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Introduction

Basic definitions

G is an undirected simple graph. V (G ) is a set of vertices. E (G ) is a
set of edges.

D will be typically used for a directed graphs (or specific orientations)

ED(v)
−, ED(v)

+ denotes edges incoming/outgoing to v. Respectively
we define degD(v)

−, degD(v)
+.
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Introduction

Theorem, Frank and Gyárfás, 1976

For a graph G and two mappings a, b : V (G ) → N satisfying a(v) ≤ b(v)
for every vertex v , G has an orientation D satisfying
a(v) ≤ deg+

D (v) ≤ b(v) for every vertex v iff for each subset U ∈ V (G ) :

∑
v∈U

a(v)− e(U, Ū) ≤ |E (G [U])| ≤
∑
v∈U

b(v)

Where e(U, Ū) denotes the number of edges between U and Ū - that is
V (G ) \ U
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Example

U
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f - avoiding orientations

Definition

Given a graph G and a function f : V (G ) → N, we say that an orientation
D of G is f -avoiding if deg+D(v) ̸= f (v) for each v ∈ V (G ).

Theorem: S. Akbari, M. Dalirrooyfard, K. Ehsani, K. Ozeki, and R.
Sherkati. [2020]

There is an f -avoiding orientation for every 2-connected graph G that is
not an odd cycle and for every function f : V (G ) → N, and that an odd
cycle has an f-avoiding orientation if and only if f (v) ̸=1 for some vertex v
of the cycle.

5 / 22



f - avoiding orientations

Definition

Given a graph G and a function f : V (G ) → N, we say that an orientation
D of G is f -avoiding if deg+D(v) ̸= f (v) for each v ∈ V (G ).

Theorem: S. Akbari, M. Dalirrooyfard, K. Ehsani, K. Ozeki, and R.
Sherkati. [2020]

There is an f -avoiding orientation for every 2-connected graph G that is
not an odd cycle and for every function f : V (G ) → N, and that an odd
cycle has an f-avoiding orientation if and only if f (v) ̸=1 for some vertex v
of the cycle.

5 / 22



F - avoiding orientations

Definition

A graph G and a function F : V (G ) → 2N, an orientation D of G is said
to be F -avoiding if deg+

D (v) /∈ F (v) for each v ∈ V (G ).
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F - avoiding orientations

Definition

A graph G and a function F : V (G ) → 2N, an orientation D of G is said
to be F -avoiding if deg+

D (v) /∈ F (v) for each v ∈ V (G ).

1, 3

2

4, 3

1, 3

1, 2, 3, 4
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Conjectures

Conjecture 1

Let G be a graph, and let F : V (G ) → 2N. If |F (v)| ≤ 1
2(degG (v)− 1) for

each v ∈ V (G ), then G has an F - avoiding orientation.

If that conjecture is true, the bound is tight. 2k-regular graphs on n
vertices with independence number less than n

k+1 and
F (v) = {k , k + 1, ..., 2k − 1} give sharpness. Eg. K2k+1:
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each v ∈ V (G ), then G has an F - avoiding orientation.

If that conjecture is true, the bound is tight. 2k-regular graphs on n
vertices with independence number less than n

k+1 and
F (v) = {k , k + 1, ..., 2k − 1} give sharpness. Eg. K2k+1:

2k + 1 = 7

F(v) = {3, 4, 5 }
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Conjectures

Conjecture 2

Let G be a graph, and let F : V (G ) → 2N.If G has an orientation D such
that deg+

D (v) ≥ |F (v)|+ 1 for each v ∈ V (G ), then G has an F - avoiding
orientation.

As every graph G has an orientation such that v ∈ V (G ) satisfies
deg+

D (v) ≥ ⌊12degG (v)⌋, Conjecture 2 (if true) implies Conjecture 1 with
error at most 1.
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Central tool

Combinatorial Nullstellensatz

Let K be a field, and let f be a polynomial over the field K [x1, x2, ..., xn].
Suppose that the degree of f is

∑n
i=1 ti , where each ti is a nonnegative

integer, and suppose that the coefficient of
∏n

i=1 x
ti in f is nonzero. Then,

if S1, ...,Sn are subsets of K each satisfying |Si | > ti , then there exist
elements s1 ∈ S1, ..., sn ∈ Sn so that f (s1, ..., sn) ̸=0.

