List avoiding orientations

Peter Bradshaw, Yaobin Chen, Hao Ma, Bojan Mohar, Hehui Wu

March 302023

Introduction

Basic definitions

- G is an undirected simple graph. $V(G)$ is a set of vertices. $E(G)$ is a set of edges.

Introduction

Basic definitions

- G is an undirected simple graph. $V(G)$ is a set of vertices. $E(G)$ is a set of edges.
- D will be typically used for a directed graphs (or specific orientations)

Introduction

Basic definitions

- G is an undirected simple graph. $V(G)$ is a set of vertices. $E(G)$ is a set of edges.
- D will be typically used for a directed graphs (or specific orientations)
- $E_{D}(v)^{-}, E_{D}(v)^{+}$denotes edges incoming/outgoing to v. Respectively we define $\operatorname{deg}_{D}(v)^{-}, \operatorname{deg}_{D}(v)^{+}$.

Introduction

Theorem, Frank and Gyárfás, 1976

For a graph G and two mappings $a, b: V(G) \rightarrow \mathbb{N}$ satisfying $a(v) \leq b(v)$ for every vertex v, G has an orientation D satisfying
$a(v) \leq \operatorname{deg}_{D}^{+}(v) \leq b(v)$ for every vertex v iff for each subset $U \in V(G)$:

Introduction

Theorem, Frank and Gyárfás, 1976

For a graph G and two mappings $a, b: V(G) \rightarrow \mathbb{N}$ satisfying $a(v) \leq b(v)$ for every vertex v, G has an orientation D satisfying $a(v) \leq \operatorname{deg}_{D}^{+}(v) \leq b(v)$ for every vertex v iff for each subset $U \in V(G)$:

$$
\sum_{v \in U} a(v)-e(U, \bar{U}) \leq|E(G[U])| \leq \sum_{v \in U} b(v)
$$

Introduction

Theorem, Frank and Gyárfás, 1976

For a graph G and two mappings $a, b: V(G) \rightarrow \mathbb{N}$ satisfying $a(v) \leq b(v)$ for every vertex v, G has an orientation D satisfying $a(v) \leq \operatorname{deg}_{D}^{+}(v) \leq b(v)$ for every vertex v iff for each subset $U \in V(G)$:

$$
\sum_{v \in U} a(v)-e(U, \bar{U}) \leq|E(G[U])| \leq \sum_{v \in U} b(v)
$$

Where $e(U, \bar{U})$ denotes the number of edges between U and \bar{U} - that is $V(G) \backslash U$

$$
\sqrt{2}
$$

f - avoiding orientations

Definition

Given a graph G and a function $f: V(G) \rightarrow \mathbb{N}$, we say that an orientation D of G is f-avoiding if $\operatorname{deg}^{+} D(v) \neq f(v)$ for each $v \in V(G)$.

f - avoiding orientations

Definition

Given a graph G and a function $f: V(G) \rightarrow \mathbb{N}$, we say that an orientation D of G is f-avoiding if $\operatorname{deg}^{+} D(v) \neq f(v)$ for each $v \in V(G)$.

```
Theorem: S. Akbari, M. Dalirrooyfard, K. Ehsani, K. Ozeki, and R. Sherkati. [2020]
```

There is an f-avoiding orientation for every 2 -connected graph G that is not an odd cycle and for every function $f: V(G) \rightarrow \mathbb{N}$, and that an odd cycle has an f-avoiding orientation if and only if $f(v) \neq 1$ for some vertex v of the cycle.

F - avoiding orientations

Definition

A graph G and a function $F: V(G) \rightarrow 2^{\mathbb{N}}$, an orientation D of G is said to be F-avoiding if $\operatorname{deg}_{D}^{+}(v) \notin F(v)$ for each $v \in V(G)$.

F - avoiding orientations

Definition

A graph G and a function $F: V(G) \rightarrow 2^{\mathbb{N}}$, an orientation D of G is said to be F-avoiding if $\operatorname{deg}_{D}^{+}(v) \notin F(v)$ for each $v \in V(G)$.

F - avoiding orientations

Definition

A graph G and a function $F: V(G) \rightarrow 2^{\mathbb{N}}$, an orientation D of G is said to be F-avoiding if $\operatorname{deg}_{D}^{+}(v) \notin F(v)$ for each $v \in V(G)$.

Conjectures

Conjecture 1

Let G be a graph, and let $F: V(G) \rightarrow 2^{\mathbb{N}}$. If $|F(v)| \leq \frac{1}{2}\left(\operatorname{deg}_{G}(v)-1\right)$ for each $v \in V(G)$, then G has an F - avoiding orientation.

Conjectures

Conjecture 1

Let G be a graph, and let $F: V(G) \rightarrow 2^{\mathbb{N}}$. If $|F(v)| \leq \frac{1}{2}\left(\operatorname{deg}_{G}(v)-1\right)$ for each $v \in V(G)$, then G has an F - avoiding orientation.

