# Sequences of points on a circle 

Łukasz Gniecki



## Sequences of points on a circle

N. G. de Brujin, P. Erdôs, 1948

Consider a sequence $a=a_{1}, a_{2}, \ldots$ of real numbers modulo 1 .


Points $a_{1}, \ldots, a_{n}$ divide the circle into $n$ intervals.

## Interval lengths

Let $M_{n}^{1}(a)$ and $m_{n}^{1}(a)$ denote the largest and the smallest interval length. Clearly:

$$
n \cdot M_{n}^{1}(a) \geq 1 \geq n \cdot m_{n}^{1}(a)
$$



Here $M_{3}^{1}(a)=0.5$ and $m_{3}^{1}(a)=0.25$.

## Interval lengths

Let $M_{n}^{r}(a)$ and $m_{n}^{r}(a)$ denote the largest and the smallest total length of $r$ consecutive intervals. Clearly:

$$
n \cdot M_{n}^{r}(a) \geq r \geq n \cdot m_{n}^{r}(a)
$$



Here $M_{3}^{2}(a)=0.75$ and $m_{3}^{2}(a)=0.5$.

## Limit superior and limit inferior



## Interval lengths in the limit

Define:

$$
\begin{aligned}
& \Lambda_{r}(a)=\limsup _{n \rightarrow \infty} n M_{n}^{r}(a) \\
& \lambda_{r}(a)=\liminf _{n \rightarrow \infty} n m_{n}^{r}(a)
\end{aligned}
$$

and:

$$
\begin{aligned}
& \Lambda_{r}=\inf _{a} \Lambda_{r}(a) \\
& \lambda_{r}=\sup _{a} \lambda_{r}(a)
\end{aligned}
$$

## Interval lengths in the limit

Intuition on $n M_{n}^{r}(a)$ and $n m_{n}^{r}(a)$ :

1. We start with $a_{1}$ on a circle of circumference 1 .
2. Each time we add a new point we increase the circumference by 1 .
3. The circle's semantics never change - it always represents the mod 1 additive group.


## The goal

We will determine:

$$
\begin{aligned}
& \Lambda_{1}=1 / \ln 2 \\
& \lambda_{1}=1 / \ln 4
\end{aligned}
$$

And provide bounds on $\Lambda_{r}$ and $\lambda_{r}$.

## An important sequence

Let $a_{k}=\lg (2 k-1)$.


## Lemma

The numbers $a_{1}, \ldots, a_{n}$ are distinct and the sets $\left\{a_{1}, \ldots, a_{n}\right\}$ and $\{\lg (n), \lg (n+1), \ldots, \lg (2 n-1)\}$ are equal (everything modulo 1 ). Moreover, the numbers $\lg (n), \lg (n+1), \ldots, \lg (2 n-1)$ appear in this order on a circle.

## An important sequence

Induced interval lengths are:

$$
\lg ((n+1) / n), \ldots, \lg (2 n /(2 n-1))
$$

The largest and the smallest (scaled by $n$ ):

$$
\begin{aligned}
& n M_{n}^{1}(a)=\frac{n \ln (1+1 / n)}{\ln 2} \longrightarrow \frac{1}{\ln 2} \\
& n m_{n}^{1}(a)=\frac{n \ln (1-1 / 2 n)^{-1}}{\ln 2} \longrightarrow \frac{1}{\ln 4}
\end{aligned}
$$

Consequently:

$$
\begin{aligned}
& \Lambda_{1}(a)=1 / \ln 2 \\
& \lambda_{1}(a)=1 / \ln 4
\end{aligned}
$$

## Deriving $\Lambda_{1}$

We derive a lower bound for $\Lambda_{1}(a)$.
Let $a$ be a sequence, $n \in N$ and $g$ such that for all $n \leq k<2 n$ :

$$
\begin{equation*}
g>k M_{k}^{1}(a) \tag{1}
\end{equation*}
$$

Let $d_{1}, \ldots, d_{n}$ denote the interval lengths induced by the sequence $a_{1}, \ldots, a_{n}$ in descending order:

$$
d_{1} \geq d_{2} \geq \ldots \geq d_{n}
$$

Also:

$$
\begin{equation*}
d_{1}+\ldots+d_{n}=1 \tag{2}
\end{equation*}
$$

## Deriving $\Lambda_{1}$

Now incrementally insert points $a_{n+1}, \ldots, a_{2 n-1}$. Since any of these points "destroys" at most one interval, we're going to have:

$$
\begin{align*}
& M_{n}^{1}(a) \geq d_{1}  \tag{3}\\
& M_{n+1}^{1}(a) \geq d_{2} \\
& \ldots \\
& M_{2 n-1}^{1}(a) \geq d_{n}
\end{align*}
$$

