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Basic definitions
e G is an undirected simple graph. V/(G) is a set of vertices. E(G) is a
set of edges.
@ D will be typically used for a directed graphs (or specific orientations)
e Ep(v)~, Ep(v)™" denotes edges incoming/outgoing to v. Respectively
we define degp(v)~, degp(v)™.
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For a graph G and two mappings a, b : V(G) — N satisfying a(v) < b(v)
for every vertex v, G has an orientation D satisfying
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Theorem, Frank and Gyarfas, 1976

For a graph G and two mappings a, b : V(G) — N satisfying a(v) < b(v)
for every vertex v, G has an orientation D satisfying

a(v) < deg (v) < b(v) for every vertex v iff for each subset U € V(G) :

Y a(v) —e(U, 0) < [E(GIUD)| < ) b(v)
velU velU

Where e(U, U) denotes the number of edges between U and U - that is
V(G)\ U
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f - avoiding orientations

Definition

Given a graph G and a function f : V(G) — N, we say that an orientation
D of G is f-avoiding if deg™D(v) # f(v) for each v € V(G).




f - avoiding orientations

Definition
Given a graph G and a function f : V(G) — N, we say that an orientation
D of G is f-avoiding if deg™D(v) # f(v) for each v € V(G).

Theorem: S. Akbari, M. Dalirrooyfard, K. Ehsani, K. Ozeki, and R.

Sherkati. [2020]

There is an f-avoiding orientation for every 2-connected graph G that is
not an odd cycle and for every function f : V(G) — N, and that an odd
cycle has an f-avoiding orientation if and only if f(v) #1 for some vertex v
of the cycle.
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F - avoiding orientations

Definition

A graph G and a function F : V(G) — 2N, an orientation D of G is said
to be F-avoiding if degjy(v) ¢ F(v) for each v € V(G).
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F - avoiding orientations

Definition

A graph G and a function F : V(G) — 2N, an orientation D of G is said
to be F-avoiding if degjy(v) ¢ F(v) for each v € V(G).

1,3

1,2, 3,4
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Let G be a graph, and let F : V(G) — 2. If |F(v)| < 3(degg(v) — 1) for
each v € V(G), then G has an F - avoiding orientation.

7/22



Let G be a graph, and let F : V(G) — 2. If |F(v)| < 3(degg(v) — 1) for
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If that conjecture is true, the bound is tight. 2k-regular graphs on n
vertices with independence number less than k—j’rl and
F(v) ={k,k+1,..,2k — 1} give sharpness. Eg. Kpxi1:
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Let G be a graph, and let F: V(G) — 2V.If G has an orientation D such
that deg) (v) > |F(v)|+ 1 for each v € V(G), then G has an F - avoiding
orientation.
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Conjectures
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Central tool

Combinatorial Nullstellensatz

Let K be a field, and let f be a polynomial over the field K[x1, x, ..., Xn].
Suppose that the degree of fis Y i, t;, where each t; is a nonnegative
integer, and suppose that the coefficient of [[7_; x% in f is nonzero. Then,
if S1,..., S, are subsets of K each satisfying |S;| > t;, then there exist
elements s; € Sy, ..., s, € Sy, so that f(s, ..., s,) #0.
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Central tool

Combinatorial Nullstellensatz

Let K be a field, and let f be a polynomial over the field K[x1, x, ..., Xn].
Suppose that the degree of fis Y i, t;, where each t; is a nonnegative
integer, and suppose that the coefficient of [[7_; x% in f is nonzero. Then,
if S1,..., S, are subsets of K each satisfying |S;| > t;, then there exist
elements s; € Sy, ..., s, € Sy, so that f(s, ..., s,) #0.

We define:
e matrix M =(my.:ve V(G),ec E(G)) my=1If
ec Eg(v,-), me=1ifeec EG_(V,'), and my =0
o fp= HeEE(G)(ZvEV(G) My, eXy)
o f5 = Ileceo)(*v — xu)
f5 is a classical graph polynomial. Graph coloring for instance might be
translated to such polynomial naturally.
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Main Construction

The Imbalance in every vertex is a linear polynomial:

degg(v)_degD(V): Z Mmy.y. = Z Ye — Z Ye

ecE(G) eeEg(v) eEE(L;(v)

So the polynomial is defined as:
n
=] T] ( D. ve— D ve—a)
i=lacF(vi) ecEf(v) e€EL(v)

We can use Combinatorial Nullstellensatz if there exists monomial with
coefficient £ 0 s. t. each y. appears at most once in it, as

deg(fo) = X iepn) ti
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Main Construction

Each y. is present only in one term, because of the acyclic orientation

Def fo = >, ti, where t; = F(v;), as we only care about the monomial
of maximum degree:

f= H( Z Ye — Z }/e)t'_ H( Z mve_ye
i€[n] ecER(v) e€EL(v) i€[n] ecE(G)

The problem is to find a monomial with a nonzero coefficient in f of a

form: ya = ye Ye,---Ye . for A € E(G) s. t. no y? does not divide that
monomial.