If that conjecture is true, the bound is tight. $2 k$-regular graphs on n vertices with independence number less than $\frac{n}{k+1}$ and $F(v)=\{k, k+1, \ldots, 2 k-1\}$ give sharpness. Eg. $K_{2 k+1}$:

Conjectures

Conjecture 1

Let G be a graph, and let $F: V(G) \rightarrow 2^{\mathbb{N}}$. If $|F(v)| \leq \frac{1}{2}\left(\operatorname{deg}_{G}(v)-1\right)$ for each $v \in V(G)$, then G has an F - avoiding orientation.

If that conjecture is true, the bound is tight. $2 k$-regular graphs on n vertices with independence number less than $\frac{n}{k+1}$ and $F(v)=\{k, k+1, \ldots, 2 k-1\}$ give sharpness. Eg. $K_{2 k+1}$:

$$
\begin{aligned}
& 2 k+1=7 \\
& \mathrm{~F}(\mathrm{v})=\{3,4,5\}
\end{aligned}
$$

Conjectures

Conjecture 2

Let G be a graph, and let $F: V(G) \rightarrow 2^{\mathbb{N}}$.If G has an orientation D such that $\operatorname{deg}_{D}^{+}(v) \geq|F(v)|+1$ for each $v \in V(G)$, then G has an F - avoiding orientation.

Conjectures

Conjecture 2

Let G be a graph, and let $F: V(G) \rightarrow 2^{\mathbb{N}}$.If G has an orientation D such that $\operatorname{deg}_{D}^{+}(v) \geq|F(v)|+1$ for each $v \in V(G)$, then G has an F - avoiding orientation.

As every graph G has an orientation such that $v \in V(G)$ satisfies $\operatorname{deg}_{D}^{+}(v) \geq\left\lfloor\frac{1}{2} \operatorname{deg}_{G}(v)\right\rfloor$, Conjecture 2 (if true) implies Conjecture 1 with error at most 1 .

Conjectures

Conjecture 2

Let G be a graph, and let $F: V(G) \rightarrow 2^{\mathbb{N}}$.If G has an orientation D such that $\operatorname{deg}_{D}^{+}(v) \geq|F(v)|+1$ for each $v \in V(G)$, then G has an F - avoiding orientation.

As every graph G has an orientation such that $v \in V(G)$ satisfies $d e g_{D}^{+}(v) \geq\left\lfloor\frac{1}{2} \operatorname{deg}_{G}(v)\right\rfloor$, Conjecture 2 (if true) implies Conjecture 1 with error at most 1 .

Conjectures

Conjecture 2

Let G be a graph, and let $F: V(G) \rightarrow 2^{\mathbb{N}}$.If G has an orientation D such that $\operatorname{deg}_{D}^{+}(v) \geq|F(v)|+1$ for each $v \in V(G)$, then G has an F - avoiding orientation.

As every graph G has an orientation such that $v \in V(G)$ satisfies $d e g_{D}^{+}(v) \geq\left\lfloor\frac{1}{2} \operatorname{deg}_{G}(v)\right\rfloor$, Conjecture 2 (if true) implies Conjecture 1 with error at most 1 .

Conjectures

Conjecture 2

Let G be a graph, and let $F: V(G) \rightarrow 2^{\mathbb{N}}$.If G has an orientation D such that $\operatorname{deg}_{D}^{+}(v) \geq|F(v)|+1$ for each $v \in V(G)$, then G has an F - avoiding orientation.

As every graph G has an orientation such that $v \in V(G)$ satisfies $d e g_{D}^{+}(v) \geq\left\lfloor\frac{1}{2} \operatorname{deg}_{G}(v)\right\rfloor$, Conjecture 2 (if true) implies Conjecture 1 with error at most 1 .

Central tool

Combinatorial Nullstellensatz

Let K be a field, and let f be a polynomial over the field $K\left[x_{1}, x_{2}, \ldots, x_{n}\right]$. Suppose that the degree of f is $\sum_{i=1}^{n} t_{i}$, where each t_{i} is a nonnegative integer, and suppose that the coefficient of $\prod_{i=1}^{n} x^{t_{i}}$ in f is nonzero. Then, if S_{1}, \ldots, S_{n} are subsets of K each satisfying $\left|S_{i}\right|>t_{i}$, then there exist elements $s_{1} \in S_{1}, \ldots, s_{n} \in S_{n}$ so that $f\left(s_{1}, \ldots, s_{n}\right) \neq 0$.

Central tool

Combinatorial Nullstellensatz

Let K be a field, and let f be a polynomial over the field $K\left[x_{1}, x_{2}, \ldots, x_{n}\right]$. Suppose that the degree of f is $\sum_{i=1}^{n} t_{i}$, where each t_{i} is a nonnegative integer, and suppose that the coefficient of $\prod_{i=1}^{n} x^{t_{i}}$ in f is nonzero. Then, if S_{1}, \ldots, S_{n} are subsets of K each satisfying $\left|S_{i}\right|>t_{i}$, then there exist elements $s_{1} \in S_{1}, \ldots, s_{n} \in S_{n}$ so that $f\left(s_{1}, \ldots, s_{n}\right) \neq 0$.

