Sequences of points on a circle

Łukasz Gniecki

Sequences of points on a circle N. G. de Brujin, P. Erdős, 1948

Consider a sequence $a = a_1, a_2, ...$ of real numbers modulo 1.

Points $a_1, ..., a_n$ divide the circle into *n* intervals.

Interval lengths

Let $M_n^1(a)$ and $m_n^1(a)$ denote the largest and the smallest interval length. Clearly:

$$n \cdot M_n^1(a) \geq 1 \geq n \cdot m_n^1(a)$$

Here $M_3^1(a) = 0.5$ and $m_3^1(a) = 0.25$.

Interval lengths

Let $M_n^r(a)$ and $m_n^r(a)$ denote the largest and the smallest total length of *r* consecutive intervals. Clearly:

 $n \cdot M_n^r(a) \ge r \ge n \cdot m_n^r(a)$

Here $M_3^2(a) = 0.75$ and $m_3^2(a) = 0.5$.

Limit superior and limit inferior

source: Wikipedia

Interval lengths in the limit

Define:

$$\Lambda_r(a) = \limsup_{n \to \infty} nM_n^r(a)$$

 $\lambda_r(a) = \liminf_{n \to \infty} nm_n^r(a)$

and:

$$\Lambda_r = \inf_a \Lambda_r(a)$$
$$\lambda_r = \sup_a \lambda_r(a)$$

Interval lengths in the limit

Intuition on $nM_n^r(a)$ and $nm_n^r(a)$:

- **1**. We start with a_1 on a circle of circumference 1.
- 2. Each time we add a new point we increase the circumference by 1.
- **3.** The circle's semantics never change it always represents the mod 1 additive group.

The goal

We will determine:

$$\Lambda_1 = 1/\ln 2$$

 $\lambda_1 = 1/\ln 4$

And provide bounds on Λ_r and λ_r .

An important sequence Let $a_k = \lg(2k - 1)$.

Lemma

The numbers $a_1, ..., a_n$ are distinct and the sets $\{a_1, ..., a_n\}$ and $\{lg(n), lg(n + 1), ..., lg(2n - 1)\}$ are equal (everything modulo 1). Moreover, the numbers lg(n), lg(n + 1), ..., lg(2n - 1) appear in this order on a circle.

An important sequence

Induced interval lengths are:

$$\lg((n+1)/n), ..., \lg(2n/(2n-1))$$

The largest and the smallest (scaled by n):

$$nM_n^1(a) = \frac{n\ln(1+1/n)}{\ln 2} \longrightarrow \frac{1}{\ln 2}$$
$$nm_n^1(a) = \frac{n\ln(1-1/2n)^{-1}}{\ln 2} \longrightarrow \frac{1}{\ln 4}$$

Consequently:

$$egin{aligned} &\Lambda_1(a) = 1/\ln2\ &\lambda_1(a) = 1/\ln4 \end{aligned}$$

We derive a lower bound for $\Lambda_1(a)$. Let *a* be a sequence, $n \in N$ and *g* such that for all $n \le k < 2n$:

$$g > k \mathcal{M}_k^1(a) \tag{1}$$

Let $d_1, ..., d_n$ denote the interval lengths induced by the sequence $a_1, ..., a_n$ in descending order:

$$d_1 \ge d_2 \ge ... \ge d_n$$

Also:

$$d_1 + \dots + d_n = 1$$
 (2)

Now incrementally insert points $a_{n+1}, ..., a_{2n-1}$. Since any of these points "destroys" at most one interval, we're going to have:

$$egin{aligned} & M_n^1(a) \geq d_1 & (3) \ & M_{n+1}^1(a) \geq d_2 & \ & \dots & \ & M_{2n-1}^1(a) \geq d_n \end{aligned}$$

From (1):
$$g > kM_k^1(a)$$
 we have: $g\left(rac{1}{n} + ... + rac{1}{2n-1}
ight) > M_n^1(a) + ... + M_{2n-1}^1(a)$

From (3): $M^1_{n+k-1}(a) \ge d_k$ we have

$$g\left(\frac{1}{n}+\ldots+\frac{1}{2n-1}\right)>d_1+\ldots+d_n$$

And from (2): $d_1 + ... + d_n = 1$:

$$g\left(\frac{1}{n}+\ldots+\frac{1}{2n-1}\right)>1$$

Finally:

$$g > \left(\frac{1}{n} + \ldots + \frac{1}{2n-1}\right)^{-1}$$

And since it works for any $g > kM_k^1(a)$, there must exist $n \le k < 2n - 1$ such that:

$$kM_k^1(a) \ge \left(\frac{1}{n} + \ldots + \frac{1}{2n-1}\right)^{-1} = \sigma_n$$

Considering the properties of the harmonic sequence we can prove that $\sigma_n < 1/\ln 2$ and that $\sigma_n \longrightarrow 1/\ln 2$.

 σ_n makes a lower bound on $nM_n^1(a)$, and since it converges to $1/\ln 2$, we have $\Lambda_1(a) \ge 1/\ln 2$.

Since it holds for any sequence *a*, we have:

$$\Lambda_1 = \inf_a \Lambda_1(a) \ge 1/\ln 2$$

Finally, because we have shown a sequence $a_k = \lg(2k - 1)$ for which $\Lambda_1(a) = 1/\ln 2$, the bound must be tight:

$$\Lambda_1 = 1/\ln 2$$

Bounding Λ_r

Using similar reasoning the authors show that:

$$kM_k^r(a) \ge \left(\frac{1}{rn} + ... + \frac{1}{r(n+1)-1}\right)^{-1}$$

Which is translated into a bound on Λ_r in the same manner:

$$\Lambda_r \geq 1/\ln(1+1/r)$$

But we don't know if it's tight because we didn't see a sequence which attains it.

The authors use reasoning similar to what we have already seen:

- 1. For some range of k, bound $km_k^1(a)$ by a value which converges to $1/\ln 4$.
- **2**. Deduce that $\lambda_1 \leq 1/\ln 4$.
- 3. Use the sequence $a_k = \lg(2k-1)$ to argue that $\lambda_1 = 1/\ln 4$

Bounding λ_r

The authors also argue that in general:

$$\lambda_r \leq \left(rac{r}{r+1}
ight) / \ln(1+1/r)$$

But we don't know if it's tight because we didn't see a sequence which attains it.

What's more?

Along with Λ_r and λ_r the authors also define μ_r :

$$\mu_r(a) = \limsup_{n \to \infty} M_n^r(a) / m_n^r(a)$$
 $\mu_r = \inf_a \mu_r(a)$

which bounds from below the ratio of the largest interval to the smallest interval of any sequence in the limit.

They show that:

$$\mu_r \ge 1 + 1/r$$

which is tight when r = 1 due to the sequence $a_k = \lg(2k - 1)$.

Thank you

