to 2^{\mathbb{Z}}$ be an assignment of forbidden imbalances for a graph G. Suppose that there exists an ordering of V(G) and a spanning subgraph H of G such that for each vertex $v \in V(G)$, it holds that $|F(v)| \leq deg_{G}^{L}(v) - 2deg_{H}^{L}(v) + deg_{G}^{L}(v)$. Then G has an F-avoiding orientation.

One can prove it by considering the polynomial f and its prefix products

$$f_j = \prod_{i \in [j]} \left(\sum_{e \in E(G)} m_{ve} y_e \right)^{t_i}$$

Let G be a graph, and let $F : V(G) \to 2^{\mathbb{N}}$ be a map. If $|F(v)| \leq \frac{1}{4} deg(v)$ for each vertex $v \in V(G)$, then G has an F - avoiding orientation.

Let G be a graph, and let $F : V(G) \to 2^{\mathbb{N}}$ be a map. If $|F(v)| \leq \frac{1}{4} deg(v)$ for each vertex $v \in V(G)$, then G has an F - avoiding orientation.

Using the main Theorem, we can show a better approximation

Let G be a graph, and let $F : V(G) \to 2^{\mathbb{N}}$ be a map. If $|F(v)| \leq \frac{1}{4} deg(v)$ for each vertex $v \in V(G)$, then G has an F - avoiding orientation.

Using the main Theorem, we can show a better approximation

Conjecture 1: a better approximation

Let G be a graph, and let $F : V(G) \to 2^{\mathbb{N}}$ be a map. If $|F(v)| \leq \frac{1}{3} deg(v) - 1$ for each vertex $v \in V(G)$, then G has an F - avoiding orientation.

Let G be a graph, and let $F : V(G) \to 2^{\mathbb{N}}$ be a map. If $|F(v)| \leq \frac{1}{4} deg(v)$ for each vertex $v \in V(G)$, then G has an F - avoiding orientation.

Using the main Theorem, we can show a better approximation

Conjecture 1: a better approximation

Let G be a graph, and let $F : V(G) \to 2^{\mathbb{N}}$ be a map. If $|F(v)| \leq \frac{1}{3} deg(v) - 1$ for each vertex $v \in V(G)$, then G has an F - avoiding orientation.

Moreover we can show a $\frac{2}{3}$ approximation of Conjecture 2.

ヘロト 人間ト 人間ト 人間ト

Conjecture 1: better approximation

Let G be a graph, and let $F : V(G) \to 2^{\mathbb{N}}$ be a map. If $|F(v)| \leq \frac{1}{3} deg(v) - 1$ for each vertex $v \in V(G)$, then G has an F - avoiding orientation.

Conjecture 1: better approximation

Let G be a graph, and let $F : V(G) \to 2^{\mathbb{N}}$ be a map. If $|F(v)| \leq \frac{1}{3} deg(v) - 1$ for each vertex $v \in V(G)$, then G has an F - avoiding orientation.

Moreover we can show a $\frac{2}{3}$ approximation of Conjecture 2.

Conjecture 2: $\frac{2}{3}$ approximation

Let G be a graph, and let $F : V(G) \to 2^{\mathbb{N}}$. If G has an orientation D such that $|F(v)| \leq \frac{2}{3} deg_D^+(v) - 1$ for each v V (G), then G has an F -avoiding orientation.

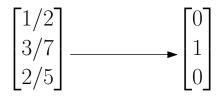
▲□ ▶ ▲ □ ▶ ▲ □ ▶

Technical lemma

Given a graph G = (V, E), let $M = (m_{ve} : v \in V, e \in E)$ be a real-valued matrix in which $m_{ve} \neq 0$ only if $v \in e$. Let $y \in [0, 1]^E$ be a vector, and let x = My. Then, there exists a 01-vector $y' \in \{0, 1\}^E$ such that x' = My' satsfies $x'_v \geq x_v - b_v$ for each $v \in V(G)$, where $b_v = max\{|m_{ve}| : e \in E\}$. Furthermore, we may choose y so that $x_v > x_v - b_v$ whenever $b_v > 0$.

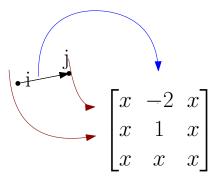
Technical lemma

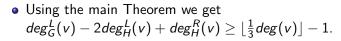
Given a graph G = (V, E), let $M = (m_{ve} : v \in V, e \in E)$ be a real-valued matrix in which $m_{ve} \neq 0$ only if $v \in e$. Let $y \in [0, 1]^E$ be a vector, and let x = My. Then, there exists a 01-vector $y' \in \{0, 1\}^E$ such that x' = My' satsfies $x'_v \geq x_v - b_v$ for each $v \in V(G)$, where $b_v = max\{|m_{ve}| : e \in E\}$. Furthermore, we may choose y so that $x_v > x_v - b_v$ whenever $b_v > 0$.