We define:

- matrix $M=\left(m_{v, e}: v \in V(G), e \in E(G)\right) m_{v, e}=1$ if
$e \in E_{G}^{+}\left(v_{i}\right), m_{v, e}=1$ if $e \in E_{G}^{-}\left(v_{i}\right)$, and $m_{v, e}=0$

Central tool

Combinatorial Nullstellensatz

Let K be a field, and let f be a polynomial over the field $K\left[x_{1}, x_{2}, \ldots, x_{n}\right]$. Suppose that the degree of f is $\sum_{i=1}^{n} t_{i}$, where each t_{i} is a nonnegative integer, and suppose that the coefficient of $\prod_{i=1}^{n} x^{t_{i}}$ in f is nonzero. Then, if S_{1}, \ldots, S_{n} are subsets of K each satisfying $\left|S_{i}\right|>t_{i}$, then there exist elements $s_{1} \in S_{1}, \ldots, s_{n} \in S_{n}$ so that $f\left(s_{1}, \ldots, s_{n}\right) \neq 0$.

We define:

- matrix $M=\left(m_{v, e}: v \in V(G), e \in E(G)\right) m_{v, e}=1$ if

$$
e \in E_{G}^{+}\left(v_{i}\right), m_{v, e}=1 \text { if } e \in E_{G}^{-}\left(v_{i}\right), \text { and } m_{v, e}=0
$$

- $f_{D}^{*}=\prod_{e \in E(G)}\left(\sum_{v \in V(G)} m_{v, e} x_{v}\right)$

Central tool

Combinatorial Nullstellensatz

Let K be a field, and let f be a polynomial over the field $K\left[x_{1}, x_{2}, \ldots, x_{n}\right]$. Suppose that the degree of f is $\sum_{i=1}^{n} t_{i}$, where each t_{i} is a nonnegative integer, and suppose that the coefficient of $\prod_{i=1}^{n} x^{t_{i}}$ in f is nonzero. Then, if S_{1}, \ldots, S_{n} are subsets of K each satisfying $\left|S_{i}\right|>t_{i}$, then there exist elements $s_{1} \in S_{1}, \ldots, s_{n} \in S_{n}$ so that $f\left(s_{1}, \ldots, s_{n}\right) \neq 0$.

We define:

- matrix $M=\left(m_{v, e}: v \in V(G), e \in E(G)\right) m_{v, e}=1$ if

$$
\begin{aligned}
& e \in E_{G}^{+}\left(v_{i}\right), m_{v, e}=1 \text { if } e \in E_{G}^{-}(v \\
\text { - } & f_{D}^{*}=\prod_{e \in E(G)}\left(\sum_{v \in V(G)} m_{v, e} x_{v}\right) \\
\text { - } & f_{D}^{*}=\prod_{e \in E(D)}\left(x_{v}-x_{u}\right)
\end{aligned}
$$

Central tool

Combinatorial Nullstellensatz

Let K be a field, and let f be a polynomial over the field $K\left[x_{1}, x_{2}, \ldots, x_{n}\right]$. Suppose that the degree of f is $\sum_{i=1}^{n} t_{i}$, where each t_{i} is a nonnegative integer, and suppose that the coefficient of $\prod_{i=1}^{n} x^{t_{i}}$ in f is nonzero. Then, if S_{1}, \ldots, S_{n} are subsets of K each satisfying $\left|S_{i}\right|>t_{i}$, then there exist elements $s_{1} \in S_{1}, \ldots, s_{n} \in S_{n}$ so that $f\left(s_{1}, \ldots, s_{n}\right) \neq 0$.

We define:

- matrix $M=\left(m_{v, e}: v \in V(G), e \in E(G)\right) m_{v, e}=1$ if

$$
e \in E_{G}^{+}\left(v_{i}\right), m_{v, e}=1 \text { if } e \in E_{G}^{-}\left(v_{i}\right) \text {, and } m_{v, e}=0
$$

- $f_{D}^{*}=\prod_{e \in E(G)}\left(\sum_{v \in V(G)} m_{v, e} x_{v}\right)$
- $f_{D}^{*}=\prod_{e \in E(D)}\left(x_{v}-x_{u}\right)$
f_{D}^{*} is a classical graph polynomial. Graph coloring for instance might be translated to such polynomial naturally.

Main Construction

- We will consider $F: V(G) \rightarrow 2^{\mathbb{Z}}$ defined as imbalance, which is the difference $\operatorname{deg}_{D}^{+}(v) \quad \operatorname{deg}_{D}(v)$. and F is avoiding if $\operatorname{deg}_{D}^{+}(v)$ $\operatorname{deg}_{D}(v) \notin F(v)$

Main Construction

- We will consider $F: V(G) \rightarrow 2^{\mathbb{Z}}$ defined as imbalance, which is the difference $\operatorname{deg}_{D}^{+}(v) \quad \operatorname{deg}_{D}(v)$. and F is avoiding if $\operatorname{deg}_{D}^{+}(v)$ $\operatorname{deg}_{D}(v) \notin F(v)$
- incidence matrix $\mathrm{M}=\left(m_{v, e}: v \in V(G), e \in E(G)\right)$

