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Sequences of points on a circle
N. G. de Brujin, P. Erdés, 1948

Consider a sequence a = ay, ao, ... of real numbers modulo 1.

a2

ayr a Q.
! 2 & < a1 as

0=1

Points ay, ..., a, divide the circle into n intervals.
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Interval lengths

Let M}(a) and m}(a) denote the largest and the smallest interval
length. Clearly:

Here M}(a) = 0.5 and mi(a) = 0.25.
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Interval lengths

Let M/(a) and mj,(a) denote the largest and the smallest total
length of r consecutive intervals. Clearly:

n-M;(a)>r>n-mj(a)

asz

alQag

0=1

Here M3(a) = 0.75 and m3(a) = 0.5.
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Limit superior and limit inferior
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n

source: Wikipedia
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https://en.wikipedia.org/wiki/Limit_inferior_and_limit_superior

Interval lengths in the limit

Define:
Ar(a) = limsup nM;(a)
n—o0
Ar(a) = Izrlt)rlf nmj(a)
and:

A, = infA.(a)
Ar = supAr(a)

a
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Interval lengths in the limit

Intuition on nM/(a) and nm/,(a):

1. We start with a; on a circle of circumference 1.

2. Each time we add a new point we increase the circumference
by 1.

3. The circle's semantics never change - it always represents the
mod 1 additive group.

0—1
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The goal

We will determine:

Ap=1/In2
)\1:1/In4

And provide bounds on A, and A,.
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An important sequence
Let ax = Ig(2k — 1).

Lemma

The numbers ay, ..., a, are distinct and the sets {a1,...,a,} and
{lg(n),lg(n+1),...,1g(2n — 1)} are equal (everything modulo 1).
Moreover, the numbers Ig(n),lg(n+1),...,1g(2n — 1) appear in this

order on a circle.
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An important sequence

Induced interval lengths are:

lg((n+1)/n),...,1g(2n/(2n — 1))

The largest and the smallest (scaled by n):

nin(1+1/n 1
nM(a) = (In+2/) — i
pml(a) nin(1 |_n12/2n)1 . ﬁ
Consequently:
A(a)=1/In2
M(a)=1/In4
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Deriving A\

We derive a lower bound for A1(a).

Let a be a sequence, n € N and g such that for all n < k < 2n:
g > kMj(a) (1)

Let di, ..., d, denote the interval lengths induced by the sequence
ai, ..., an in descending order:

d>d>..>d,

Also:

dh+..+dy=1 (2)
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Deriving A\

Now incrementally insert points a,1,...,a2,_1. Since any of these

points "destroys" at most one interval, we're going to have:

(3)
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Deriving A\
From (1): g > kM.(a) we have:
+ +ﬁ > I\/In(a)+...+M2,,_1(a)

From (3): ML, ,_;(a) > di we have

1
gl =+..+ >di+ ...+ d,
n 2n—1

And from (2): d1 + ... + dp, = 1

L) s
£ n 7 2n—1
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Deriving A\

Finally:

S E U A
£ n 7 2n—1

And since it works for any g > kML(a), there must exist
n < k < 2n— 1 such that:

-1
. 1 1
kM (a) > (n tot o — 1) =0,

Considering the properties of the harmonic sequence we can prove
that o, < 1/In2 and that o, — 1/In2.
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Deriving A\
o, makes a lower bound on nM}(a), and since it converges to
1/In2, we have A1(a) > 1/In2.
Since it holds for any sequence a, we have:
A =infA1(a) >1/In2
a

Finally, because we have shown a sequence a, = Ig(2k — 1) for
which Aj(a) = 1/In2, the bound must be tight:

/\1:1/|n2
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Bounding A,

Using similar reasoning the authors show that:

kM (a) > i+ +; -
&= T r(n+1)—1

Which is translated into a bound on A, in the same manner:
A >1/In(1+1/r)

But we don't know if it's tight because we didn’t see a sequence
which attains it.
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Deriving \;

The authors use reasoning similar to what we have already seen:

1. For some range of k, bound km}(a) by a value which
converges to 1/In 4.

2. Deduce that A\; < 1/In4.
3. Use the sequence ax = Ig(2k — 1) to argue that A\; =1/In4
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Bounding ),

The authors also argue that in general:

d< (g ) /ey

But we don't know if it's tight because we didn't see a sequence
which attains it.
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What’s more?

Along with A, and ), the authors also define p,:

j1,(a) = limsup M (a)/m(a)

n—oo

pr = inf p,(a)
a

which bounds from below the ratio of the largest interval to the
smallest interval of any sequence in the limit.

They show that:
> 1+ 1/r

which is tight when r = 1 due to the sequence a; = Ig(2k — 1).

19/20



Thank you
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