## Deriving $\Lambda_{1}$

From (1): $g>k M_{k}^{1}(a)$ we have:

$$
g\left(\frac{1}{n}+\ldots+\frac{1}{2 n-1}\right)>M_{n}^{1}(a)+\ldots+M_{2 n-1}^{1}(a)
$$

From (3): $M_{n+k-1}^{1}(a) \geq d_{k}$ we have

$$
g\left(\frac{1}{n}+\ldots+\frac{1}{2 n-1}\right)>d_{1}+\ldots+d_{n}
$$

And from (2): $d_{1}+\ldots+d_{n}=1$ :

$$
g\left(\frac{1}{n}+\ldots+\frac{1}{2 n-1}\right)>1
$$

## Deriving $\Lambda_{1}$

Finally:

$$
g>\left(\frac{1}{n}+\ldots+\frac{1}{2 n-1}\right)^{-1}
$$

And since it works for any $g>k M_{k}^{1}(a)$, there must exist $n \leq k<2 n-1$ such that:

$$
k M_{k}^{1}(a) \geq\left(\frac{1}{n}+\ldots+\frac{1}{2 n-1}\right)^{-1}=\sigma_{n}
$$

Considering the properties of the harmonic sequence we can prove that $\sigma_{n}<1 / \ln 2$ and that $\sigma_{n} \longrightarrow 1 / \ln 2$.

## Deriving $\Lambda_{1}$

$\sigma_{n}$ makes a lower bound on $n M_{n}^{1}(a)$, and since it converges to $1 / \ln 2$, we have $\Lambda_{1}(a) \geq 1 / \ln 2$.

Since it holds for any sequence $a$, we have:

$$
\Lambda_{1}=\inf _{a} \Lambda_{1}(a) \geq 1 / \ln 2
$$

Finally, because we have shown a sequence $a_{k}=\lg (2 k-1)$ for which $\Lambda_{1}(a)=1 / \ln 2$, the bound must be tight:

$$
\Lambda_{1}=1 / \ln 2
$$

## Bounding $\Lambda_{r}$

Using similar reasoning the authors show that:

$$
k M_{k}^{r}(a) \geq\left(\frac{1}{r n}+\ldots+\frac{1}{r(n+1)-1}\right)^{-1}
$$

Which is translated into a bound on $\Lambda_{r}$ in the same manner:

$$
\Lambda_{r} \geq 1 / \ln (1+1 / r)
$$

But we don't know if it's tight because we didn't see a sequence which attains it.

## Deriving $\lambda_{1}$

The authors use reasoning similar to what we have already seen:

1. For some range of $k$, bound $k m_{k}^{1}(a)$ by a value which converges to $1 / \ln 4$.
2. Deduce that $\lambda_{1} \leq 1 / \ln 4$.
3. Use the sequence $a_{k}=\lg (2 k-1)$ to argue that $\lambda_{1}=1 / \ln 4$

## Bounding $\lambda_{r}$

The authors also argue that in general:

$$
\lambda_{r} \leq\left(\frac{r}{r+1}\right) / \ln (1+1 / r)
$$

But we don't know if it's tight because we didn't see a sequence which attains it.

## What's more?

Along with $\Lambda_{r}$ and $\lambda_{r}$ the authors also define $\mu_{r}$ :

$$
\begin{aligned}
\mu_{r}(a) & =\limsup _{n \rightarrow \infty} M_{n}^{r}(a) / m_{n}^{r}(a) \\
\mu_{r} & =\inf _{a} \mu_{r}(a)
\end{aligned}
$$

which bounds from below the ratio of the largest interval to the smallest interval of any sequence in the limit.

They show that:

$$
\mu_{r} \geq 1+1 / r
$$

which is tight when $r=1$ due to the sequence $a_{k}=\lg (2 k-1)$.

Thank you