Main Construction

- We will consider $F: V(G) \rightarrow 2^{\mathbb{Z}}$ defined as imbalance, which is the difference $\operatorname{deg}_{D}^{+}(v) \quad \operatorname{deg}_{D}(v)$. and F is avoiding if $\operatorname{deg}_{D}^{+}(v)$ $\operatorname{deg}_{D}(v) \notin F(v)$
- incidence matrix $\mathrm{M}=\left(m_{v, e}: v \in V(G), e \in E(G)\right)$
- G with acyclic orientation such that each edge $v_{i} v_{j}$ is oriented from i to j if $i<j$

Main Construction

- We will consider $F: V(G) \rightarrow 2^{\mathbb{Z}}$ defined as imbalance, which is the difference $\operatorname{deg}_{D}^{+}(v) \quad \operatorname{deg}_{D}(v)$. and F is avoiding if $\operatorname{deg}_{D}^{+}(v)$ $\operatorname{deg}_{D}(v) \notin F(v)$
- incidence matrix $\mathrm{M}=\left(m_{v, e}: v \in V(G), e \in E(G)\right)$
- G with acyclic orientation such that each edge $v_{i} v_{j}$ is oriented from i to j if $i<j$
- For each vertex $v_{i} \in V(G)$, we let $E_{G}^{R}\left(v_{i}\right)$ denote the edges $v_{i} v_{j} \in E(G)$ with $j>i$, and we let $E_{G}^{L}\left(v_{i}\right)$ denote the edges if $i>j$. Similarly define $\operatorname{deg}_{G}^{R}(v)$ and $\operatorname{deg}_{G}^{L}(v)$

Main Construction

- We will consider $F: V(G) \rightarrow 2^{\mathbb{Z}}$ defined as imbalance, which is the difference $\operatorname{deg}_{D}^{+}(v) \quad \operatorname{deg}_{D}(v)$. and F is avoiding if $\operatorname{deg}_{D}^{+}(v)$ $\operatorname{deg}_{D}(v) \notin F(v)$
- incidence matrix $\mathrm{M}=\left(m_{v, e}: v \in V(G), e \in E(G)\right)$
- G with acyclic orientation such that each edge $v_{i} v_{j}$ is oriented from i to j if $i<j$
- For each vertex $v_{i} \in V(G)$, we let $E_{G}^{R}\left(v_{i}\right)$ denote the edges $v_{i} v_{j} \in E(G)$ with $j>i$, and we let $E_{G}^{L}\left(v_{i}\right)$ denote the edges if $i>j$. Similarly define $\operatorname{deg}_{G}^{R}(v)$ and $\operatorname{deg}_{G}^{L}(v)$
- For each edge $e \in E(G)$, we consider a variable y_{e}. Given an orientation D of G , and given an edge $\mathrm{e}=v_{i} v_{j}$ with $i<j$, we set $y_{e}=1$ if e is oriented from v_{i} to v_{j} in D, and we set $y_{e}=-1$ otherwise.

Main Construction

- We will consider $F: V(G) \rightarrow 2^{\mathbb{Z}}$ defined as imbalance, which is the difference $\operatorname{deg}_{D}^{+}(v) \quad \operatorname{deg}_{D}(v)$. and F is avoiding if $\operatorname{deg}_{D}^{+}(v)$ $\operatorname{deg}_{D}(v) \notin F(v)$
- incidence matrix $\mathrm{M}=\left(m_{v, e}: v \in V(G), e \in E(G)\right)$
- G with acyclic orientation such that each edge $v_{i} v_{j}$ is oriented from i to j if $i<j$
- For each vertex $v_{i} \in V(G)$, we let $E_{G}^{R}\left(v_{i}\right)$ denote the edges $v_{i} v_{j} \in E(G)$ with $j>i$, and we let $E_{G}^{L}\left(v_{i}\right)$ denote the edges if $i>j$. Similarly define $\operatorname{deg}_{G}^{R}(v)$ and $\operatorname{deg}_{G}^{L}(v)$
- For each edge $e \in E(G)$, we consider a variable y_{e}. Given an orientation D of G , and given an edge $\mathrm{e}=v_{i} v_{j}$ with $i<j$, we set $y_{e}=1$ if e is oriented from v_{i} to v_{j} in D, and we set $y_{e}=-1$ otherwise.

Main Construction

The Imbalance in every vertex is a linear polynomial:

$$
\operatorname{deg}_{D}^{+}(v)-\operatorname{deg}_{D}(v)=\sum_{e \in E(G)} m_{v_{e} y_{e}}=\sum_{e \in E_{G}^{R}(v)} y_{e}-\sum_{e \in E_{G}^{L}(v)} y_{e}
$$

Main Construction

The Imbalance in every vertex is a linear polynomial:

$$
\operatorname{deg}_{D}^{+}(v)-\operatorname{deg}_{D}(v)=\sum_{e \in E(G)} m_{v_{e} y_{e}}=\sum_{e \in E_{G}^{R}(v)} y_{e}-\sum_{e \in E_{G}^{L}(v)} y_{e}
$$

So the polynomial is defined as:

$$
f_{0}=\prod_{i=1}^{n} \prod_{a \in F\left(v_{i}\right)}\left(\sum_{e \in E_{G}^{R}(v)} y_{e}-\sum_{e \in E_{G}^{L}(v)} y_{e}-a\right)
$$