Let F: V(G) — 2% be an assignment of forbidden imbalances for a graph
G. Suppose that there exists an ordering of V(G) and a spanning
subgraph H of G such that for each vertex v € V(G), it holds that
|F(v)| < degk(v) — 2degl;(v) + degk(v) . Then G has an F-avoiding
orientation.
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G. Suppose that there exists an ordering of V(G) and a spanning
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One can prove it by considering the polynomial f and its prefix products

=TIC D mueye)®

i€[j] e€E(G)
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Ehsani, K. Ozeki, and R. Sherkati [2020]

Let G be a graph, and let F : V(G) — 2" be a map. If |[F(v)| < ideg(v)
for each vertex v € V(G), then G has an F - avoiding orientation.




Conjectures revisited

Conjecture 1: nearly % approximation, S. Akbari, M. Dalirrooyfard, K.

Ehsani, K. Ozeki, and R. Sherkati [2020]

Let G be a graph, and let F : V(G) — 2" be a map. If |[F(v)| < ideg(v)
for each vertex v € V(G), then G has an F - avoiding orientation.

Using the main Theorem, we can show a better approximation



Conjectures revisited

Conjecture 1: nearly % approximation, S. Akbari, M. Dalirrooyfard, K.

Ehsani, K. Ozeki, and R. Sherkati [2020]

Let G be a graph, and let F : V(G) — 2" be a map. If |[F(v)| < ideg(v)
for each vertex v € V(G), then G has an F - avoiding orientation.

Using the main Theorem, we can show a better approximation

Conjecture 1: a better approximation

Let G be a graph, and let F : V(G) — 2" be a map. If
|F(v)| < %deg(v) — 1 for each vertex v € V(G), then G has an F -
avoiding orientation.

14 /22



Conjectures revisited

Conjecture 1: nearly % approximation, S. Akbari, M. Dalirrooyfard, K.

Ehsani, K. Ozeki, and R. Sherkati [2020]

Let G be a graph, and let F : V(G) — 2" be a map. If |[F(v)| < ideg(v)
for each vertex v € V(G), then G has an F - avoiding orientation.

Using the main Theorem, we can show a better approximation

Conjecture 1: a better approximation

Let G be a graph, and let F : V(G) — 2" be a map. If
|F(v)| < %deg(v) — 1 for each vertex v € V(G), then G has an F -
avoiding orientation.

Moreover we can show a % approximation of Conjecture 2.

14 /22
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Conjecture 1: better approximation

Let G be a graph, and let F: V(G) — 2" be a map. If

|F(v)| < deg(v) — 1 for each vertex v € V(G), then G has an F -
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Conjecture approximations

Conjecture 1: better approximation

Let G be a graph, and let F: V(G) — 2" be a map. If
|F(v)| < deg(v) — 1 for each vertex v € V(G), then G has an F -
avoiding orientation.

Moreover we can show a 2 approximation of Conjecture 2.
5 app j

Conjecture 2: % approximation

Let G be a graph, and let F: V(G) — 2. If G has an orientation D such
that |F(v)| < 3degf(v) — 1 for each v V (G), then G has an F -avoiding
orientation.
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Proof sketch

Technical lemma

Given a graph G = (V,E), let M = (mye : v € V,e € E) be a real-valued
matrix in which m,e #0 only if v € e. Let y € [0,1]F be a vector, and let
x = My. Then, there exists a 01-vector y’ € {0,1}£ such that x' = My’
satsfies x|, > x, — b, for each v € V(G), where b, = max{|my.| : e € E}.
Furthermore, we may choose y so that x, > x, — b, whenever b, > 0.
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Given a graph G = (V,E), let M = (mye : v € V,e € E) be a real-valued
matrix in which m,e #0 only if v € e. Let y € [0,1]F be a vector, and let
x = My. Then, there exists a 01-vector y’ € {0,1}£ such that x' = My’
satsfies x|, > x, — b, for each v € V(G), where b, = max{|my.| : e € E}.
Furthermore, we may choose y so that x, > x, — b, whenever b, > 0.