We define:

matrix M = (mv ,e : v ∈ V (G ), e ∈ E (G )) mv ,e = 1 if
e ∈ E+

G (vi ),mv ,e = 1 if e ∈ E−
G (vi ), and mv ,e = 0

f ∗D =
∏

e∈E(G)(
∑

v∈V (G)mv ,exv )

f ∗D =
∏

e∈E(D)(xv − xu)

f ∗D is a classical graph polynomial. Graph coloring for instance might be
translated to such polynomial naturally.
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Main Construction

We will consider F : V (G ) → 2Z defined as imbalance, which is the
difference deg+

D (v) degD(v). and F is avoiding if deg+
D (v)

degD(v) /∈ F (v)

incidence matrix M =(mv ,e : v ∈ V (G ), e ∈ E (G ))

G with acyclic orientation such that each edge vivj is oriented from i
to j if i < j

For each vertex vi ∈ V (G ), we let ER
G (vi ) denote the edges

vivj ∈ E (G ) with j > i , and we let EL
G (vi ) denote the edges if i > j .

Similarly define degR
G (v) and degL

G (v)

For each edge e ∈ E (G ), we consider a variable ye . Given an
orientation D of G, and given an edge e = vivj with i < j , we set
ye = 1 if e is oriented from vi to vj in D,and we set ye = −1
otherwise.
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Main Construction

The Imbalance in every vertex is a linear polynomial:

deg+
D (v)− degD(v) =

∑
e∈E(G)

mveye =
∑

e∈ER
G (v)

ye −
∑

e∈EL
G (v)

ye

So the polynomial is defined as:

f0 =
n∏

i=1

∏
a∈F (vi )

(
∑

e∈ER
G (v)

ye −
∑

e∈EL
G (v)

ye − a)

We can use Combinatorial Nullstellensatz if there exists monomial with
coefficient ̸= 0 s. t. each ye appears at most once in it, as
deg(f0) =

∑
i∈[n] ti
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Main Construction

Each ye is present only in one term, because of the acyclic orientation.
Def f0 =

∑n
i=1 ti , where ti = F (vi ), as we only care about the monomial

of maximum degree:

f =
∏
i∈[n]

(
∑

e∈ER
G (vi )

ye −
∑

e∈EL
G (vi )

ye)
ti =

∏
i∈[n]

(
∑

e∈E(G)

mveye)
ti

The problem is to find a monomial with a nonzero coefficient in f of a
form: yA = ye1ye2 ...ye|A| for A ∈ E (G ) s. t. no y2e does not divide that
monomial.
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Main Theorem

Theorem

Let F : V (G ) → 2Z be an assignment of forbidden imbalances for a graph
G . Suppose that there exists an ordering of V (G ) and a spanning
subgraph H of G such that for each vertex v ∈ V (G ), it holds that
|F (v)| ≤ degL

G (v)− 2degL
H(v) + degL

G (v) . Then G has an F-avoiding
orientation.

One can prove it by considering the polynomial f and its prefix products

fj =
∏
i∈[j]

(
∑

e∈E(G)

mveye)
ti
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Conjectures revisited

Conjecture 1: nearly 1
2
approximation, S. Akbari, M. Dalirrooyfard, K.

Ehsani, K. Ozeki, and R. Sherkati [2020]

Let G be a graph, and let F : V (G ) → 2N be a map. If |F (v)| ≤ 1
4deg(v)

for each vertex v ∈ V (G ), then G has an F - avoiding orientation.

Using the main Theorem, we can show a better approximation

Conjecture 1: a better approximation

Let G be a graph, and let F : V (G ) → 2N be a map. If
|F (v)| ≤ 1

3deg(v)− 1 for each vertex v ∈ V (G ), then G has an F -
avoiding orientation.