We can use Combinatorial Nullstellensatz if there exists monomial with coefficient $\neq 0 \mathrm{~s}$. t. each y_{e} appears at most once in it, as $\operatorname{deg}\left(f_{0}\right)=\sum_{i \in[n]} t_{i}$

Main Construction

Each y_{e} is present only in one term, because of the acyclic orientation. Def $f_{0}=\sum_{i=1}^{n} t_{i}$, where $t_{i}=F\left(v_{i}\right)$, as we only care about the monomial of maximum degree:

Main Construction

Each y_{e} is present only in one term, because of the acyclic orientation. Def $f_{0}=\sum_{i=1}^{n} t_{i}$, where $t_{i}=F\left(v_{i}\right)$, as we only care about the monomial of maximum degree:

$$
f=\prod_{i \in[n]}\left(\sum_{e \in E_{G}^{R}\left(v_{i}\right)} y_{e}-\sum_{e \in E_{G}^{L}\left(v_{i}\right)} y_{e}\right)^{t_{i}}=\prod_{i \in[n]}\left(\sum_{e \in E(G)} m_{v e} y_{e}\right)^{t_{i}}
$$

Main Construction

Each y_{e} is present only in one term, because of the acyclic orientation. Def $f_{0}=\sum_{i=1}^{n} t_{i}$, where $t_{i}=F\left(v_{i}\right)$, as we only care about the monomial of maximum degree:

$$
f=\prod_{i \in[n]}\left(\sum_{e \in E_{G}^{R}\left(v_{i}\right)} y_{e}-\sum_{e \in E_{G}^{L}\left(v_{i}\right)} y_{e}\right)^{t_{i}}=\prod_{i \in[n]}\left(\sum_{e \in E(G)} m_{v e} y_{e}\right)^{t_{i}}
$$

The problem is to find a monomial with a nonzero coefficient in f of a form: $y_{A}=y_{e_{1}} y_{e_{2}} \ldots y_{e_{|A|}}$ for $A \in E(G)$ s. t. no y_{e}^{2} does not divide that monomial.

Main Theorem

Theorem

Let $F: V(G) \rightarrow 2^{\mathbb{Z}}$ be an assignment of forbidden imbalances for a graph G. Suppose that there exists an ordering of $V(G)$ and a spanning subgraph H of G such that for each vertex $v \in V(G)$, it holds that $|F(v)| \leq \operatorname{deg}_{G}^{L}(v)-2 \operatorname{deg}_{H}^{L}(v)+\operatorname{deg}_{G}^{L}(v)$. Then G has an F-avoiding orientation.

Main Theorem

Theorem

Let $F: V(G) \rightarrow 2^{\mathbb{Z}}$ be an assignment of forbidden imbalances for a graph G. Suppose that there exists an ordering of $V(G)$ and a spanning subgraph H of G such that for each vertex $v \in V(G)$, it holds that $|F(v)| \leq \operatorname{deg}_{G}^{L}(v)-2 \operatorname{deg}_{H}^{L}(v)+\operatorname{deg}_{G}^{L}(v)$. Then G has an F-avoiding orientation.

One can prove it by considering the polynomial f and its prefix products

Main Theorem

Theorem

Let $F: V(G) \rightarrow 2^{\mathbb{Z}}$ be an assignment of forbidden imbalances for a graph G. Suppose that there exists an ordering of $V(G)$ and a spanning subgraph H of G such that for each vertex $v \in V(G)$, it holds that $|F(v)| \leq \operatorname{deg}_{G}^{L}(v)-2 \operatorname{deg}_{H}^{L}(v)+\operatorname{deg}_{G}^{L}(v)$. Then G has an F-avoiding orientation.

One can prove it by considering the polynomial f and its prefix products

$$
f_{j}=\prod_{i \in[j]}\left(\sum_{e \in E(G)} m_{v e} y_{e}\right)^{t_{i}}
$$

Conjectures revisited

Conjecture 1: nearly $\frac{1}{2}$ approximation, S. Akbari, M. Dalirrooyfard, K. Ehsani, K. Ozeki, and R. Sherkati [2020]
Let G be a graph, and let $F: V(G) \rightarrow 2^{\mathbb{N}}$ be a map. If $|F(v)| \leq \frac{1}{4} \operatorname{deg}(v)$ for each vertex $v \in V(G)$, then G has an F - avoiding orientation.

Conjectures revisited

Conjecture 1: nearly $\frac{1}{2}$ approximation, S. Akbari, M. Dalirrooyfard, K. Ehsani, K. Ozeki, and R. Sherkati [2020]
Let G be a graph, and let $F: V(G) \rightarrow 2^{\mathbb{N}}$ be a map. If $|F(v)| \leq \frac{1}{4} \operatorname{deg}(v)$ for each vertex $v \in V(G)$, then G has an F - avoiding orientation.

Using the main Theorem, we can show a better approximation

Conjectures revisited

Conjecture 1: nearly $\frac{1}{2}$ approximation, S. Akbari, M. Dalirrooyfard, K. Ehsani, K. Ozeki, and R. Sherkati [2020]
Let G be a graph, and let $F: V(G) \rightarrow 2^{\mathbb{N}}$ be a map. If $|F(v)| \leq \frac{1}{4} \operatorname{deg}(v)$ for each vertex $v \in V(G)$, then G has an F - avoiding orientation.