1/2 0
3/7 11
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8 8 8
S
82 8 8
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@ Using the main Theorem we get

degk(v) — 2degh(v) + degfi(v) > L%deg(v)j -1
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Eulerian orientations

Definition
@ A Graph polynomial coefficients can be determined solely by counting
Eulerian orientations of a graph. These are defined as follows: An

orientation D of the graph G if deg(v) = degp, (v) for every
v e V(G).
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Eulerian orientations

@ A Graph polynomial coefficients can be determined solely by counting
Eulerian orientations of a graph. These are defined as follows: An
orientation D of the graph G if deg(v) = degp, (v) for every
v e V(G).

@ A subgraph H of G is called even if |E(H)| is even and is called odd
otherwise.

e EE(D) and EO(D) are respectively the number of even and odd
Eulerian orientations

Alon-Tarsi [1992]

If G has orientation D s.t EE(D) # EO(D) then D is an Alon-Tarsi
orientation. If D is an Alon-Tarsi orientation of G, and if L is a list
assignment on G for which |L(v)| > degp)(v) at each vertex v € V(G),
then G is L-choosable.

v

>yt

- = = =
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Alon Tarsi number

Definition

Alon Tarsi number is defined as: AT(G) is the minimum value k such that
G has an Alon-Tarsi orientation of maximum out-degree less than k. In
particular AT(G) > ch(G)
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Alon Tarsi number is defined as: AT(G) is the minimum value k such that

G has an Alon-Tarsi orientation of maximum out-degree less than k. In
particular AT(G) > ch(G)

S. Akbari, M. Dalirrooyfard, K. Ehsani, K. Ozeki, and R. Sherkati

[2020]

Let G be a graph, let H be a spanning subgraph of G, and let

F : V(G) — 2" be a map. If there exists an Alon-Tarsi orientation D of H
such that |F(v)| < degp)(v) for every vertex v € V(G), then G has an
F-avoiding orientation.:
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Alon Tarsi number is defined as: AT(G) is the minimum value k such that

G has an Alon-Tarsi orientation of maximum out-degree less than k. In
particular AT(G) > ch(G)

S. Akbari, M. Dalirrooyfard, K. Ehsani, K. Ozeki, and R. Sherkati

[2020]

Let G be a graph, let H be a spanning subgraph of G, and let

F : V(G) — 2" be a map. If there exists an Alon-Tarsi orientation D of H
such that |F(v)| < degp)(v) for every vertex v € V(G), then G has an
F-avoiding orientation.:

Despite the upper theorem proof is based on an original graph polynomial,
it can be proved using the polynomial defined in the main theorem.
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Dual Polynomials

We will consider a A% transformation of a matrix A

a=(1,2)8=(2,1)

12

1
3
34 3

=\

w W

And dual polynomials:

n m
g=1[> a

i=0 j=0

m n
g*:HZa,-jx,-

j=0 i=0
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Dual polynomials

=[1"_, x", y” is defined similarly

° perm(A) is a permament of a matrix

o coeff(y?, g) is a coefficient of monomial y? in g.

If |||z = [|B]l1, then
(]-_[Jm:l BJ')Coeff(yB7g) = (H?:l ai!)Coeff(Xa,g*) — perm(AO{,B)

v,

If 3=1{0,1}5(G), @« =1V G, and M is an incidence matrix (M? indicates
a subgraph) then f satisfies Combinatorial Nullstellensatz and polynomial
dual to fis f* =[], ce/(Xxu — X/), that is a traditional graph polynomial
of G[E']

21/22



Dual polynomials

Theorem: Alon-Tarsi [1992]

if D is an orientation of a graph H satisfying deg/}(v) = t, at each vertex
v € V(H), then

|coeff( [] x, )| = |[EE(D) — EO(D)|
veV(G)




Dual polynomials

Theorem: Alon-Tarsi [1992]

if D is an orientation of a graph H satisfying deg/}(v) = t, at each vertex
v € V(H), then

|coeff( [] x, )| = |[EE(D) — EO(D)|
veV(G)

Given that, and a previous theorem, we obtain:

m
([T tvit)coeff(v°, ) = |coeff( ] x&,f*)| = |EE(D) — EO(D)| #0
j=1 veV(G)