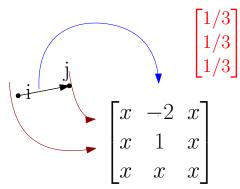


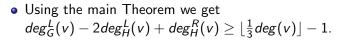
• Using the main Theorem we get $deg_{G}^{L}(v) - 2deg_{H}^{L}(v) + deg_{H}^{R}(v) \ge \lfloor \frac{1}{3}deg(v) \rfloor - 1.$

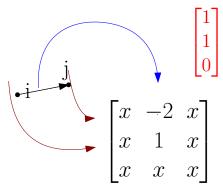
• Using the main Theorem we get $deg_{G}^{L}(v) - 2deg_{H}^{L}(v) + deg_{H}^{R}(v) \ge \lfloor \frac{1}{3}deg(v) \rfloor - 1.$

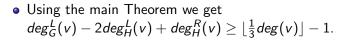






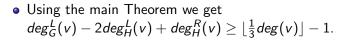


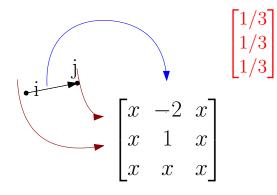






 $x_v = \frac{2}{3} deg_G^L(v) + \frac{1}{3} deg_G^R(v) = \frac{1}{3} deg_G(v) - deg_G^L(v)$





$$\begin{aligned} x_v &= \frac{2}{3} deg_G^L(v) + \frac{1}{3} deg_G^R(v) = \frac{1}{3} deg_G(v) - deg_G^L(v) \\ x'_v &\geq \frac{1}{3} deg_G(v) - deg_G^L(v) - 2 \end{aligned}$$

Definition

A Graph polynomial coefficients can be determined solely by counting Eulerian orientations of a graph. These are defined as follows: An orientation D of the graph G if deg⁺_D(v) = deg⁻_D(v) for every v ∈ V(G).

Definition

- A Graph polynomial coefficients can be determined solely by counting Eulerian orientations of a graph. These are defined as follows: An orientation D of the graph G if deg⁺_D(v) = deg⁻_D(v) for every v ∈ V(G).
- A subgraph H of G is called even if |E(H)| is even and is called odd otherwise.

Definition

- A Graph polynomial coefficients can be determined solely by counting Eulerian orientations of a graph. These are defined as follows: An orientation D of the graph G if deg⁺_D(v) = deg⁻_D(v) for every v ∈ V(G).
- A subgraph H of G is called even if |E(H)| is even and is called odd otherwise.
- *EE*(*D*) and *EO*(*D*) are respectively the number of even and odd Eulerian orientations

Definition

- A Graph polynomial coefficients can be determined solely by counting Eulerian orientations of a graph. These are defined as follows: An orientation D of the graph G if deg⁺_D(v) = deg⁻_D(v) for every v ∈ V(G).
- A subgraph H of G is called even if |E(H)| is even and is called odd otherwise.
- *EE*(*D*) and *EO*(*D*) are respectively the number of even and odd Eulerian orientations

Alon-Tarsi [1992]

If G has orientation D s.t $EE(D) \neq EO(D)$ then D is an Alon-Tarsi orientation. If D is an Alon-Tarsi orientation of G, and if L is a list assignment on G for which $|L(v)| > deg_D^+(v)$ at each vertex $v \in V(G)$, then G is L-choosable.

Definition

Alon Tarsi number is defined as: AT(G) is the minimum value k such that G has an Alon-Tarsi orientation of maximum out-degree less than k. In particular $AT(G) \ge ch(G)$

Definition

Alon Tarsi number is defined as: AT(G) is the minimum value k such that G has an Alon-Tarsi orientation of maximum out-degree less than k. In particular $AT(G) \ge ch(G)$

S. Akbari, M. Dalirrooyfard, K. Ehsani, K. Ozeki, and R. Sherkati [2020]

Let G be a graph, let H be a spanning subgraph of G, and let $F: V(G) \to 2^{\mathbb{N}}$ be a map. If there exists an Alon-Tarsi orientation D of H such that $|F(v)| \leq deg_D^+(v)$ for every vertex $v \in V(G)$, then G has an *F*-avoiding orientation.:

Definition

Alon Tarsi number is defined as: AT(G) is the minimum value k such that G has an Alon-Tarsi orientation of maximum out-degree less than k. In particular $AT(G) \ge ch(G)$

S. Akbari, M. Dalirrooyfard, K. Ehsani, K. Ozeki, and R. Sherkati [2020]

Let G be a graph, let H be a spanning subgraph of G, and let $F: V(G) \to 2^{\mathbb{N}}$ be a map. If there exists an Alon-Tarsi orientation D of H such that $|F(v)| \leq deg_D^+(v)$ for every vertex $v \in V(G)$, then G has an F-avoiding orientation.:

Despite the upper theorem proof is based on an original graph polynomial, it can be proved using the polynomial defined in the main theorem.