Using the main Theorem, we can show a better approximation

Conjecture 1: a better approximation

Let G be a graph, and let $F: V(G) \rightarrow 2^{\mathbb{N}}$ be a map. If $|F(v)| \leq \frac{1}{3} \operatorname{deg}(v)-1$ for each vertex $v \in V(G)$, then G has an F avoiding orientation.

Conjectures revisited

Conjecture 1: nearly $\frac{1}{2}$ approximation, S. Akbari, M. Dalirrooyfard, K. Ehsani, K. Ozeki, and R. Sherkati [2020]
Let G be a graph, and let $F: V(G) \rightarrow 2^{\mathbb{N}}$ be a map. If $|F(v)| \leq \frac{1}{4} \operatorname{deg}(v)$ for each vertex $v \in V(G)$, then G has an F - avoiding orientation.

Using the main Theorem, we can show a better approximation

Conjecture 1: a better approximation

Let G be a graph, and let $F: V(G) \rightarrow 2^{\mathbb{N}}$ be a map. If $|F(v)| \leq \frac{1}{3} \operatorname{deg}(v)-1$ for each vertex $v \in V(G)$, then G has an F avoiding orientation.

Moreover we can show a $\frac{2}{3}$ approximation of Conjecture 2.

Conjecture approximations

Conjecture 1: better approximation
Let G be a graph, and let $F: V(G) \rightarrow 2^{\mathbb{N}}$ be a map. If $|F(v)| \leq \frac{1}{3} \operatorname{deg}(v)-1$ for each vertex $v \in V(G)$, then G has an F avoiding orientation.

Conjecture approximations

Conjecture 1: better approximation

Let G be a graph, and let $F: V(G) \rightarrow 2^{\mathbb{N}}$ be a map. If $|F(v)| \leq \frac{1}{3} \operatorname{deg}(v)-1$ for each vertex $v \in V(G)$, then G has an F avoiding orientation.

Moreover we can show a $\frac{2}{3}$ approximation of Conjecture 2.

Conjecture 2: $\frac{2}{3}$ approximation

Let G be a graph, and let $F: V(G) \rightarrow 2^{\mathbb{N}}$. If G has an orientation D such that $|F(v)| \leq \frac{2}{3} \operatorname{deg}_{D}^{+}(v)-1$ for each $v \vee(G)$, then G has an F-avoiding orientation.

Proof sketch

Technical lemma

Given a graph $G=(V, E)$, let $M=\left(m_{v e}: v \in V, e \in E\right)$ be a real-valued matrix in which $m_{v e} \neq 0$ only if $v \in e$. Let $y \in[0,1]^{E}$ be a vector, and let $x=M y$. Then, there exists a 01-vector $y^{\prime} \in\{0,1\}^{E}$ such that $x^{\prime}=M y^{\prime}$ satsfies $x_{v}^{\prime} \geq x_{v}-b_{v}$ for each $v \in V(G)$, where $b_{v}=\max \left\{\left|m_{v e}\right|: e \in E\right\}$. Furthermore, we may choose y so that $x_{v}>x_{v}-b_{v}$ whenever $b_{v}>0$.

Proof sketch

Technical lemma

Given a graph $G=(V, E)$, let $M=\left(m_{v e}: v \in V, e \in E\right)$ be a real-valued matrix in which $m_{v e} \neq 0$ only if $v \in e$. Let $y \in[0,1]^{E}$ be a vector, and let $x=M y$. Then, there exists a 01-vector $y^{\prime} \in\{0,1\}^{E}$ such that $x^{\prime}=M y^{\prime}$ satsfies $x_{v}^{\prime} \geq x_{v}-b_{v}$ for each $v \in V(G)$, where $b_{v}=\max \left\{\left|m_{v e}\right|: e \in E\right\}$. Furthermore, we may choose y so that $x_{v}>x_{v}-b_{v}$ whenever $b_{v}>0$.

$$
\left[\begin{array}{l}
1 / 2 \\
3 / 7 \\
2 / 5
\end{array}\right] \longrightarrow\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

Proof sketch

- Using the main Theorem we get $\operatorname{deg}_{G}^{L}(v)-2 \operatorname{deg}_{H}^{L}(v)+\operatorname{deg}_{H}^{R}(v) \geq\left\lfloor\frac{1}{3} \operatorname{deg}(v)\right\rfloor-1$.

Proof sketch

- Using the main Theorem we get $\operatorname{deg}_{G}^{L}(v)-2 \operatorname{deg}_{H}^{L}(v)+\operatorname{deg}_{H}^{R}(v) \geq\left\lfloor\frac{1}{3} \operatorname{deg}(v)\right\rfloor-1$.

Proof sketch

- Using the main Theorem we get $\operatorname{deg}_{G}^{L}(v)-2 \operatorname{deg}_{H}^{L}(v)+\operatorname{deg}_{H}^{R}(v) \geq\left\lfloor\frac{1}{3} \operatorname{deg}(v)\right\rfloor-1$.