Moreover we can show a 2
3 approximation of Conjecture 2.
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Proof sketch

Technical lemma

Given a graph G = (V ,E ), let M = (mve : v ∈ V , e ∈ E ) be a real-valued
matrix in which mve ̸=0 only if v ∈ e. Let y ∈ [0, 1]E be a vector, and let
x = My . Then, there exists a 01-vector y ′ ∈ {0, 1}E such that x ′ = My ′

satsfies x ′v ≥ xv − bv for each v ∈ V (G ), where bv = max{|mve | : e ∈ E}.
Furthermore, we may choose y so that xv > xv − bv whenever bv > 0.
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Proof sketch

Using the main Theorem we get
degL

G (v)− 2degL
H(v) + degR

H (v) ≥ ⌊13deg(v)⌋ − 1.
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Eulerian orientations

Definition

A Graph polynomial coefficients can be determined solely by counting
Eulerian orientations of a graph. These are defined as follows: An
orientation D of the graph G if deg+

D (v) = deg−
D (v) for every

v ∈ V (G ).

A subgraph H of G is called even if |E (H)| is even and is called odd
otherwise.

EE (D) and EO(D) are respectively the number of even and odd
Eulerian orientations

Alon-Tarsi [1992]

If G has orientation D s.t EE (D) ̸= EO(D) then D is an Alon-Tarsi
orientation. If D is an Alon-Tarsi orientation of G , and if L is a list
assignment on G for which |L(v)| > deg+

D (v) at each vertex v ∈ V (G ),
then G is L-choosable.
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Alon Tarsi number

Definition

Alon Tarsi number is defined as: AT (G ) is the minimum value k such that
G has an Alon-Tarsi orientation of maximum out-degree less than k. In
particular AT (G ) ≥ ch(G )

S. Akbari, M. Dalirrooyfard, K. Ehsani, K. Ozeki, and R. Sherkati
[2020]

Let G be a graph, let H be a spanning subgraph of G , and let
F : V (G ) → 2N be a map. If there exists an Alon-Tarsi orientation D of H
such that |F (v)| ≤ deg+

D (v) for every vertex v ∈ V (G ), then G has an
F -avoiding orientation.:

Despite the upper theorem proof is based on an original graph polynomial,
it can be proved using the polynomial defined in the main theorem.
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Dual Polynomials

We will consider a Aα,β transformation of a matrix A

�

1 2

3 4

�

� = (1; 2)� = (2; 1)
2

4

1 1 2

3 3 4

3 3 4

3

5

And dual polynomials:

g =
n∏

i=0

m∑
j=0

aijyj

g∗ =
m∏
j=0

n∑
i=0

aijxi
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Dual polynomials

Definitions

xα =
∏n

i=0 x
αi
i , yβ is defined similarly

perm(A) is a permament of a matrix

coeff (yβ, g) is a coefficient of monomial yβ in g.

Theorem

If ||α||1 = ||β||1, then
(
∏m

j=1 βj !)coeff (yβ, g) = (
∏n

i=1 αi !)coeff (xα, g∗) = perm(Aα,β)

If β = {0, 1}E (G ), α = 1VG , and M is an incidence matrix (Mβ indicates
a subgraph) then f satisfies Combinatorial Nullstellensatz and polynomial
dual to f is f ∗ =

∏
uv∈E ′(xu − xv ), that is a traditional graph polynomial

of G [E ′]
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Dual polynomials

Theorem: Alon-Tarsi [1992]

if D is an orientation of a graph H satisfying deg+
D (v) = tv at each vertex

v ∈ V (H), then

|coeff (
∏

v∈V (G)

x tv iv , f ∗)| = |EE (D)− EO(D)|

Given that, and a previous theorem, we obtain:

(
m∏
j=1

tv i !)coeff (yβ, f ) = |coeff (
∏

v∈V (G)

x tv iv , f ∗)| = |EE (D)− EO(D)| ≠ 0
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