We will consider a $\mathcal{A}^{lpha,eta}$ transformation of a matrix \mathcal{A}

We will consider a $\mathcal{A}^{lpha,eta}$ transformation of a matrix \mathcal{A}

$$\begin{array}{c} \alpha = (1,2)\beta = (2,1) \\ \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 1 & 2 \\ 3 & 3 & 4 \\ 3 & 3 & 4 \end{bmatrix}$$

э

(日) (四) (日) (日) (日)

We will consider a $\mathcal{A}^{lpha,eta}$ transformation of a matrix \mathcal{A}

$$\begin{array}{c} \alpha = (1,2)\beta = (2,1) \\ \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 1 & 2 \\ 3 & 3 & 4 \\ 3 & 3 & 4 \end{bmatrix}$$

And dual polynomials:

$$g = \prod_{i=0}^{n} \sum_{j=0}^{m} a_{ij} y_j$$
$$g * = \prod_{j=0}^{m} \sum_{i=0}^{n} a_{ij} x_i$$

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Definitions

• $x^{\alpha} = \prod_{i=0}^{n} x_{i}^{\alpha_{i}}$, y^{β} is defined similarly

Definitions

•
$$x^{\alpha} = \prod_{i=0}^{n} x_{i}^{\alpha_{i}}$$
, y^{β} is defined similarly

• *perm*(A) is a permament of a matrix

Definitions

- $x^{\alpha} = \prod_{i=0}^{n} x_{i}^{\alpha_{i}}$, y^{β} is defined similarly
- *perm*(*A*) is a permament of a matrix
- $coeff(y^{\beta},g)$ is a coefficient of monomial y^{β} in g.

Definitions

•
$$x^{\alpha} = \prod_{i=0}^{n} x_{i}^{\alpha_{i}}$$
, y^{β} is defined similarly

- *perm*(*A*) is a permament of a matrix
- $coeff(y^{\beta},g)$ is a coefficient of monomial y^{β} in g.

Theorem

If
$$||\alpha||_1 = ||\beta||_1$$
, then
 $(\prod_{j=1}^m \beta_j!)$ coeff $(y^{\beta}, g) = (\prod_{i=1}^n \alpha_i!)$ coeff $(x^{\alpha}, g^*) = perm(A^{\alpha, \beta})$

Definitions

•
$$x^{\alpha} = \prod_{i=0}^{n} x_{i}^{\alpha_{i}}$$
, y^{β} is defined similarly

- perm(A) is a permament of a matrix
- $coeff(y^{\beta},g)$ is a coefficient of monomial y^{β} in g.

Theorem

If
$$||\alpha||_1 = ||\beta||_1$$
, then
 $(\prod_{j=1}^m \beta_j!) coeff(y^{\beta}, g) = (\prod_{i=1}^n \alpha_i!) coeff(x^{\alpha}, g^*) = perm(A^{\alpha, \beta})$

If $\beta = \{0,1\}^E(G)$, $\alpha = 1^V G$, and M is an incidence matrix (M^β indicates a subgraph) then f satisfies Combinatorial Nullstellensatz and polynomial dual to f is $f * = \prod_{uv \in E'} (x_u - x_v)$, that is a traditional graph polynomial of G[E']

Theorem: Alon-Tarsi [1992]

if D is an orientation of a graph H satisfying $deg^+_D(v) = t_v$ at each vertex $v \in V(H)$, then

$$|coeff(\prod_{v\in V(G)} x_v^{t_{v_i}}, f^*)| = |EE(D) - EO(D)|$$

Theorem: Alon-Tarsi [1992]

if D is an orientation of a graph H satisfying $deg^+_D(v) = t_v$ at each vertex $v \in V(H)$, then

$$|coeff(\prod_{v\in V(G)}x_v^{t_{v_i}},f^*)| = |EE(D) - EO(D)|$$

Given that, and a previous theorem, we obtain:

$$(\prod_{j=1}^{m} t_{v_j}!) coeff(y^{\beta}, f) = |coeff(\prod_{v \in V(G)} x_v^{t_{v_j}}, f^*)| = |EE(D) - EO(D)| \neq 0$$