Proof sketch

- Using the main Theorem we get $\operatorname{deg}_{G}^{L}(v)-2 \operatorname{deg}_{H}^{L}(v)+\operatorname{deg}_{H}^{R}(v) \geq\left\lfloor\frac{1}{3} \operatorname{deg}(v)\right\rfloor-1$.

Proof sketch

- Using the main Theorem we get $\operatorname{deg}_{G}^{L}(v)-2 \operatorname{deg}_{H}^{L}(v)+\operatorname{deg}_{H}^{R}(v) \geq\left\lfloor\frac{1}{3} \operatorname{deg}(v)\right\rfloor-1$.

$$
x_{v}=\frac{2}{3} d e g_{G}^{L}(v)+\frac{1}{3} d e g_{G}^{R}(v)=\frac{1}{3} d e g_{G}(v)-d e g_{G}^{L}(v)
$$

Proof sketch

- Using the main Theorem we get $\operatorname{deg}_{G}^{L}(v)-2 \operatorname{deg}_{H}^{L}(v)+\operatorname{deg}_{H}^{R}(v) \geq\left\lfloor\frac{1}{3} \operatorname{deg}(v)\right\rfloor-1$.

$$
\begin{aligned}
& x_{v}=\frac{2}{3} d e g_{G}^{L}(v)+\frac{1}{3} d e g_{G}^{R}(v)=\frac{1}{3} d e g_{G}(v)-d e g_{G}^{L}(v) \\
& x_{v}^{\prime} \geq \frac{1}{3} d e g_{G}(v)-d e g_{G}^{L}(v)-2
\end{aligned}
$$

Eulerian orientations

Definition

- A Graph polynomial coefficients can be determined solely by counting Eulerian orientations of a graph. These are defined as follows: An orientation D of the graph G if $\operatorname{deg}_{D}^{+}(v)=\operatorname{deg}_{D}^{-}(v)$ for every $v \in V(G)$.

Eulerian orientations

Definition

- A Graph polynomial coefficients can be determined solely by counting Eulerian orientations of a graph. These are defined as follows: An orientation D of the graph G if $\operatorname{deg}_{D}^{+}(v)=\operatorname{deg}_{D}^{-}(v)$ for every $v \in V(G)$.
- A subgraph H of G is called even if $|E(H)|$ is even and is called odd otherwise.

Eulerian orientations

Definition

- A Graph polynomial coefficients can be determined solely by counting Eulerian orientations of a graph. These are defined as follows: An orientation D of the graph G if $\operatorname{deg}_{D}^{+}(v)=\operatorname{deg}_{D}^{-}(v)$ for every $v \in V(G)$.
- A subgraph H of G is called even if $|E(H)|$ is even and is called odd otherwise.
- $E E(D)$ and $E O(D)$ are respectively the number of even and odd Eulerian orientations

Eulerian orientations

Definition

- A Graph polynomial coefficients can be determined solely by counting Eulerian orientations of a graph. These are defined as follows: An orientation D of the graph G if $\operatorname{deg}_{D}^{+}(v)=\operatorname{deg}_{D}^{-}(v)$ for every $v \in V(G)$.
- A subgraph H of G is called even if $|E(H)|$ is even and is called odd otherwise.
- $E E(D)$ and $E O(D)$ are respectively the number of even and odd Eulerian orientations

Alon-Tarsi [1992]

If G has orientation D s.t $E E(D) \neq E O(D)$ then D is an Alon-Tarsi orientation. If D is an Alon-Tarsi orientation of G, and if L is a list assignment on G for which $|L(v)|>\operatorname{deg}_{D}^{+}(v)$ at each vertex $v \in V(G)$, then G is L-choosable.

Alon Tarsi number

Definition

Alon Tarsi number is defined as: $A T(G)$ is the minimum value k such that G has an Alon-Tarsi orientation of maximum out-degree less than k . In particular $A T(G) \geq c h(G)$

Alon Tarsi number

Definition

Alon Tarsi number is defined as: $A T(G)$ is the minimum value k such that G has an Alon-Tarsi orientation of maximum out-degree less than k . In particular $A T(G) \geq c h(G)$

S. Akbari, M. Dalirrooyfard, K. Ehsani, K. Ozeki, and R. Sherkati [2020]

Let G be a graph, let H be a spanning subgraph of G, and let $F: V(G) \rightarrow 2^{\mathbb{N}}$ be a map. If there exists an Alon-Tarsi orientation D of H such that $|F(v)| \leq \operatorname{deg}_{D}^{+}(v)$ for every vertex $v \in V(G)$, then G has an F-avoiding orientation.:

Alon Tarsi number

Definition

Alon Tarsi number is defined as: $A T(G)$ is the minimum value k such that G has an Alon-Tarsi orientation of maximum out-degree less than k. In particular $A T(G) \geq c h(G)$

S. Akbari, M. Dalirrooyfard, K. Ehsani, K. Ozeki, and R. Sherkati [2020]

Let G be a graph, let H be a spanning subgraph of G, and let
$F: V(G) \rightarrow 2^{\mathbb{N}}$ be a map. If there exists an Alon-Tarsi orientation D of H such that $|F(v)| \leq \operatorname{deg}_{D}^{+}(v)$ for every vertex $v \in V(G)$, then G has an F-avoiding orientation.:

Despite the upper theorem proof is based on an original graph polynomial, it can be proved using the polynomial defined in the main theorem.

Dual Polynomials

We will consider a $A^{\alpha, \beta}$ transformation of a matrix A

Dual Polynomials

We will consider a $A^{\alpha, \beta}$ transformation of a matrix A

$$
\begin{gathered}
\alpha=(1,2) \beta=(2,1) \\
{\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \longrightarrow\left[\begin{array}{lll}
1 & 1 & 2 \\
3 & 3 & 4 \\
3 & 3 & 4
\end{array}\right]}
\end{gathered}
$$

Dual Polynomials

We will consider a $A^{\alpha, \beta}$ transformation of a matrix A

$$
\begin{gathered}
\alpha=(1,2) \beta=(2,1) \\
{\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \longrightarrow\left[\begin{array}{lll}
1 & 1 & 2 \\
3 & 3 & 4 \\
3 & 3 & 4
\end{array}\right]}
\end{gathered}
$$

And dual polynomials:

$$
\begin{aligned}
& g=\prod_{i=0}^{n} \sum_{j=0}^{m} a_{i j} y_{j} \\
& g *=\prod_{j=0}^{m} \sum_{i=0}^{n} a_{i j} x_{i}
\end{aligned}
$$

Dual polynomials

Definitions

- $x^{\alpha}=\prod_{i=0}^{n} x_{i}^{\alpha_{i}}, y^{\beta}$ is defined similarly

Dual polynomials

Definitions

- $x^{\alpha}=\prod_{i=0}^{n} x_{i}^{\alpha_{i}}, y^{\beta}$ is defined similarly
- $\operatorname{perm}(A)$ is a permament of a matrix

Dual polynomials

Definitions

- $x^{\alpha}=\prod_{i=0}^{n} x_{i}^{\alpha_{i}}, y^{\beta}$ is defined similarly
- $\operatorname{perm}(A)$ is a permament of a matrix
- coeff $\left(y^{\beta}, g\right)$ is a coefficient of monomial y^{β} in g.

Dual polynomials

Definitions

- $x^{\alpha}=\prod_{i=0}^{n} x_{i}^{\alpha_{i}}, y^{\beta}$ is defined similarly
- $\operatorname{perm}(A)$ is a permament of a matrix
- coeff $\left(y^{\beta}, g\right)$ is a coefficient of monomial y^{β} in g.

> Theorem
> If $\|\alpha\|_{1}=\|\beta\|_{1}$, then
> $\left(\prod_{j=1}^{m} \beta_{j}!\right) \operatorname{coeff}\left(y^{\beta}, g\right)=\left(\prod_{i=1}^{n} \alpha_{i}!\right) \operatorname{coeff}\left(x^{\alpha}, g *\right)=\operatorname{perm}\left(A^{\alpha, \beta}\right)$

Dual polynomials

Definitions

- $x^{\alpha}=\prod_{i=0}^{n} x_{i}^{\alpha_{i}}, y^{\beta}$ is defined similarly
- $\operatorname{perm}(A)$ is a permament of a matrix
- coeff $\left(y^{\beta}, g\right)$ is a coefficient of monomial y^{β} in g.

Theorem

If $\|\alpha\|_{1}=\|\beta\|_{1}$, then
$\left(\prod_{j=1}^{m} \beta_{j}!\right) \operatorname{coeff}\left(y^{\beta}, g\right)=\left(\prod_{i=1}^{n} \alpha_{i}!\right) \operatorname{coeff}\left(x^{\alpha}, g *\right)=\operatorname{perm}\left(A^{\alpha, \beta}\right)$
If $\beta=\{0,1\}^{E}(G), \alpha=1^{V} G$, and M is an incidence matrix (M^{β} indicates a subgraph) then f satisfies Combinatorial Nullstellensatz and polynomial dual to f is $f *=\prod_{u v \in E^{\prime}}\left(x_{u}-x_{v}\right)$, that is a traditional graph polynomial of $G\left[E^{\prime}\right]$

Dual polynomials

Theorem: Alon-Tarsi [1992]

if D is an orientation of a graph H satisfying $\operatorname{deg}_{D}^{+}(v)=t_{v}$ at each vertex $v \in V(H)$, then

$$
\left|\operatorname{coeff}\left(\prod_{v \in V(G)} x_{v}^{t_{v i}}, f^{*}\right)\right|=|E E(D)-E O(D)|
$$

Dual polynomials

Theorem: Alon-Tarsi [1992]

if D is an orientation of a graph H satisfying $\operatorname{deg}_{D}^{+}(v)=t_{v}$ at each vertex $v \in V(H)$, then

$$
\left|\operatorname{coeff}\left(\prod_{v \in V(G)} x_{V}^{t_{v i}}, f^{*}\right)\right|=|E E(D)-E O(D)|
$$

Given that, and a previous theorem, we obtain:

$$
\left(\prod_{j=1}^{m} t_{v i}!\right) \operatorname{coeff}\left(y^{\beta}, f\right)=\left|\operatorname{coeff}\left(\prod_{v \in V(G)} x_{v}^{t_{v i}}, f^{*}\right)\right|=|E E(D)-E O(D)| \neq 0
$$

